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This paper deals with the existence of L-quasi-solutions for impulsive periodic boundary value
problems in an ordered Banach space E. Under a new concept of upper and lower solutions, a
new monotone iterative technique on periodic boundary value problems of impulsive differential
equations has been established. Our result improves and extends some relevant results in abstract
differential equations.

1. Introduction

The theory of impulsive differential equations is a new and important branch of differential
equation theory, which has an extensive physical, chemical, biological, and engineering back-
ground and realistic mathematical model, and hence has been emerging as an important area
of investigation in the last few decades; see [1]. Correspondingly, applications of the theory
of impulsive differential equations to different areas were considered by many authors, and
some basic results on impulsive differential equations have been obtained; see [2–5]. But
many of them are about impulsive initial value problem; see [2, 3] and the references therein.
The research on impulsive periodic boundary value problems is seldom; see [4, 5].

In this paper, we use a monotone iterative technique in the presence of coupled lower
and upper L-quasisolutions to discuss the existence of solutions to the impulsive periodic
boundary value problem (IPBVP) in an ordered Banach space E

u′(t) = f(t, u(t), u(t)), t ∈ J, t /= tk,

Δu|t=tk = Ik(u(tk), u(tk)), k = 1, 2, . . . , m,

u(0) = u(ω),

(1.1)
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where f ∈ C(J × E × E, E), J = [0, ω], ω > 0; 0 < t1 < t2 < · · · < tm < ω; Ik ∈ C(E × E, E)
is an impulsive function, k = 1, 2, . . . , m. Δu|t=tk denotes the jump of u(t) at t = tk, that is,
Δu|t=tk = u(t+

k
)−u(t−

k
),where u(t+

k
) and u(t−

k
) represent the right and left limits of u(t) at t = tk,

respectively.
The monotone iterative technique in the presence of lower and upper solutions is an

important method for seeking solutions of differential equations in abstract spaces. Early on,
Lakshmikantham and Leela [4] built a monotone iterative method for the periodic boundary
value problem of first-order differential equation in R

u′(t) = f(t, u(t)), t ∈ J,

u(0) = u(ω),
(1.2)

and they proved that, if PBVP(1.2) has a lower solution v0 and an upper solution w0 with
v0 ≤ w0, and nonlinear term f satisfies the monoton condition

f(t, x2) − f(t, x1) ≥ −M(x2 − x1), ∀t ∈ J, v0(t) ≤ x1 ≤ x2 ≤ w0(t), (1.3)

with a positive constant M, then PBVP(1.2) has minimal and maximal solutions between v0

and w0, which can be obtained by a monotone iterative procedure starting from v0 and w0,
respectively. Later, He and Yu [5] developed the problem to impulsive differential equation

u′(t) = f(t, u(t)), t ∈ J, t /= tk,

Δu|t=tk = Ik(u(tk)), k = 1, 2, . . . , m,

u(0) = u(ω),

(1.4)

where f ∈ C(J × R,R), J = [0, ω], Ik ∈ C(R,R), 0 < t1 < t2 < · · · < tm < ω.
But all of these results are in real spaces R. We not only consider problems in Banach

spaces, but also expand the nonlinear term to the case of f(t, u, u). If f(t, u) = f1(t, u) +
f2(t, u), f1(t, u) is nondecreasing in u and f2(t, u) is nonincreasing in u, then the monotonity
condition (1.3) is not satisfied, and the results in [4, 5] are not right, in this case, we studied
the IPBVP(1.1). As far as we know, no work has been done for the existence of solutions for
IPBVP(1.1) in Banach spaces.

