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This paper deals with the existence of solutions for the following differential equation: x′′(t) =
f(t, x(t), x′(t)), t ∈ (0, 1), subject to the boundary conditions: x(0) = αx(ξ), x′(1) =

∫1
0 x

′(s)dg(s),
where α ≥ 0, 0 < ξ < 1, f : [0, 1] × R2 → R is a continuous function, g : [0, 1] → [0,∞) is a
nondecreasing function with g(0) = 0. Under the resonance condition g(1) = 1, some existence
results are given for the boundary value problems. Our method is based upon the coincidence
degree theory of Mawhin. We also give an example to illustrate our results.

1. Introduction

In this paper, we consider the following second-order differential equation:

x′′(t) = f
(
t, x(t), x′(t)

)
, t ∈ (0, 1), (1.1)

subject to the boundary conditions:

x(0) = αx(ξ), x′(1) =
∫1

0
x′(s)dg(s), (1.2)

where α ≥ 0, 0 < ξ < 1, f : [0, 1] × R2 → R is a continuous function, g : [0, 1] → [0,∞) is a
nondecreasing function with g(0) = 0. In boundary conditions (1.2), the integral is meant in
the Riemann-Stieltjes sense.
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We say that BVP (1.1), (1.2) is a problem at resonance, if the linear equation

x′′(t) = 0, t ∈ (0, 1), (1.3)

with the boundary condition (1.2) has nontrivial solutions. Otherwise, we call them a
problem at nonresonance.

Nonlocal boundary value problems were first considered by Bicadze and Samarskiı̆
[1] and later by Il’pin and Moiseev [2, 3]. In a recent paper [4], Karakostas and Tsamatos
studied the following nonlocal boundary value problem:

x′′(t) + q(t)f
(
x(t), x′(t)

)
= 0, t ∈ (0, 1),

x(0) = 0, x′(1) =
∫1

0
x′(s)dg(s).

(1.4)

Under the condition 0 = g(0) ≤ g(1) < 1 (i.e., nonresonance case), they used Krasnosel’skii’s
fixed point theorem to show that the operator equation x = Ax has at least one fixed point,
where operatorA is defined by

(Ax)(t) =
t

1 − g(1)

∫1

0

∫1

s

q(r)f
(
x(r), x′(r)

)
dr dg(s) +

∫ t

0

∫1

s

q(r)f
(
x(r), x′(r)

)
dr ds. (1.5)

However, if g(1) = 1 (i.e., resonance case), then the method in [4] is not valid.
As special case of nonlocal boundary value problems, multipoint boundary value

problems at resonance case have been studied by some authors [5–11].
The purpose of this paper is to study the existence of solutions for nonlocal BVP (1.1),

(1.2) at resonance case (i.e., g(1) = 1) and establish some existence results under nonlinear
growth restriction of f . Our method is based upon the coincidence degree theory of Mawhin
[12].

2. Main Results

We first recall some notation, and an abstract existence result.
Let Y , Z be real Banach spaces, let L : domL ⊂ Y → Z be a linear operator which

is Fredholm map of index zero (i.e., ImL, the image of L, KerL, the kernel of L are finite
dimensional with the same dimension as the Z/ ImL), and let P : Y → Y , Q : Z → Z
be continuous projectors such that ImP = KerL, KerQ = ImL and Y = KerL ⊕ KerP , Z =
ImL ⊕ ImQ. It follows that L|domL∩KerP : domL ∩ KerP → ImL is invertible; we denote
the inverse by KP . Let Ω be an open bounded, subset of Y such that domL ∩ Ω/= ∅, the map
N : Y → Z is said to be L-compact on Ω if QN(Ω) is bounded, and KP(I −Q)N : Ω → Y is
compact. Let J : ImQ → KerL be a linear isomorphism.

The theorem we use in the following is Theorem IV.13 of [12].
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Theorem 2.1. Let L be a Fredholm operator of index zero, and letN be L-compact onΩ. Assume that
the following conditions are satisfied:

(i) Lx /=λNx for every (x, λ) ∈ [(domL \KerL) ∩ ∂Ω] × (0, 1),

(ii) Nx/∈ ImL for every x ∈ KerL ∩ ∂Ω,

(iii) deg(JQN|KerL,Ω ∩ KerL, 0)/= 0,

where Q : Z → Z is a projection with ImL = KerQ. Then the equation Lx = Nx has at least one
solution in domL ∩Ω.

