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We study the existence of positive solutions of the following fourth-order boundary value problem
with integral boundary conditions, u(4)(t) = f(t, u(t), u′′(t)), t ∈ (0, 1), u(0) =

∫1
0 g(s)u(s)ds, u(1) =

0, u′′(0) =
∫1
0 h(s)u

′′(s)ds, u′′(1) = 0, where f : [0, 1] × [0,+∞) × (−∞, 0] → [0,+∞) is continuous,
g, h ∈ L1[0, 1] are nonnegative. The proof of our main result is based upon the Krein-Rutman
theorem and the global bifurcation techniques.

1. Introduction

The deformations of an elastic beam in an equilibrium state, whose both ends are simple
supported, can be described by the fourth-order boundary value problem

u(4)(t) = f
(
t, u(t), u′′(t)

)
, t ∈ (0, 1), (1.1)

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.2)

where f : [0, 1] × R × R → R is continuous; see Gupta [1, 2]. In the past twenty more years,
the existence of solutions and positive solutions of these kinds of problems and the Lidstone
problem has been extensively studied; see [3–9] and the references therein. In [3], Ma was
concerned with the existence of positive solutions of (1.1) and (1.2) under the assumptions:

(H1) f : [0, 1] × [0,+∞) × (−∞, 0] → [0,+∞) is continuous and there exist constants
a, b, c, d ∈ [0,+∞), with a + b > 0, c + d > 0 such that

f
(
t, u, p

)
= au − bp + o

(∣∣(u, p
)∣∣), as

∣∣(u, p
)∣∣ −→ 0 (1.3)
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uniformly for t ∈ [0, 1], and

f
(
t, u, p

)
= cu − dp + o

(∣∣u, p
∣
∣), as

∣
∣(u, p

)∣∣ −→ ∞ (1.4)

uniformly for t ∈ [0, 1], where |(u, p)| :=
√
u2 + p2;

(H2) f(t, u, p) > 0 for t ∈ [0, 1] and (u, p) ∈ ([0,+∞) × (−∞, 0]) \ {(0, 0)};
(H3) there exist constants a0, b0 ∈ [0,+∞) satisfying a2

0 + b20 > 0 and

f
(
t, u, p

) ≥ a0u − b0p,
(
t, u, p

) ∈ [0, 1] × [0,+∞) × (−∞, 0]. (1.5)

Ma proved the following.

Theorem A (see [3, Theorem 4.1]). Let (H1), (H2), and (H3) hold. Assume that either

μ1(c, d) < 1 < μ1(a, b), (1.6)

or

μ1(a, b) < 1 < μ1(c, d), (1.7)

where μ1(α, β) denotes the first generalized eigenvalue of the generalized eigenvalue problem

u(4)(t) = μ
(
αu(t) − βu′′(t)

)
, t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(1.8)

Then (1.1) and (1.2) have at least one positive solution.

At the same time, we notice that a class of boundary value problems with integral
boundary conditions appeared in heat conduction, chemical engineering underground water
flow, thermoelasticity, and plasma physics. Such a kind of problems include two-point, three-
point, multipoint and nonlocal boundary value problems as special cases and attracting the
attention of a few readers; see [10–13] and the references therein. For example, In particular,
Zhang and Ge [10] used Guo-Krasnoselskii fixed-point theorem to study existence and
nonexistence of positive solutions of the following fourth-order boundary value problem
with integral boundary conditions:

u(4)(t) = w(t)f
(
t, u(t), u′′(t)

)
, t ∈ (0, 1),

u(0) =
∫1

0
g(s)u(s)ds, u(1) = 0,

u′′(0) =
∫1

0
h(s)u′′(s)ds, u′′(1) = 0,

(P)
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where w may be singular at t = 0 and (or) t = 1; f : [0, 1] × [0,+∞) × (−∞, 0] → [0,+∞) is
continuous, and g, h ∈ L1[0, 1] are nonnegative.