In order to apply themonotone iterative technique to the initial value problemwithout
impulse

u′(t) = f(t, u(t), u(t)), t ∈ [0, a],

u(0) = x0,
(1.5)

Lakshmikantham et al. [6] and Guo and Lakshmikantham [7] obtained the existence of
coupled quasisolutions of problem (1.5) bymixedmonotone sequence of coupled quasiupper
and lower solutions under the concept of quasiupper and lower solutions. In this paper, we
improve and extend the above-mentioned results, and obtain the existence of the coupled
minimal and maximal L-quasisolutions and the solutions between the coupled minimal
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and maximal L-quasisolutions of the problem (1.1) through the mixed monotone iterative
about the coupled L-quasisolutions. If L ≡ 0, the coupled upper and lower L-quasisolutions
are equivalent to coupled upper and lower quasisolutions of the IPBVP(1.1). If L ≡ 0,
f(t, u, u) = f(t, u) and Ik(u, u) = Ik(u), the coupled upper and lower L-quasisolutions are
equivalent to upper and lower solutions of IPBVP(1.4).

2. Preliminaries

Let E be an ordered Banach space with the norm ‖ · ‖ and partial order ≤, whose positive
coneP = {x ∈ E | x ≥ 0} is normal with normal constant N. Let J = [0, ω], ω > 0 is
a constant; 0 = t0 < t1 < t2 < · · · < tm < tm+1 = ω; Jk = [tk−1, tk], k = 1, 2, . . . , m + 1,
J ′ = J \ {t1, t2, . . . , tm}. Let PC(J, E) = {u : J → E | u(t) is continuous at t /= tk, and left
continuous at t = tk, and u(t+k) exists, k = 1, 2, . . . , m}. Evidently, PC(J, E) is a Banach space
with the norm ‖u‖PC = supt∈J‖u(t)‖. An abstract function u ∈ PC(J, E) ∩ C1(J ′, E) is called a
solution of IPBVP(1.1) if u(t) satisfies all the equalities of (1.1).

Let PC1(J, E) = {u ∈ PC(J, E) ∩ C1(J ′, E) | u′(t+k) and u′(t−k) exist, k = 1, 2, . . . , m}.
For u ∈ PC1(J, E), it is easy to see that the left derivative u′

−(tk) of u(t) at t = tk exists and
u′
−(tk) = u′(t−k), and set u′(tk) = u′(t−k), then u′ ∈ PC(J, E). If u ∈ PC(J, E) ∩ C1(J ′, E) is a

solution of IPBVP(1.1), by the continuity of f, u ∈ PC1(J, E).
Let C(J, E) denote the Banach space of all continuous E-value functions on interval

J with the norm ‖u‖C = maxt∈J‖u(t)‖. Let α(·) denote the Kuratowski measure of
noncompactness of the bounded set. For the details of the definition and properties of the
measure of noncompactness, see [8]. For any B ⊂ C(J, E) and t ∈ J, set B(t) = {u(t) | u ∈ B} ⊂
E. If B is bounded in C(J, E), then B(t) is bounded in E, and α(B(t)) ≤ α(B).

Now, we first give the following lemmas in order to prove our main results.

Lemma 2.1 (see [9]). Let B = {un} ⊂ PC(J, E) be a bounded and countable set. Then α(B(t)) is
Lebesgue integral on J, and

α

({∫
J

un(t)dt | n ∈ N

})
≤ 2

∫
J

α(B(t))dt. (2.1)

Lemma 2.2 (see [10]). Let D ⊂ E be bounded. Then exist a countable set D0 ⊂ D, such that
α(D) ≤ 2α(D0).

Lemma 2.3 (see [11]). Let B ⊂ C(J, E) be equicontinuous. Then α(B(t)) is continuous on J, and

α(B) = max
t∈J

α(B(t)) = α(B(J)). (2.2)

Lemma 2.4 (see [8]). Let X be a Banach space and Ω is a bounded convex closed set in X,Q : Ω →
Ω be condensing, then Q has a fixed point in Ω.
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To prove our main results, for any h ∈ PC(J, E), we consider the periodic boundary
value problem (PBVP) of linear impulsive differential equation in E

u′(t) +Mu(t) = h(t), t ∈ J ′,

Δu|t=tk = yk, k = 1, 2, . . . , m,

u(0) = u(ω),

(2.3)

where M ≥ 0, yk ∈ E, k = 1, 2, . . . , m.