For x ∈ C1[0, 1], we use the norms ‖x‖∞ = maxt∈[0,1]|x(t)| and ‖x‖ = max{‖x‖∞, ‖x′‖∞}
and denote the norm in L1[0, 1] by ‖ · ‖1. We will use the Sobolev space W2,1(0, 1) which may be
defined by

W2,1(0, 1) =
{
x : [0, 1] −→ R | x, x′ are absolutely continuous on [0, 1] with x′′ ∈ L1[0, 1]

}
.

(2.1)

Let Y = C1[0, 1], Z = L1[0, 1]. L : domL ⊂ Y → Z is a linear operator defined by

Lx = x′′, x ∈ domL, (2.2)

where

domL =

{

x ∈ W2,1(0, 1) : x(0) = αx(ξ), x′(1) =
∫1

0
x′(s)dg(s)

}

. (2.3)

Let N : Y → Z be defined as

Nx = f
(
t, x(t), x′(t)

)
, t ∈ (0, 1). (2.4)

Then BVP (1.1), (1.2) is Lx = Nx.

We will establish existence theorems for BVP (1.1), (1.2) in the following two cases:

case (i): α = 0, g(1) = 1,
∫1
0 s dg(s)/= 1;

case (ii): α = 1, g(1) = 1,
∫1
0 s dg(s)/= 1.

Theorem 2.2. Let f : [0, 1] × R2 → R be a continuous function and assume that

(H1) there exist functions a, b, c, r ∈ L1[0, 1] and constant θ ∈ [0, 1) such that for all (x, y) ∈
R2, t ∈ [0, 1], it holds that

∣∣f
(
t, x, y

)∣∣ ≤ a(t)|x| + b(t)
∣∣y
∣∣ + c(t)

(
|x|θ + ∣∣y

∣∣θ
)
+ r(t), (2.5)
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(H2) there exists a constant M > 0, such that for x ∈ domL, if |x′(t)| > M, for all t ∈ [0, 1],
then

∫1

0
f
(
s, x(s), x′(s)

)
ds −

∫1

0

∫ s

0
f
(
v, x(v), x′(v)

)
dv dg(s)/= 0, (2.6)

(H3) there exists a constantM∗ > 0, such that either

d ·
[∫1

0
f(s, ds, d)ds −

∫1

0

∫ s

0
f(v, dv, d)dv dg(s)

]

< 0, for any |d| > M∗, (2.7)

or else

d ·
[∫1

0
f(s, ds, d)ds −

∫1

0

∫ s

0
f(v, dv, d)dv dg(s)

]

> 0, for any |d| > M∗. (2.8)

Then BVP (1.1), (1.2) with α = 0, g(1) = 1, and
∫1
0 s dg(s)/= 1 has at least one solution in C1[0, 1]

provided that

‖a‖1 + ‖b‖1 <
1
2
. (2.9)

Theorem 2.3. Let f : [0, 1] × R2 → R be a continuous function. Assume that assumption (H1) of
Theorem 2.2 is satisfied, and

(H4) there exists a constant M > 0, such that for x ∈ domL, if |x(t)| > M, for all t ∈ [0, 1],
then

∫1

0
f
(
s, x(s), x′(s)

)
ds −

∫1

0

∫ s

0
f
(
v, x(v), x′(v)

)
dv dg(s)/= 0, (2.10)

(H5) there exists a constantM∗ > 0, such that either

e ·
[∫1

0
f(s, e, 0)ds −

∫1

0

∫s

0
f(v, e, 0)dv dg(s)

]

< 0, for any |e| > M∗, (2.11)

or else

e ·
[∫1

0
f(s, e, 0)ds −

∫1

0

∫s

0
f(v, e, 0)dv dg(s)

]

> 0, for any |e| > M∗. (2.12)
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Then BVP (1.1), (1.2) with α = 1, g(1) = 1, and
∫1
0 s dg(s)/= 1 has at least one solution in C1[0, 1]

provided that

‖a‖1 + ‖b‖1 <
1
2
. (2.13)

3. Proof of Theorems 2.2 and 2.3

We first prove Theorem 2.2 via the following Lemmas.