Motivated by [3, 10], in this paper, we consider the existence of positive solutions of
the following fourth-order boundary value problem with integral boundary conditions:

u(4)(t) = f(t, u(t), u′′(t)), t ∈ (0, 1),

u(0) =
∫1
0 g(s)u(s)ds, u(1) = 0,

u′′(0) =
∫1
0 h(s)u

′′(s)ds, u′′(1) = 0,

(1.9)

under the assumption

(H4) g, h ∈ L1[0, 1] are nonnegative, and ‖g‖1 :=
∫1
0 g(s)ds ≤ π/4, ν :=

∫1
0 (1−s)h(s)ds < 1.

The main result of this paper is the following.

Theorem 1.1. Let (H1), (H2), (H3), and (H4) hold. Assume that either

λ1(c, d) < 1 < λ1(a, b) (1.10)

or

λ1(a, b) < 1 < λ1(c, d), (1.11)

where

u(4)(t) = λ
(
αu(t) − βu′′(t)

)
, t ∈ (0, 1), (1.12)

u(0) =
∫1

0
g(s)u(s)ds, u(1) = 0, (1.13)

u′′(0) =
∫1

0
h(s)u′′(s)ds, u′′(1) = 0. (1.14)

Then (1.9) has at least one positive solution.

Remark 1.2. Theorem 1.1 generalizes [3, Theorem 4.1] where the special case g = 0 and h = 0
was treated.

Remark 1.3. Zhang and Ge [10] proved existence and nonexistence of positive solutions via
Guo-Krasnoselskii fixed-point theorem under some conditions which do not involve the
eigenvalues of (1.12)–(1.14). While our Theorem 1.1 is established under (1.10) or (1.11)
which is related to the eigenvalues of (1.12)–(1.14). Moreover, (1.10) and (1.11) are optimal.
Let us consider the problem

u(4)(x) = π4u(x) + 1, x ∈ (0, 1), (1.15)

u(0) = u(1) = u′′(0) = u′′(1) = 0. (1.16)
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In this case, λ1(π4, 0) = 1 and the corresponding eigenfunction is ϕ1 = sinπx. However,
(1.15) and (1.16) has no positive solution. (In fact, suppose on the contrary that (1.15) and
(1.16) has a positive solution u. Multiplying (1.15) with sinπx and integrating from 0 to 1,
we get a desired contradiction!).

Suppose that E is a real Banach space with norm ‖ ·‖. LetK be a cone in E. A nonlinear
mapping A : [0,∞) × K → E is said to be positive if A([0,∞) × K) ⊆ K. It is said to be K-
completely continuous ifA is continuous andmaps bounded subsets of [0,∞)×K to precompact
subset of E. Finally, a positive linear operator V on E is said to be a linear minorant for A if
A(λ, u) ≥ λV (x) for (λ, u) ∈ [0,∞) ×K. If B is a continuous linear operator on E, denote r(B)
the spectral radius of B. Define

cK(B) = {λ ∈ [0,∞) : there exists x ∈ K with ‖x‖ = 1, x = λBx}. (1.17)

The following lemma will play a very important role in the proof of our main results,
which is essentially a consequence of Dancer [14, Theorem 2].

Lemma 1.4. Assume that
(i) K has nonempty interior and E = K −K;
(ii) A : [0,∞) × K → E is K-completely continuous and positive, A(λ, 0) = 0 for λ ∈ R,

A(0, u) = 0 for u ∈ K and

A(λ, u) = λBu + F(λ, u), (1.18)

where B : E → E is a strongly positive linear compact operator onEwith the spectral radius r(B) > 0,
F : [0,∞) ×K → E satisfies ‖F(λ, u)‖ = ◦(‖u‖) as ‖u‖ → 0 locally uniformly in λ.