Lemma 2.5. For any h ∈ PC(J, E), x ∈ E and yk ∈ E, k = 1, 2, . . . , m, the linear PBVP(2.3) has a
unique solution u ∈ PC1(J, E) given by

u(t) = e−Mtyh +
∫ t

0
e−M(t−s)h(s)ds +

∑
tk<t

e−M(t−tk)yk, (2.4)

where yh = (1/(1 − e−Mω))(
∫ω
0 e−M(ω−s)h(s)ds +

∑m
k=1 e

−M(ω−tk)yk).

Proof. For any h ∈ PC(J, E), x ∈ E and yk ∈ E, k = 1, 2, . . . , m, the linear initial value problem

u′(t) +Mu(t) = h(t), t ∈ J ′,

Δu|t=tk = yk, k = 1, 2, . . . , m,

u(0) = x

(2.5)

has a unique solution u ∈ PC1(J, E) given by

u(t) = e−Mtx +
∫ t

0
e−M(t−s)h(s)ds +

∑
tk<t

e−M(t−tk)yk, (2.6)

where M ≥ 0 is a constant [3].
If u is a solution of the linear initial value problem (2.5) satisfies u(ω) = x, namely

x = e−Mωx +
∫ω

0
e−M(ω−s)h(s)ds +

m∑
k=1

e−M(ω−tk)yk, (2.7)

then it is the solution of the linear PBVP(2.3). From (2.7), we have

x =
1

1 − e−Mω

(∫ω

0
e−M(ω−s)h(s)ds +

m∑
k=1

e−M(ω−tk)yk

)
� yh. (2.8)

So, (2.4) is satisfied.
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Inversely, we can verify directly that the function u ∈ PC(J, E) defined by (2.4) is a
solution of the linear PBVP(2.3). Therefore, the conclusion of Lemma 2.5 holds.

Definition 2.6. Let L ≥ 0 be a constant. If functions v0, w0 ∈ PC1(J, E) satisfy

v′
0(t) ≤ f(t, v0(t), w0(t)) + L(v0(t) −w0(t)), t ∈ J ′,

Δv0|t=tk ≤ Ik(v0(tk), w0(tk)), k = 1, 2, . . . , m,

v0(0) ≤ v0(ω),

(2.9)

w′
0(t) ≥ f(t,w0(t), v0(t)) + L(w0(t) − v0(t)), t ∈ J ′,

Δw0|t=tk ≥ Ik(w0(tk), v0(tk)), k = 1, 2, . . . , m,

w0(0) ≥ w0(ω),

(2.10)

we call v0, w0 coupled lower and upper L-quasisolutions of the IPBVP(1.1). Only choose
“=” in (2.9) and (2.10), we call (v0, w0) coupled L-quasisolution pair of the IPBVP(1.1).
Furthermore, if v0 = w0 := u0, we call u0 a solution of the IPBVP(1.1).

Now, we define an operator Q : PC(J, E) → PC(J, E) as following:

Q(u, v)(t) = e−MtS(u, v) +
∫ t

0
e−M(t−s)[f(s, u(s), v(s)) + (M + L)u(s) − Lv(s)

]
ds

+
∑
tk<t

e−M(t−tk)Ik(u(tk), v(tk)),
(2.11)

where

S(u, v) =
1

1 − e−Mω

(∫ω

0
e−M(ω−s)[f(s, u(s), v(s)) + (M + L)u(s) − Lv(s)

]
ds

+
m∑
k=1

e−M(ω−tk)Ik(u(tk), v(tk))

)
.

(2.12)

Evidently, PC(J, E) is also an ordered Banach space with the partial order “≤” reduced
by the positive coneKPC = {u ∈ PC(J, E) | u(t) ≥ 0, t ∈ J}. KPC is also normal with the
same normal constant N. For v,w ∈ PC(J, E) with v ≤ w, we use [v,w] to denote the order
interval {u ∈ PC(J, E) | v ≤ u ≤ w} in PC(J, E), and [v(t), w(t)] to denote the order interval
{u ∈ E | v(t) ≤ u(t) ≤ w(t), t ∈ J} in E.
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3. Main Results

Theorem 3.1. Let E be an ordered Banach space, whose positive coneP is normal, f ∈ C(J×E×E, E)
and Ik ∈ C(E × E, E), k = 1, 2, . . . , m. Assume that the IPBVP(1.1) has coupled lower and
upper L-quasisolutions v0 and w0 with v0 ≤ w0. Suppose that the following conditions are
satisfied:

(H1) There exist constants M > 0 and L ≥ 0 such that

f(t, u2, v2) − f(t, u1, v1) ≥ −M(u2 − u1) − L(v1 − v2), (3.1)

for any t ∈ J, and v0(t) ≤ u1 ≤ u2 ≤ w0(t), v0(t) ≤ v2 ≤ v1 ≤ w0(t).