Lemma 3.1. If α = 0, g(1) = 1, and
∫1
0 s dg(s)/= 1, then L : domL ⊂ Y → Z is a Fredholm operator

of index zero. Furthermore, the linear continuous projector operatorQ : Z → Z can be defined by

Qy =
1

1 − ∫1
0 s dg(s)

[∫1

0
y(s)ds −

∫1

0

∫ s

0
y(v)dv dg(s)

]

, (3.1)

and the linear operatorKP : ImL → domL ∩KerP can be written by

KPy =
∫ t

0

∫s

0
y(v)dv ds. (3.2)

Furthermore,

∥
∥KPy

∥
∥ ≤ ∥

∥y
∥
∥
1, for every y ∈ ImL. (3.3)

Proof. It is clear that

KerL = {x ∈ domL : x = dt, d ∈ R, t ∈ [0, 1]}. (3.4)

Obviously, the problem

x′′ = y (3.5)

has a solution x(t) satisfying x(0) = 0, x′(1) =
∫1
0 x

′(s)dg(s), if and only if

∫1

0
y(s)ds −

∫1

0

∫ s

0
y(v)dv dg(s) = 0, (3.6)

which implies that

ImL =

{

y ∈ Z :
∫1

0
y(s)ds −

∫1

0

∫ s

0
y(v)dv dg(s) = 0

}

. (3.7)
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In fact, if (3.5) has solution x(t) satisfying x(0) = 0, x′(1) =
∫1
0 x

′(s)dg(s), then from (3.5) we
have

x(t) = x′(0)t +
∫ t

0

∫ s

0
y(v)dv ds. (3.8)

According to x′(1) =
∫1
0 x

′(s)dg(s), g(1) = 1, we obtain

x′(1) = x′(0) +
∫1

0
y(s)ds =

∫1

0
x′(s)dg(s)

=
∫1

0

[
x′(0) +

∫ s

0
y(v)dv

]
dg(s)

= x′(0)g(1) +
∫1

0

∫ s

0
y(v)dv dg(s),

(3.9)

then

∫1

0
y(s)ds −

∫1

0

∫ s

0
y(v)dv dg(s) = 0. (3.10)

On the other hand, if (3.6) holds, setting

x(t) = dt +
∫ t

0

∫ s

0
y(v)dv ds, (3.11)

where d is an arbitrary constant, then x(t) is a solution of (3.5), and x(0) = 0, and from
g(1) = 1 and (3.6), we have

x′(1) −
∫1

0
x′(s)dg(s) = d +

∫1

0
y(s)ds −

∫1

0

[
d +

∫ s

0
y(v)dv

]
dg(s)

= d
(
1 − g(1)

)
+
∫1

0
y(s)ds −

∫1

0

∫ s

0
y(v)dv dg(s)

= 0.

(3.12)

Then x′(1) =
∫1
0 x

′(s)dg(s). Hence (3.7) is valid.
For y ∈ Z, define

Qy =
1

1 − ∫1
0 s dg(s)

[∫1

0
y(s)ds −

∫1

0

∫ s

0
y(v)dv dg(s)

]

, 0 ≤ t ≤ 1. (3.13)
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Let y1 = y −Qy, and we have

[

1 −
∫1

0
s dg(s)

]

Qy1 =
∫1

0

(
y −Qy

)
(s)ds −

∫1

0

∫ s

0

(
y −Qy

)
(v)dv dg(s)

=
∫1

0
y(s)ds −Qy −

∫1

0

∫ s

0
y(v)dv dg(s) +Qy

∫1

0
s dg(s)

=
∫1

0
y(s)ds −

∫1

0

∫ s

0
y(v)dv dg(s) −Qy

[

1 −
∫1

0
s dg(s)

]

= 0,

(3.14)

then Qy1 = 0, thus y1 ∈ ImL. Hence, Z = ImL + Z1, where Z1 = {x(t) ≡ d : t ∈ [0, 1], d ∈ R},
also ImL ∩ Z1 = {0}. So we have Z = ImL ⊕Z1, and

dim KerL = dimZ1 = co dim ImL = 1. (3.15)

Thus, L is a Fredholm operator of index zero.
We define a projector P : Y → KerL by (Px)(t) = x′(0)t. Then we show that KP

defined in (3.2) is a generalized inverse of L : domL ∩ Y → Z.
In fact, for y ∈ ImL, we have