Then there exists an unbounded connected subset C of

DK(A) = {(λ, u) ∈ [0,∞) ×K : u = A(λ, u), u /= 0} ∪
{(

r(B)−1, 0
)}

(1.19)

such that (r(B)−1, 0) ∈ C.
Moreover, if A has a linear minorant V and there exists a

(
μ, y

) ∈ (0,∞) ×K (1.20)

such that ‖y‖ = 1 and μVy ≥ y, then C can be chosen in

DK(A) ∩ ([
0, μ

] ×K
)
. (1.21)

Proof. Since B is a strongly positive compact endomorphism of E and P has nonempty
interior, we have from Amann [15, Theorem 3.2] that the set cK(B) in [14, Theorem 2]
reduces to a single point (r(B)−1, 0). Now the desired result is a consequence of Dancer [14,
Theorem 2].
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The rest of the paper is arranged as follows. In Section 2, we state and prove some
preliminary results about the spectrum of (1.12)–(1.14). Finally, in Section 3, we proved our
main result.

2. Generalized Eigenvalues

Lemma 2.1 (see [10]). Assume that (H4) holds. Then for any y ∈ C[0, 1], the boundary value
problem

−u′′(t) = y(t), t ∈ (0, 1),

u(0) =
∫1

0
g(s)u(s)ds, u(1) = 0

(2.1)

has a unique solution u which is given by

u(t) =
∫1

0
H1(t, s)y(s)ds, t ∈ [0, 1], (2.2)

where

H1(t, s) = G(t, s) +
1 − t

1 − μ

∫1

0
G(s, τ)g(τ)dτ, μ :=

∫1

0
(1 − s)g(s)ds,

G(t, s) =

⎧
⎨

⎩

s(1 − t), 0 ≤ s ≤ t ≤ 1,

t(1 − s), 0 ≤ t ≤ s ≤ 1.

(2.3)

Lemma 2.2 (see [10]). Assume that (H4) holds. Then for any y ∈ C[0, 1], the boundary value
problem

u(4)(t) = y(t), t ∈ (0, 1),

u(0) =
∫1

0
g(s)u(s)ds, u(1) = 0,

u′′(0) =
∫1

0
h(s)u′′(s)ds, u′′(1) = 0

(2.4)

has a unique solution u which is given by

u(t) =
∫∫1

0
H1(t, x)H2(x, s)y(s)dsdx, t ∈ [0, 1], (2.5)
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where

H2(x, s) = G(x, s) +
1 − x

1 − ν

∫1

0
G(s, τ)h(τ)dτ. (2.6)

Lemma 2.3 (see [10]). Assume that (H4) holds. Then one has

H1(t, s) > 0, H2(t, s) > 0, G(t, s) > 0, t, s ∈ (0, 1),

H1(t, s) ≥ 0, H2(t, s) ≥ 0, G(t, s) ≥ 0, t, s ∈ [0, 1].
(2.7)

Let

(H5) (α, β) ∈ [0,+∞) × [0,+∞) be two given constants with α + β > 0.

Definition 2.4. One says that λ is a generalized eigenvalue of linear problem

u(4)(t) = λ
(
αu(t) − βu′′(t)

)
, t ∈ (0, 1), (2.8)

u(0) =
∫1

0
g(s)u(s)ds, u(1) = 0,

u′′(0) =
∫1

0
h(s)u′′(s)ds, u′′(1) = 0,

(2.9)

if (2.8) and (2.9) have nontrivial solutions.

Let

e(t) := cos
π

2
t, t ∈ [0, 1]. (2.10)

Let Y = C[0, 1] with the norm ‖u‖∞ = maxt∈[0,1]|u(t)|. Let Z = L1[0, 1] with the norm
‖u‖1 =

∫1
0 |u(s)|ds.
Let

X =
{
u ∈ C2[0, 1] | u satisfies (2.9), ∃ ε > 0, s. t. − εe(t) ≤ −u′′(t) ≤ εe(t), t ∈ [0, 1]

}
.