(H2) The impulsive function Ik(·, ·) satisfies

Ik(u1, v1) ≤ Ik(u2, v2), k = 1, 2, . . . , m, (3.2)

for any t ∈ J, and v0(t) ≤ u1 ≤ u2 ≤ w0(t), v0(t) ≤ v2 ≤ v1 ≤ w0(t).

(H3) There exist a constant L1 > 0 such that

α
({

f(t, un, vn) +Mun

}) ≤ L1(α({un}) + α({vn})), (3.3)

for all t ∈ J, and increasing or decreasing monotonic sequences {un} ⊂ [v0(t), w0(t)] and
{vn} ⊂ [v0(t), w0(t)].

(H4) The sequences vn(0) and wn(0) are convergent, where vn = Q(vn−1, wn−1), wn =
Q(wn−1, vn−1), n = 1, 2, . . . .

Then the IPBVP(1.1) has minimal and maximal coupled L-quasisolutions between v0

and w0, which can be obtained by a monotone iterative procedure starting from v0 and w0,
respectively.

Proof. By the definition ofQ and Lemma 2.5,Q : [v0, w0]×[v0, w0] → PC(J, E) is continuous,
and the coupled L-quasisolutions of the IPBVP(1.1) is equivalent to the coupled fixed point
of operator Q. Combining this with the assumptions (H1) and (H2), we know Q : [v0, w0] ×
[v0, w0] → PC(J, E) is a mixed monotone operator (about the mixed monotone operator,
please see [6, 7]).

Next, we show v0 ≤ Q(v0, w0), Q(w0, v0) ≤ w0. Let h(t) = v′
0(t) + Mv0(t), by (2.9),

h ∈ PC(J, E) and h(t) ≤ f(t, v0, w0) + (L +M)v0 − Lw0, t ∈ J ′. By Lemma 2.5

v0(t) =
e−Mt

1 − e−Mω

(∫ω

0
e−M(ω−s)h(s)ds +

m∑
k=1

e−M(ω−tk) Δv0|t=tk
)

+
∫ t

0
e−M(t−s)h(s)ds +

∑
tk<t

e−M(t−tk) Δv0|t=tk
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≤ e−MtS(v0, w0) +
∫ t

0
e−M(t−s)[f(s, v0(s), w0(s)) + (L +M)v0(s) − Lw0(s)

]
ds

+
∑
tk<t

e−M(t−tk)Ik(v0(tk), w0(tk))

= Q(v0, w0)(t), t ∈ J,

(3.4)

namely, v0 ≤ Q(v0, w0). Similarly, it can be show that Q(w0, v0) ≤ w0. So, Q : [v0, w0] ×
[v0, w0] → [v0, w0].

Now, we define two sequences {vn} and {wn} in [v0, w0] by the iterative scheme

vn = Q(vn−1, wn−1), wn = Q(wn−1, vn−1), n = 1, 2, . . . . (3.5)

Then from the mixed monotonicity of Q, it follows that

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (3.6)

We prove that {vn} and {wn} are uniformly convergent in J.
For convenience, let B = {vn | n ∈ N} + {wn | n ∈ N}, B1 = {vn | n ∈ N}, B2 =