(LKP)y(t) =
[(
KPy

)
(t)

]′′ = y(t), (3.16)

and, for x ∈ domL ∩ KerP , we know

(KPL)x(t) =
∫ t

0

∫ s

0
x′′(v)dv ds = x(t) − x(0) − x′(0)t. (3.17)

In view of x ∈ domL ∩ KerP , x(0) = 0, and Px = 0, thus

(KPL)x(t) = x(t). (3.18)

This shows that KP = (L|domL∩Ker P)
−1. Also we have

∥
∥KPy

∥
∥
∞ ≤

∫∫1

0

∣
∣y(v)

∣
∣dv ds =

∥
∥y

∥
∥
1,

∥
∥(KPy)′

∥
∥
∞ ≤ ∥

∥y
∥
∥
1, (3.19)

then ‖KPy‖ ≤ ‖y‖1. The proof of Lemma 3.1 is finished.

Lemma 3.2. Under conditions (2.5) and (2.9), there are nonnegative functions a, b, r ∈ L1[0, 1]
satisfying

∣
∣f
(
t, x, y

)∣∣ ≤ a(t)|x| + b(t)
∣
∣y
∣
∣ + r(t). (3.20)
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Proof. Without loss of generality, we suppose that ‖c‖1 =
∫1
0 |c(t)|dt = β > 0. Take γ ∈

(0, (1/2β)(1/2 − (‖a‖1 + ‖b‖1))), then there exists M > 0 such that

|x|θ ≤ γ |x| +M,
∣∣y
∣∣θ ≤ γ

∣∣y
∣∣ +M. (3.21)

Let

a(t) = a(t) + γc(t), b(t) = b(t) + γc(t), r(t) = r(t) + 2Mc(t). (3.22)

Obviously, a, b, r ∈ L1[0, 1], and

‖a‖1 ≤ ‖a‖1 + γ‖c‖1,
∥∥∥b

∥∥∥
1
≤ ‖b‖1 + γ‖c‖1.

(3.23)

Then

‖a‖1 +
∥∥∥b

∥∥∥
1
≤ ‖a‖1 + ‖b‖1 + 2βγ <

1
2
, (3.24)

and from (2.5) and (3.21), we have

∣∣f
(
t, x, y

)∣∣ ≤ [
a(t) + γc(t)

]|x| + [
b(t) + γc(t)

]∣∣y
∣∣ + 2Mc(t) + r(t)

= a(t)|x| + b(t)
∣
∣y
∣
∣ + r(t).

(3.25)

Hence we can take a, b, 0, and r to replace a, b, c, and r, respectively, in (2.5), and for the
convenience omit the bar above a, b, and r, that is,

∣∣f
(
t, x, y

)∣∣ ≤ a(t)|x| + b(t)
∣∣y
∣∣ + r(t). (3.26)

Lemma 3.3. If assumptions (H1), (H2) and α = 0, g(1) = 1, and
∫1
0 s dg(s)/= 1 hold, then the set

Ω1 = {x ∈ domL \ KerL : Lx = λNx for some λ ∈ [0, 1]} is a bounded subset of Y .

Proof. Suppose that x ∈ Ω1 and Lx = λNx. Thus λ/= 0 and QNx = 0, so that

∫1

0
y(s)ds −

∫1

0

∫ s

0
y(v)dv dg(s) = 0, (3.27)

thus by assumption (H2), there exists t0 ∈ [0, 1], such that |x′(t0)| ≤ M. In view of

x′(0) = x′(t0) −
∫ t0

0
x′′(t)dt, (3.28)
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then, we have

∣
∣x′(0)

∣
∣ ≤ M +

∥
∥x′′∥∥

1 = M + ‖Lx‖1 ≤ M + ‖Nx‖1. (3.29)

Again for x ∈ Ω1, x ∈ domL \ KerL, then (I − P)x ∈ domL ∩ KerP , LPx = 0 thus from
Lemma 3.1, we know

‖(I − P)x‖ = ‖KPL(I − P)x‖ ≤ ‖L(I − P)x‖1 = ‖Lx‖1 ≤ ‖Nx‖1. (3.30)

From (3.29) and (3.30), we have

‖x‖ ≤ ‖Px‖ + ‖(I − P)x‖ =
∣
∣x′(0)