(2.11)

For u ∈ X, from Lemma 2.1, it follows that

u(t) =
∫1

0
H1(t, s)

(−u′′(s)
)
ds, t ∈ [0, 1]. (2.12)
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By simple calculations, we have

∫1

0
H1(t, s)e(s)ds =

∫1

0
G(t, s)e(s)ds +

1 − t

1 − μ

∫1

0

[∫1

0
G(s, τ)g(τ)dτ

]

e(s)ds

=
4
π2

e(t) − 4(1 − t)
π2

+
1 − t

1 − μ

∫1

0

[∫1

0
G(s, τ)g(τ)dτ

]

e(s)ds

≤ 4
π2

e(t) − 4(1 − t)
π2

+
1 − t

1 − μ

∫1

0
G(s, s)e(s)ds

∫1

0
g(τ)dτ

=
4
π2

e(t) − 4(1 − t)
π2

+
4(1 − t)

π2

∥
∥g

∥
∥
1

1 − μ

(
4
π

− 1
)
.

(2.13)

Combining this with (H4), we conclude that

∫1

0
H1(t, s)e(s)ds ≤ 4

π2
e(t), t ∈ [0, 1]. (2.14)

This together with (2.12) and the fact that −εe(t) ≤ −u′′(t) ≤ εe(t) imply that

− 4
π2

εe(t) ≤ u(t) ≤ 4
π2

εe(t), t ∈ [0, 1]. (2.15)

Since (4/π2)ε < ε, we may define the norm of u ∈ X by

‖u‖X := inf
{
ε | −εe(t) ≤ −u′′(t) ≤ εe(t), t ∈ [0, 1]

}
. (2.16)

We claim that (X, ‖ · ‖X) is a Banach space.
In fact, let {yn} ⊂ X be a Cauchy sequence, that is, ‖yn−ym‖X → 0 as n,m → ∞. From

the definition of ‖ · ‖X , it follows that

∥∥yn − ym

∥∥
C2 ≤ c∗

∥∥yn − ym

∥∥
X, for some constant c∗ > 0, (2.17)

where ‖ · ‖C2 is a normal in X defined by ‖y‖C2 := max{| − y′′(t)| | t ∈ [0, 1]}. Thus,
∥∥yn − ym

∥∥
C2 −→ 0, as m, n −→ ∞. (2.18)

By the completeness of (C2[0, 1], ‖ · ‖C2), there exists y∗ ∈ C2[0, 1], such that

∥∥yn − y∗∥∥
C2 −→ 0, as n −→ ∞. (2.19)

From the fact that ‖yn − ym‖X → 0, we have that for arbitrary ε > 0, there exists N > 0, such
that

∥∥yn − ym

∥∥
X ≤ ε, whenever m, n > N; (2.20)
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and subsequently,

−εe(t) ≤ yn(t) − ym(t) ≤ εe(t), whenever m, n > N. (2.21)

Fixed n and letm → ∞, we get

−εe(t) ≤ yn(t) − y∗(t) ≤ εe(t), whenever n > N. (2.22)

This is,

∥
∥yn − y∗∥∥

X ≤ ε, whenever n > N. (2.23)

Therefore, (X, ‖ · ‖X) is a Banach space.
Let

P :=
{
u ∈ X | u(t) ≥ 0, u′′(t) ≤ 0, t ∈ [0, 1]

}
. (2.24)

Then the cone P is normal and nonempty interior P 0 and X = P − P .
In fact, for any u ∈ X, it follows from the definition of X that

(1) there exist real number a > 0, such that

∣∣u′′(t)
∣∣ ≤ ae(t), t ∈ [0, 1]; (2.25)

(2) u(1) = 0, u(0) =
∫1
0 g(s)u(s)ds.