{wn | n ∈ N}, B10 = {vn−1 | n ∈ N} and B20 = {wn−1 | n ∈ N}. Since, B1 = Q(B10, B20) and
B2 = Q(B20, B10), by (2.11) and the boundedness of B10 and B20, we easy see that B1 and B2

is equicontinuous in every interval J ′k, so, B is equicontinuous in every interval J ′k, where
J ′1 = [0, t1], J ′k = (tk−1, tk], k = 2, 3, . . . , m + 1. From B10 = B1 ∪ {v0} and B20 = B2 ∪ {w0} it
follows that α(B10(t)) = α(B1(t)) and α(B20(t)) = α(B2(t)) for t ∈ J. Let ϕ(t) := α(B(t)), t ∈ J,
by Lemma 2.3, ϕ ∈ PC(J,R+). Going from J ′1 to J ′m+1 interval by interval we show that ϕ(t) ≡ 0
in J.

For t ∈ J ′1, from (2.11), using Lemma 2.1 and assumption (H3) and (H4), we have

ϕ(t) = α(B(t)) = α(B1(t) + B2(t)) = α(Q(B10, B20)(t) +Q(B20, B10)(t))

= α

({
e−MtS(vn−1, wn−1)

+
∫ t

0
e−M(t−s)[f(s, vn−1(s), wn−1(s)) + (L +M)vn−1(s) − Lwn−1(s)

]
ds

+ e−MtS(wn−1, vn−1)

+
∫ t

0
e−M(t−s)[f(s,wn−1(s), vn−1(s)) + (L +M)wn−1(s) − Lvn−1(s)

]
ds

})
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≤ α
({

e−Mtvn(0)
})

+ α
({

e−Mtwn(0)
})

+ 2
∫ t

0
e−M(t−s)α

({
f(s, vn−1(s), wn−1(s)) + (L +M)vn−1(s) − Lwn−1(s)

+f(s,wn−1(s), vn−1(s)) + (L +M)wn−1(s) − Lvn−1(s)
})

ds

≤ 2
∫ t

0
2L1(α(B10(s)) + α(B20(s)))ds

≤ 8L1

∫ t

0
ϕ(s)ds.

(3.7)

Hence by the Belman inequality, ϕ(t) ≡ 0 in J ′1. In particular, α(B10(t1)) = 0, α(B20(t1)) = 0,
this means that B10(t1) and B20(t1) are precompact in E. Thus I1(B10(t1)) and I1(B20(t1)) are
precompact in E, and α(I1(B10(t1))) = 0, α(I1(B20(t1))) = 0.

Now, for t ∈ J ′2, by (2.11) and the above argument for t ∈ J ′1,we have

ϕ(t) = α(B(t)) = α(B1(t) + B2(t)) = α(Q(B10, B20)(t) +Q(B20, B10)(t))

≤ α

({
e−MtS(vn−1, wn−1)

+
∫ t

0
e−M(t−s)[f(s, vn−1(s), wn−1(s)) + (L +M)vn−1(s) − Lwn−1(s)

]
ds

+ e−MtS(wn−1, vn−1)

+
∫ t

0
e−M(t−s)[f(s,wn−1(s), vn−1(s)) + (L +M)wn−1(s) − Lvn−1(s)

]
ds

})

+ α(I1(B10(t1))) + α(I1(B20(t1)))

≤ 8L1

∫ t

0
ϕ(s)ds = 8L1

∫ t

t1

ϕ(s)ds.

(3.8)

Again by Belman inequality, ϕ(t) ≡ 0 in J ′2, from which we obtain that α(B10(t2)) = 0,
α(B20(t2)) = 0 and α(I2(B10(t2))) = 0, α(I2(B20(t2))) = 0.

Continuing such a process interval by intervai up to J ′m+1, we can prove that ϕ(t) ≡ 0
in every J ′

k
, k = 1, 2, . . . , m + 1.