∣
∣ + ‖(I − P)x‖ ≤ 2‖Nx‖1 +M. (3.31)

If (2.5) holds, from (3.31), and (3.26), we obtain

‖x‖ ≤ 2
[
‖a‖1‖x‖∞ + ‖b‖1

∥∥x′∥∥
∞ + ‖r‖1 +

M

2

]
. (3.32)

Thus, from ‖x‖∞ ≤ ‖x‖ and (3.32), we have

‖x‖∞ ≤ 2
1 − 2‖a‖1

[
‖b‖1

∥∥x′∥∥
∞ + ‖r‖1 +

M

2

]
. (3.33)

From ‖x′‖∞ ≤ ‖x‖, (3.32), and (3.33), one has

∥∥x′∥∥
∞ ≤ ‖x‖ ≤ 2

[
1 +

2‖a‖1
1 − 2‖a‖1

][
‖b‖1

∥∥x′∥∥
∞ + ‖r‖1 +

M

2

]

=
2

1 − 2‖a‖1

[
‖b‖1

∥∥x′∥∥
∞ + ‖r‖1 +

M

2

]
,

(3.34)

that is,

∥
∥x′∥∥

∞ ≤ 2
1 − 2(‖a‖1 + ‖b‖1)

[
‖r‖1 +

M

2

]
:= M1. (3.35)

From (3.35) and (3.33), there exists M2 > 0, such that

‖x‖∞ ≤ M2. (3.36)

Thus

‖x‖ = max
{‖x‖∞,

∥
∥x′∥∥

∞
} ≤ max{M1,M2}. (3.37)
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Again from (2.5), (3.35), and (3.36), we have

∥∥x′′∥∥
1 = ‖Lx‖1 ≤ ‖Nx‖1 ≤ ‖a‖1M2 + ‖b‖1M1 + ‖r‖1. (3.38)

Then we show that Ω1 is bounded.

Lemma 3.4. If assumption (H2) holds, then the set Ω2 = {x ∈ KerL : Nx ∈ ImL} is bounded.

Proof. Let x ∈ Ω2, then x ∈ KerL = {x ∈ domL : x = dt, d ∈ R, t ∈ [0, 1]} and QNx = 0;
therefore,

∫1

0
f(s, ds, d)ds −

∫1

0

∫ s

0
f(v, dv, d)dv dg(s) = 0, (3.39)

From assumption (H2), ‖x‖∞ = |d| ≤ M, so ‖x‖ = |d| ≤ M, clearlyΩ2 is bounded.

Lemma 3.5. If the first part of condition (H3) of Theorem 2.2 holds, then

d · 1

1 − ∫1
0 s dg(s)

[∫1

0
f(s, ds, d)ds −

∫1

0

∫s

0
f(v, dv, d)dv dg(s)

]

< 0, (3.40)

for all |d| > M∗. Let

Ω3 = {x ∈ KerL : −λx + (1 − λ)JQNx = 0, λ ∈ [0, 1]}, (3.41)

where J : ImQ → KerL is the linear isomorphism given by J(d) = dt, for all d ∈ R, t ∈ [0, 1]. Then
Ω3 is bounded.

Proof. Suppose that x = d0t ∈ Ω3, then we obtain

λd0t =
(1 − λ)t

1 − ∫1
0 s dg(s)

[∫1

0
f(s, d0s, d0)ds −

∫1

0

∫ s

0
f(v, d0v, d0)dv dg(s)

]

, 0 ≤ t ≤ 1, (3.42)

or equivalently

λd0 =
1 − λ

1 − ∫1
0 s dg(s)

[∫1

0
f(s, d0s, d0)ds −

∫1

0

∫ s

0
f(v, d0v, d0)dv dg(s)

]

. (3.43)

If λ = 1, then d0 = 0. Otherwise, if |d0| > M∗, in view of (3.40), one has

λd2
0 =

d0(1 − λ)

1 − ∫1
0 s dg(s)

[∫1

0
f(s, d0s, d0)ds −

∫1

0

∫ s

0
f(v, d0v, d0)dv dg(s)

]

< 0, (3.44)
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which contradicts λd2
0 ≥ 0. Then |x| = |d0t| ≤ |d0| ≤ M∗ and we obtain ‖x‖ ≤ M∗; therefore,

Ω3 ⊂ {x ∈ KerL : ‖x‖ ≤ M∗} is bounded.