From u(0) =
∫1
0 g(s)u(s)ds and (H4), we obtain that u′(t∗) = 0 for some t∗ ∈ (0, 1). Moreover,

∣∣u′(t)
∣∣ =

∣∣∣∣∣
u′(t∗) +

∫ t

t∗
u′′(s)ds

∣∣∣∣∣
≤ a, (2.26)

and subsequently,

|u(t)| =
∣∣∣∣∣
u(1) −

∫1

t

u′(s)ds

∣∣∣∣∣
≤ |u(1)| +

∫1

t

∣∣u′(s)
∣∣ds ≤ a(1 − t) ≤ âe(t), t ∈ [0, 1], (2.27)

for some â > 0. We may take â satisfying

â >
4a
π2

. (2.28)
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Now, let us define

y(t) = âe(t),

z(t) = u(t) + y(t).
(2.29)

Then y, z ∈ P , and

u = z(t) − y(t). (2.30)

Thus, X ⊆ P − P . Obviously, P − P ⊆ X.

Lemma 2.5. Assume that (H4) holds. Then for any u ∈ X, one has

‖u‖∞ <
∥∥u′′∥∥

∞ ≤ ‖u‖X. (2.31)

Proof. In fact, for u ∈ X, we have that

u(t) =
∫1

0
H1(t, s)

(−u′′(s)
)
ds

≤ ∥∥u′′∥∥
∞

∫1

0
H1(t, s)ds

=
∥∥u′′∥∥

∞

∫1

0

[

G(t, s) +
1 − t

1 − μ

∫1

0
G(s, τ)g(τ)dτ

]

ds

≤ ∥∥u′′∥∥
∞

[∫1

0
G(s, s)ds +

1
1 − μ

∫1

0
G(s, s)ds

∫1

0
g(τ)dτ

]

=
∥∥u′′∥∥

∞

[
1
6
+
1
6

∥∥g
∥∥
1

1 − μ

]

.

(2.32)

From μ ≤ ‖g‖1 ≤ π/4, we have that 1/6 + (1/6)(‖g‖1/(1 − μ)) < 1, and so |u(t)| < ‖u′′‖∞, and
accordingly ‖u‖∞ < ‖u′′‖∞.

We have from the fact that −εe(t) ≤ −u′′(t) ≤ εe(t), t ∈ [0, 1], that

∣∣u′′(t)
∣∣ ≤ εe(t) ≤ ε, (2.33)

which implies that ‖u′′‖∞ ≤ ε, and consequently ‖u′′‖∞ ≤ ‖u‖X .

For u ∈ X, define a linear operator T : X → Y by

Tu(t) =
∫∫1

0
H1(t, x)H2(x, s)

[
αu(s) − βu′′(s)

]
dsdx, t ∈ [0, 1]. (2.34)
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Theorem 2.6. Assume that (H4) and (H5) hold. Let r(T) be the spectral radius of T . Then (2.8)
and (2.9) has an algebraically simple eigenvalue, λ1(α, β) = (r(T))−1, with a positive eigenfunction
ϕ1(·) ∈ P 0. Moreover, there is no other eigenvalue with a positive eigenfunction.

Remark 2.7. If g = h ≡ 0, then λ1(α, β) can be explicitly given by

λ1
(
α, β

)
=

π4

α + βπ2
, (2.35)

and the corresponding eigenfunction ϕ1(t) = sinπt, t ∈ [0, 1].

Proof of Theorem 2.6. From Lemma 2.2, it is easy to check that (2.8) and (2.9) is equivalent to
the integral equation

u(t) = λTu(t), t ∈ [0, 1]. (2.36)

We claim that T : X → X.
In fact, for u ∈ X, we have that

∣∣−(Tu)′′(t)∣∣ =
∣∣∣∣∣

∫1

0
H2(t, s)

[
αu(s) − βu′′(s)

]
ds

∣∣∣∣∣

≤ (
α‖u‖∞ + β

∥∥u′′∥∥
∞
)
∫1

0
H2(t, s)ds

:= C0

∫1

0
H2(t, s)ds.

(2.37)

Since

∫1

0
H2(t, s)ds =

∫1

0
G(t, s)ds +

1 − t

1 − ν

∫∫1

0
G(s, τ)h(τ)dτds

=
t(1 − t)

2
+ (1 − t)