For any Jk, if we modify the value of vn, wn at t = tk−1 via vn(tk−1) = vn(t+k−1),
wn(tk−1) = wn(t+k−1), n ∈ N, then {vn} + {wn} ⊂ C(Jk, E) and it is equicontinuous. Since
α({vn(t)} + {wn(t)}) = 0, {vn(t)} + {wn(t)} is precompact in E for every t ∈ Jk. By the Arzela-
Ascoli theorem, {vn} + {wn} is precompact in C(Jk, E). Hence, {vn} + {wn} has a convergent
subsequence in C(Jk, E). Combining this with the monotonicity (3.6), we easily prove that
{vn} + {wn} itself is convergent in C(Jk, E). In particular, {vn(t)} + {wn(t)} is uniformly
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convergent over the whole of J. Hence, {vn} + {wn} is uniformly convergent in PC(J, E).
Set

u = lim
n→∞

vn, u = lim
n→∞

wn, in PC(J, E). (3.9)

Letting n → ∞ in (3.5) and (3.6), we see that v0 ≤ u ≤ u ≤ w0 and u = Q(u, u), u = Q(u, u).
By the mixed monotonicity of Q, it is easy to see that u and u are the minimal and maximal
coupled fixed points of Q in [v0, w0], and therefore, they are the minimal and maximal
coupled L-quasisolutions of the IPBVP(1.1) in [v0, w0], respectively.

In Theorem 3.1, if E is weakly sequentially complete, condition (H3) and (H4) hold
automatically. In fact, by Theorem 2.2 in [12], any monotonic and order-bounded sequence
is precompact. By the monotonicity (3.6) and the same method in proof of Theorem 3.1,
we can easily see that {vn(t)} and {wn(t)} are convergent on J. In particular, {vn(0)} and
{wn(0)} are convergent. So, condition (H4) holds. Let {un} and {vn} be increasing or
decreasing sequences obeying condition (H3), then by condition (H1), {f(t, un, vn) +Mun}
is a monotonic and order-bounded sequence, so α({f(t, un, vn)+Mun}) = 0.Hence, condition
(H3) holds. From Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Let E be an ordered and weakly sequentially complete Banach space, whose positive
coneP is normal, f ∈ C(J × E × E, E) and Ik ∈ C(E × E, E), k = 1, 2, . . . , m. If the IPBVP(1.1) has
coupled lower and upper L-quasisolutions v0 and w0 with v0 ≤ w0, and conditions (H1) and (H2)
are satisfied, then the IPBVP(1.1) has minimal and maximal coupled L-quasisolutions between v0 and
w0, which can be obtained by a monotone iterative procedure starting from v0 and w0 respectively.

If we replace the assumption (H3) by the following assumption:

(H5) There exist positive constants M and L such that

f(t, u2, v2) − f(t, u1, v1) ≤ M(u2 − u1) + L(v1 − v2), (3.10)

for any t ∈ J, and v0(t) ≤ u1 ≤ u2 ≤ w0(t), v0(t) ≤ v2 ≤ v1 ≤ w0(t).

We have the following result.

Theorem 3.3. Let E be an ordered Banach space, whose positive coneP is normal, f ∈ C(J×E×E, E)
and Ik ∈ C(E×E, E), k = 1, 2, . . . , m. If the IPBVP(1.1) has coupled lower and upper L-quasisolutions
v0 and w0 with v0 ≤ w0, and conditions (H1), (H2), (H4) and (H5) hold, then the IPBVP(1.1)
has minimal and maximal coupled L-quasisolutions between v0 and w0, which can be obtained by a
monotone iterative procedure starting from v0 and w0 respectively.

Proof. For t ∈ J, let {un} ⊂ [v0(t), w0(t)] be a increasing sequence and {vn} ⊂ [v0(t), w0(t)] be
a decreasing sequence. For m,n ∈ N withm > n, by (H1) and (H5),

θ ≤ f(t, um, vm) − f(t, un, vn) +M(um − un) + L(vn − vm)

≤
(
M +M

)
(um − un) +

(
L + L

)
(vn − vm).

(3.11)
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By this and the normality of coneP, we have

∥∥f(t, um, vm) − f(t, un, vn) +M(um − un)
∥∥

≤ N
∥∥∥(M +M

)
(um − un) +

(
L + L

)
(vn − vm)

∥∥∥ + L‖vn − vm‖

≤ N
(
M +M

)
‖um − un‖ +

(
N
(
L + L

)
+ L

)
‖vn − vm‖.