The proof of Theorem 2.2 is now an easy consequence of the above lemmas and
Theorem 2.1.

Proof of Theorem 2.2. Let Ω = {x ∈ Y : ‖x‖ < δ} such that
⋃3

i=1 Ωi ⊂ Ω. By the Ascoli-Arzela
theorem, it can be shown that KP (I − Q)N : Ω → Y is compact; thus N is L-compact on Ω.
Then by the above Lemmas, we have the following.

(i) Lx /=λNx for every (x, λ) ∈ [(domL \ KerL) ∩ ∂Ω] × (0, 1).

(ii) Nx/∈ ImL for every x ∈ KerL ∩ ∂Ω.

(iii) LetH(x, λ) = −λx+(1−λ)JQNx, with J as in Lemma 3.5. We knowH(x, λ)/= 0, for
x ∈ KerL ∩ ∂Ω. Thus, by the homotopy property of degree, we get

deg(JQN|KerL,Ω ∩KerL, 0) = deg(H(·, 0),Ω ∩ KerL, 0)

= deg(H(·, 1),Ω ∩ KerL, 0)

= deg(−I,Ω ∩KerL, 0).

(3.45)

According to definition of degree on a space which is isomorphic to Rn, n < ∞, and

Ω ∩ KerL = {dt : |d| < δ}. (3.46)

We have

deg(−I,Ω ∩ KerL, 0) = deg
(
−J−1IJ, J−1(Ω ∩KerL), J−1{0}

)

= deg(−I, (−δ, δ), 0) = −1/= 0,
(3.47)

and then

deg(JQN|KerL,Ω ∩ KerL, 0)/= 0. (3.48)

Then by Theorem 2.1, Lx = Nx has at least one solution in domL ∩Ω, so that the BVP (1.1),
(1.2) has at least one solution in C1[0, 1]. The proof is completed.

Remark 3.6. If the second part of condition (H3) of Theorem 2.2 holds, that is,

d · 1

1 − ∫1
0 s dg(s)

[∫1

0
f(s, ds, d)ds −

∫1

0

∫s

0
f(v, dv, d)dv dg(s)

]

> 0, (3.49)

for all |d| > M∗, then in Lemma 3.5, we take

Ω3 = {x ∈ KerL : λx + (1 − λ)JQNx = 0, λ ∈ [0, 1]}, (3.50)
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and exactly as there, we can prove that Ω3 is bounded. Then in the proof of Theorem 2.2, we
have

deg(JQN|KerL,Ω ∩ KerL, 0) = deg(I,Ω ∩ KerL, 0) = 1, (3.51)

since 0 ∈ Ω ∩KerL. The remainder of the proof is the same.

By using the same method as in the proof of Theorem 2.2 and Lemmas 3.1–3.5, we can
show Lemma 3.7 and Theorem 2.3.

Lemma 3.7. If α = 1, g(1) = 1, and
∫1
0 s dg(s)/= 1, then L : domL ⊂ Y → Z is a Fredholm operator

of index zero. Furthermore, the linear continuous projector operatorQ : Z → Z can be defined by

Qy =
1

1 − ∫1
0 s dg(s)

[∫1

0
y(s)ds −

∫1

0

∫ s

0
y(v)dv dg(s)

]

, (3.52)

and the linear operatorKP : ImL → domL ∩KerP can be written by

KPy = − t

ξ

∫ ξ

0

∫ s

0
y(v)dv ds +

∫ t

0

∫ s

0
y(v)dv ds. (3.53)

Furthermore,

∥∥KPy
∥∥ ≤ 2

∥∥y
∥∥
1, ∀y ∈ ImL. (3.54)

Notice that

KerL = {x ∈ domL : x = e, e ∈ R},

ImL =

{

y ∈ Z :
∫1

0
y(s)ds −

∫1

0

∫ s

0
y(v)dv dg(s) = 0

}

.
(3.55)

Proof of Theorem 2.3. Let

Ω1 = {x ∈ domL \KerL : Lx = λNx for some λ ∈ [0, 1]}. (3.56)

Then, for x ∈ Ω1, Lx = λNx; thus λ/= 0,Nx ∈ ImL = KerQ; hence

∫1

0
y(s)ds −

∫1

0

∫ s

0
y(v)dv dg(s) = 0, (3.57)

thus, from assumption (H4), there exists t0 ∈ [0, 1], such that |x(t0)| < M and in view of
x(0) = x(t0) −