∫∫1
0G(s, τ)h(τ)dτds

1 − ν

≤ (1 − t)

⎡

⎣1
2
+

∫∫1
0G(s, τ)h(τ)dτds

1 − ν

⎤

⎦

:= Γ0(1 − t),

(2.38)

and for some constant ρ1 > 0, it concludes that

ρ1e(t) ≤ 1 − t ≤ e(t), t ∈ [0, 1]. (2.39)
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Hence,

−σe(t) ≤ −(Tu)′′(t) ≤ σe(t), t ∈ [0, 1], (2.40)

where σ := Γ0C0, it follows that Tu ∈ X, and accordingly T(X) ⊆ X.
If u ∈ P , then αu(t) − βu′′(t) ≥ 0 on t ∈ [0, 1], and accordingly

(Tu)′′(t) = −
∫1

0
H2(t, s)

[
αu(s) − βu′′(s)

]
ds ≤ 0, t ∈ [0, 1],

(Tu)(t) =
∫1

0
H1(t, s)

(−(Tu)′′(s))ds ≥ 0, t ∈ [0, 1].

(2.41)

Thus Tu ∈ P , and accordingly T(P) ⊆ P .
Now, since T(X) ⊆ C4[0, 1]∩X, and C4[0, 1]∩X is compactly embedded inX, we have

that T : X → X is compact.
Next, we show that T : P → P is positive.
For u ∈ P \ {0}, if α > 0, from Lemma 2.3, we have

−(Tu)′′(t) ≥ α

∫1

0
H2(t, s)u(s)ds

= α

[∫1

0
G(t, s)ds +

1 − t

1 − ν

∫1

0

(∫1

0
G(s, τ)h(τ)dτ

)

u(s)ds

]

≥
α
∫1
0

[∫1
0 G(s, τ)h(τ)dτ

]
u(s)ds

1 − ν
(1 − t)

:= Γ3(1 − t).

(2.42)

Combining this with (2.39), there exist r2 := Γ3ρ1 > 0 such that

−(Tu)′′(t) ≥ r2e(t), t ∈ [0, 1]. (2.43)

For u ∈ P \ {0}, if β > 0, applying a similar proof process of (2.43), we have

−(Tu)′′(t) ≥ β

∫1

0
H2(t, s)

[−u′′(s)
]
ds

≥
β
∫1
0

[∫1
0 G(s, τ)h(τ)dτ

]
(−u′′(s))ds

1 − ν
(1 − t)

:= Γ4(1 − t).

(2.44)
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Combining this with (2.39), there exist r3 := Γ4ρ1 > 0 such that

−(Tu)′′(t) ≥ r3e(t), t ∈ [0, 1]. (2.45)

This together with (2.9) and (H4) imply u(t) ≥ 0 on [0, 1].
Therefore, it follows from (2.43) and (2.45) that Tu ∈ P 0.
Now, by the Krein-Rutman theorem ([16, Theorem 7.C]; [17, Theorem 19.3]), T has an

algebraically simple eigenvalue r(T) > 0 with an eigenfunction ϕ1(·) ∈ P 0. Moreover, there is
no other eigenvalue with a positive eigenfunction. Correspondingly, λ1(α, β) = (r(T))−1 with
a positive eigenfunction of ϕ1(·), is a simple eigenvalue of (2.8) and (2.9). Moreover, for (2.8)
and (2.9), there is no other eigenvalue with a positive eigenfunction.

3. The Proof of the Main Result

Before proving Theorem 1.1, we denote L : D(L) → Y by setting

Lu := u′′′′, u ∈ D(L), (3.1)

where

D(L) =

{

u ∈ C4[0, 1] | u(0) =
∫1

0
g(s)u(s)ds, u′′(0) =

∫1

0
h(s)u′′(s)ds, u(1) = u′′(1) = 0

}

.