(3.12)

From this inequality and the definition of the measure noncompactness, it follows that

α
({

f(t, un, vn) +Mun

}) ≤ N
(
M +M

)
α({un}) +

(
N
(
L + L

)
+ L

)
α({vn})

≤ L1(α({un}) + α({vn})),
(3.13)

where L1 = N(M+M)+N(L+L)+L. If {un} is a increasing sequence and {vn} is a decreasing
sequence, the above inequality is also valid. Hence (H3) holds.

Therefore, by Theorem 3.1, the IPBVP(1.1) has minimal and maximal coupled L-
quasisolutions between v0 andw0,which can be obtained by a monotone iterative procedure
starting from v0 and w0, respectively.

Now, we discuss the existence of the solution to the IPBVP(1.1) between the minimal
and maximal coupled L-quasisolutions u and u. If we replace the assumptions (H2) and
(H3) by the following assumptions:

(H2)∗ The impulsive function Ik(·, ·) satisfies

Ik(u1, v1) ≤ Ik(u2, v2), k = 1, 2, . . . , m, (3.14)

for any t ∈ J, and v0(t) ≤ u1 ≤ u2 ≤ w0(t), v0(t) ≤ v2 ≤ v1 ≤ w0(t); and there exist
Mk > 0,

∑m
k=1 Mk ≤ ((8L1ω − 1) + (1 − 16L1ω)eMω)/2(2eMω − 1), such that

α(Ik({un(tk)} × {vn(tk)})) ≤ Mk[α(un(tk)) + α(vn(tk))], (3.15)

for any countable sets {un} and {vn} in [v0(t), w0(t)].

(H3)∗ There exist a constant L1 > 0 such that

α
(
f(t,D1 ×D2) +MD1

) ≤ L1(α(D1) + α(D2)), (3.16)

for any t ∈ J,where D1 = {vn} and D2 = {wn} are countable sets in [v0(t), w0(t)].

We have the following existence result.

Theorem 3.4. Let E be an ordered Banach space, whose positive coneP is normal, f ∈ C(J×E×E, E)
and Ik ∈ C(E×E, E), k = 1, 2, . . . , m. If the IPBVP(1.1) has coupled lower and upper L-quasisolutions
v0 and w0 with v0 ≤ w0, such that assumptions (H1), (H2)∗, (H3)∗ and (H4) hold, then the
IPBVP(1.1) has minimal and maximal coupled L-quasisolutions u and u between v0 and w0, and at
least has one solution between u and u.
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Proof. We can easily see that (H2)∗ ⇒ (H2), (H3)∗ ⇒ (H3). Hence, by the Theorem 3.1, the
IPBVP(1.1) has minimal and maximal coupled L-quasisolutions u and u between v0 and w0.
Next, we prove the existence of the solution of the equation between u and u. Let Au =
Q(u, u), clearly, A : [v0, w0] → [v0, w0] is continuous and the solution of the IPBVP(1.1) is
equivalent to the fixed point of operator A. Since A(D) is bounded and equicontinuous for
any D ⊂ [v0, w0], by Lemma 2.2, there exist a countable set D0 = {un}, such that

α(A(D)) ≤ 2α(A(D0)). (3.17)

By assumptions (H2)∗ and (H3)∗ and Lemma 2.1,

α(A(D0(t)))

= α

({
e−Mω

1 − e−Mω

[∫ω

0
e−M(t−s)(f(s, un(s), un(s)) +Mun(s)

)
ds

+
m∑
k=1

e−M(t−tk)Ik(un(tk), un(tk))

]

+
∫ t

0
e−M(t−s)(f(s, un(s), un(s)) +Mun(s)

)
ds

+
∑
tk<t

e−M(t−tk)Ik(un(tk), un(tk))

})

≤ 1
eMω − 1

[
2
∫ω

0
e−M(t−s)α

(
f(s,D0(s), D0(s)) +MD0(s)

)
ds

+
m∑
k=1

e−M(t−tk)α(Ik(D0(tk), D0(tk)))

]

+ 2
∫ t

0
e−M(t−s)α

(
f(s,D0(s), D0(s)) +MD0(s)

)
ds +

∑
tk<t

e−M(t−tk)α(Ik(D0(tk), D0(tk)))

<
eMω

eMω − 1

[
4L1

∫ω

0
α(D0(s))ds + 2

m∑
k=1

Mkα(D0(tk))

]

+ 4L1

∫ t

0
α(D0(s))ds + 2

∑
tk<t

Mkα(D0(tk))

≤ 2eMω − 1
eMω − 1

(
4L1ω + 2

m∑
k=1

Mk

)
α(D).