∫ t0
0 x′(t)dt, we obtain

|x(0)| ≤ M +
∥
∥x′∥∥

∞. (3.58)
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From x(0) = x(ξ), there exists t1 ∈ (0, ξ), such that x′(t1) = 0. Thus, from x′(t) = x′(t1) +∫ t
t1
x′′(t)dt, one has

∥∥x′∥∥
∞ ≤ ∥∥x′′∥∥

1. (3.59)

We let Px = x(0); hence from (3.58) and (3.59), we have

‖Px‖ = |x(0)| ≤ M +
∥
∥x′∥∥

∞ ≤ M +
∥
∥x′′∥∥

1

= M + ‖Lx‖1 ≤ M + ‖Nx‖1,
(3.60)

thus, by using the same method as in the proof of Lemmas 3.2 and 3.3, we can prove that Ω1

is bounded too. Similar to the other proof of Lemmas 3.4–3.7 and Theorem 2.2, we can verify
Theorem 2.3.

Finally, we give two examples to demonstrate our results.

Example 3.8. Consider the following boundary value problem:

x′′ = t3 + 8 + sin (x)3 +
1
9
(t + 1)x′, t ∈ (0, 1),

x(0) = 0, x′(1) =
∫1

0
x′(s)dg(s),

(3.61)

where α = 0,

f
(
t, x, y

)
= t3 + 8 + sin (x)3 +

1
9
(t + 1)y, t ∈ (0, 1), (3.62)

and g(s) = s2 satisfying g(0) = 0, g(1) = 1, and
∫1
0 s dg(s) = 2/3/= 1, then we can choose

a(t) = 0, b(t) = 2/9, and r(t) = 10, for t ∈ [0, 1]; thus

∣∣f
(
t, x, y

)∣∣ ≤ 2
9
∣∣y
∣∣ + 10,

‖a‖1 + ‖b‖1 =
2
9
<
1
2
.

(3.63)

Since

∫1

0
f
(
s, x(s), x′(s)

)
ds −

∫1

0

∫ s

0
f
(
v, x(v), x′(v)

)
dv dg(s)

=
∫∫1

0
f
(
v, x(v), x′(v)

)
dv dg(s) −

∫1

0

∫ s

0
f
(
v, x(v), x′(v)

)
dv dg(s)

=
∫1

0

∫1

s

f
(
v, x(v), x′(v)

)
dv dg(s),

(3.64)
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and f has the same sign as x′(t)when |x′(t)| > 90, we may chooseM = M∗ = 90, and then the
conditions (H1)–(H3) of Theorem 2.2 are satisfied. Theorem 2.2 implies that BVP (3.61) has
at least one solution, x ∈ C1[0, 1].

Example 3.9. Consider the following boundary value problem:

x′′ = t2 + 4 +
1
7
(t + 2)x + cos

(
x′)3, t ∈ (0, 1),

x(0) = x(1), x′(1) =
∫1

0
x′(s)dg(s),

(3.65)

where α = 1,

f
(
t, x, y

)
= t2 + 4 +

1
7
(t + 2)x + cos

(
y
)3
, t ∈ (0, 1), (3.66)

and g(s) = s2 satisfying g(0) = 0, g(1) = 1, and
∫1
0 s dg(s) = 2/3/= 1, then we can choose

a(t) = 3/7, b(t) = 0, and r(t) = 6, for t ∈ [0, 1]; thus

∣∣f
(
t, x, y

)∣∣ ≤ 3
7
|x| + 6,

‖a‖1 + ‖b‖1 =
3
7
<
1
2
.

(3.67)

Similar to Example 3.8, we have

∫1

0
f
(
s, x(s), x′(s)

)
ds −

∫1

0

∫ s

0
f
(
v, x(v), x′(v)

)
dv dg(s) =

∫1

0

∫1

s

f
(
v, x(v), x′(v)

)
dv dg(s),

(3.68)

and f has the same sign as x(t) when |x(t)| > 21, we may choose M = M∗ = 21, and then all
conditions of Theorem 2.3 are satisfied. Theorem 2.3 implies that BVP (3.65) has at least one
solution x ∈ C1[0, 1].
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