(3.2)

It is easy to check that L−1 : Y → X is compact.
Let ζ, ξ ∈ C([0, 1] × [0,+∞) × (−∞, 0]) be such that

f
(
t, u, p

)
= au − bp + ζ

(
t, u, p

)
,

f
(
t, u, p

)
= cu − dp + ξ

(
t, u, p

)
.

(3.3)

Obviously,(H1) implies that

lim
|(u,p)|→ 0

ζ
(
t, u, p

)

∣∣(u, p
)∣∣ = 0 uniformly for t ∈ [0, 1], (3.4)

lim
|(u,p)|→∞

ξ
(
t, u, p

)

∣∣(u, p
)∣∣ = 0 uniformly for t ∈ [0, 1]. (3.5)

Let

ξ̃(r) = max
{∣∣ξ

(
t, u, p

)∣∣ | 0 ≤ ∣∣(u, p
)∣∣ ≤ r, t ∈ [0, 1]

}
, (3.6)
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then ξ̃ is nondecreasing and

lim
r→∞

ξ̃(r)
r

= 0. (3.7)

Let us consider

Lu = λ
(
au − bu′′) + λζ

(
t, u, u′′), λ > 0 (3.8)

as a bifurcation problem from the trivial solution u ≡ 0. It is to easy to check that (3.8) can be
converted to the equivalent equation

u(t) = λ

{∫∫1

0
H1(t, x)H2(x, s)

[
au(s) − bu′′(s)

]
dsdx

}

+ λ

{∫∫1

0
H1(t, x)H2(x, s)ζ

(
s, u(s), u′′(s)

)
dsdx

}

:= A(λ, u)(t).

(3.9)

From the proof process of Theorem 2.6, the operator B : X → X,

Bu(t) :=
∫∫1

0
H1(t, x)H2(x, s)

[
au(s) − bu′′(s)

]
dsdx (3.10)

is compact and strongly positive. Define F : [0,+∞) ×X → X by

F(λ, u) := λ

∫∫1

0
H1(t, x)H2(x, s)ζ

(
s, u(s), u′′(s)

)
dsdx, (3.11)

then we have from (3.4) and Lemma 2.5 that

‖F(λ, u)‖X = o(‖u‖X), as ‖u‖X −→ 0, (3.12)

locally uniformly in λ. From(H2) and Theorem 2.6 (with obvious changes), it follows that if
(λ, u) is a nontrivial solution of (3.8)with λ > 0, then u ∈ P 0. Combining this with Lemma 1.4,
we conclude that there exists an unbounded connected subset C of the set

{
(λ, u) ∈ (0,∞) × P | u = A(λ, u), u ∈ P 0

}
∪ {(λ1(a, b), 0)} (3.13)

such that (λ1(a, b), 0) ∈ C.
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Proof of Theorem 1.1. It is clear that any solution of the form (1, u) yields a solution u of (1.9).
We will show that C crosses the hyperplane {1} × X. To do this, it is enough to show that C
joins (λ1(a, b), 0) to (λ1(c, d),∞). Let (μn, yn) ∈ C satisfy

μn +
∥
∥yn

∥
∥
X −→ ∞, n −→ ∞, (3.14)

we note that μn > 0 for all n ∈ N since (0, 0) is the only solution of (3.8) for λ = 0 and
C ∩ ({0} ×X) = ∅.

Case 1 (λ1(c, d) < 1 < λ1(a, b)). In this case, we show that

(λ1(c, d), λ1(a, b)) ⊆ {λ ∈ R | ∃(λ, u) ∈ C}. (3.15)

We divide the proof into two steps.