(3.18)

Since A(D0) is equicontinuous, by Lemma 2.3, α(A(D0)) = maxt∈Jα(A(D0)(t)).
Combing (3.17) and (H2)∗.
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We have

α(A(D)) <
4eMω − 2
eMω − 1

(
4L1ω + 2

m∑
k=1

Mk

)
α(D) ≤ α(D). (3.19)

Hence, the operator A : [v0, w0] → [v0, w0] is condensing, by the Lemma 2.4, A has fixed
point u in [v0, w0].

Lastly, since u = Au = Q(u, u), v0 ≤ u ≤ w0, by the mixed monotonity of Q

v1 = Q(v0, w0) ≤ Q(u, u) ≤ Q(w0, v0) = w1. (3.20)

Similarly, v2 ≤ u ≤ w2, in general, vn ≤ u ≤ wn, letting n → ∞, we get u ≤ u ≤ u. Therefore,
the IPBVP(1.1) at least has one solution between u and u.

Remark 3.5. If f(t, u, u) = f(t, u) and Ik(u, u) = Ik(u), then Theorems 3.1, 3.3 and 3.4 are
generalizations of the main results of [5] in Banach spaces.

Remark 3.6. If f(t, u, u) = f(t, u) and Ik ≡ 0, then Theorems 3.1, 3.3 and 3.4 are generalizations
of the Theory 4.1 of [4] in Banach spaces.

4. An Example

Consider the PBVP of infinite system for nonlinear impulsive differential equations:

u′
n(t) = un(t) +

1
un+2(t)

, 0 ≤ t ≤ π, t /=
π

2
,

Δun|t=π/2 = 3un

(π
2

)
− 2un+1

(π
2

)
,

un(0) = un(ω) (n = 1, 2, . . .).

(4.1)

4.1. Conclusion

IPBVP(4.1) has minimal and maximal coupled L-quasisolutions.

Proof. Let ω = π , E = l2 = {u = (u1, . . . , un, . . .) | ∑∞
n=1 |un|2 < ∞} with norm ‖u‖ =

(
∑∞

n=1 |un|2)1/2 and P = {u = (u1, . . . , un, . . .) ∈ l2 | un ≥ 0, n = 1, 2, . . .}. Then E is a weakly
sequentially complete Banach space and P is normal cone in E. IPBVP(4.1) can be regarded as
an PBVP of the form (1.1) inE. In this case, J = [0, π], v = (v1, . . . , vn, . . .),w = (w1, . . . , wn, . . .)
and f = (f1, . . . , fn, . . .), in which

fn(t, u, v) = un(t) +
1

vn+2(t)
, n = 1, 2, . . . , (4.2)

k = 1, t1 = π/2 and I1n(u, v) = 3un − 2vn+1, n = 1, 2, . . . .
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Evidently, f ∈ C(J × E × E, E), I1 ∈ C(E × E, E). Let

v0(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
− cos t, . . . ,−cos t

n
, . . .

)
, 0 ≤ t ≤ π

2
,

(
−1 − cos t, . . . ,−1 + cos t

n
, . . .

)
,

π

2
< t ≤ π,

w0(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
cos t, . . . ,

cos t
n

, . . .

)
, 0 ≤ t ≤ π

2
,

(
1 + cos t, . . . ,

1 + cos t
n

, . . .

)
,

π

2
< t ≤ π,

(4.3)

L = 1/2, M = 1. Then it is easy to verify that v0, w0 are coupled lower and upper 1/2-
quasisolutions of the IPBVP(4.1), and conditions (H1), (H2) hold. Hence, our conclusion
follows from Corollary 3.2.
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