Step 1. We show that if there exists a constant number M > 0 such that

μn ∈ (0,M], (3.16)

then C joins (λ1(a, b), 0) to (λ1(c, d),∞).
From (3.16), we have that ‖yn‖X → ∞. We divide the equation

Lyn = μn

(
cyn − dy′′

n

)
+ μnξ

(
t, yn, y

′′
n

)
(3.17)

by ‖yn‖X and set yn = yn/‖yn‖X . Since yn is bounded in X, choosing a subsequence and
relabeling if necessary, we see that yn → y for some y ∈ X with ‖y‖X = 1. Moreover, we have
from (3.7) and Lemma 2.5 that

lim
n→∞

∣∣ξ
(
t, yn(t), y′′

n(t)
)∣∣

∥∥yn

∥∥
X

= 0. (3.18)

Since |ξ(t, yn(t), y′′
n(t))|/‖yn‖X ≤ ξ̃(

√
2‖yn‖X)/‖yn‖X. Thus,

y(t) =
∫∫1

0
H1(t, x)H2(x, s)μ

[
cy(s) − dy′′(s)

]
dsdx, (3.19)

where μ := limn→∞μn, again choosing a subsequence and relabeling if necessary. Thus,

Ly(t) = μ
(
cy(t) − dy′′(t)

)
, t ∈ [0, 1]. (3.20)

This together with Theorem 2.6 imply that μ = λ1(c, d). Therefore, C joins (λ1(a, b), 0) to
(λ1(c, d),∞).

Step 2. We show that there exists a constant M be such that μn ∈ (0,M] for all n.
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By Lemma 1.4, we only need to show that A has a linear minorant V and there exists
a (μ, y) ∈ (0,∞) × P such that ‖y‖X = 1 and μVy ≥ y.

By(H3), there exist constants a0, b0 ∈ [0,+∞) satisfying a2
0 + b20 > 0 and

f
(
t, u, p

) ≥ a0u − b0p,
(
t, u, p

) ∈ [0, 1] × [0,+∞) × (−∞, 0]. (3.21)

For u ∈ X, let

Vu(t) =
∫∫1

0
H1(t, x)H2(x, s)

[
a0u(s) − b0u

′′(s)
]
dsdx, (3.22)

then V is a linear minorant of A. Moreover,

V

(
4
π2

e(t)
)

=
∫∫1

0
H1(t, x)H2(x, s)

[
a0

4
π2

e(s) + b0e(s)
]
dsdx

=
(

4
π2

a0 + b0

)∫∫1

0
H1(t, x)H2(x, s)e(s)dsdx

=
(

4
π2

a0 + b0

)∫∫1

0

[

G(t, x) +
1 − t

1 − μ

∫1

0
G(x, τ)g(τ)dτ

]

H2(x, s)e(s)dsdx

≥
(

4
π2

a0 + b0

)∫∫1
0

[∫1
0 G(x, τ)g(τ)dτ

]
H2(x, s)e(s)dsdx

1 − μ
(1 − t)

:= Γ5
4
π2 (1 − t),

(3.23)

where

Γ5 =

(
a0 +

(
π2/4

)
b0

)∫∫1
0

[∫1
0 G(x, τ)g(τ)dτ

]
H2(x, s)e(s)dsdx

1 − μ
. (3.24)

Combining this with (2.39), we conclude that λV ((4/π2)e(t)) ≥ (4/π2)e(t), here, λ :=
(Γ5ρ1)

−1. Therefore, we have that from Lemma 1.4 that |μn| ≤ λ.

Case 2 (λ1(a, b) < 1 < λ1(c, d)). In this case, if (μn, yn) ∈ C such that

lim
n→∞

(
μn +

∥∥yn

∥∥
X

)
= ∞, (3.25)

and limn→∞μn = ∞, then

(λ1(a, b), λ1(c, d)) ⊆ {λ ∈ (0,∞) | (λ, u) ∈ C} (3.26)

and, moreover, ({1} ×X) ∩ C/= ∅.
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Assume that there exists M > 0, such that for all n ∈ N,

μn ∈ (0,M]. (3.27)

Applying a similar argument to that used in Step 1 of Case 1, after taking a subsequence and
relabeling if necessary, it follows that

(
μn, yn

) −→ (λ1(c, d),∞), n −→ ∞. (3.28)

Again C joins (λ1(a, b), 0) to (λ1(c, d),∞) and the result follows.
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