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Using the variational principle of Ricceri and a local mountain pass lemma, we study the existence
of three distinct solutions for the following resonant Duffing-type equations with damping and
perturbed term u′′(t) + σu′(t) + f(t, u(t)) + λg(t, u(t)) = p(t), a.e. t ∈ [0, ω], u(0) = 0 = u(ω) and
without perturbed term u′′(t) + σu′(t) + f(t, u(t)) = p(t), a.e. t ∈ [0, ω], u(0) = 0 = u(ω).

1. Introduction

In this paper, we consider the following resonant Duffing-type equations with damping and
perturbed term:

u′′ + σu′(t) + f(t, u(t)) + λg(t, u(t)) = p(t), a.e. t ∈ [0, ω],

u(0) = 0 = u(ω),
(1.1)

where σ, λ ∈ R, f, g : [0, ω] × R → R, and p : [0, ω] → R are continuous. Letting λ = 0 in
problem (1.1) leads to

u′′(t) + σu′(t) + f(t, u(t)) = p(t), a.e. t ∈ [0, ω],

u(0) = 0 = u(ω),
(1.2)

which is a common Duffing-type equation without perturbation.
The Duffing equation has been used to model the nonlinear dynamics of special types

of mechanical and electrical systems. This differential equation has been named after the
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studies of Duffing in 1918 [1], has a cubic nonlinearity, and describes an oscillator. It is
the simplest oscillator displaying catastrophic jumps of amplitude and phase when the
frequency of the forcing term is taken as a gradually changing parameter. It has drawn
extensive attention due to the richness of its chaotic behaviour with a variety of interesting
bifurcations, torus and Arnolds tongues. The main applications have been in electronics, but
it can also have applications in mechanics and in biology. For example, the brain is full of
oscillators at micro and macro levels [2]. There are applications in neurology, ecology, secure
communications, cryptography, chaotic synchronization, and so on. Due to the rich behaviour
of these equations, recently there have been also several studies on the synchronization of
two coupled Duffing equations [3, 4]. The most general forced form of the Duffing-type
equation is

u′′(t) + σu′(t) + f(t, u(t)) = p(t). (1.3)

Recently, many authors have studied the existence of periodic solutions of the Duffing-type
equation (1.3). By using various methods and techniques, such as polar coordinates, the
method of upper and lower solutions and coincidence degree theory and a series of existence
results of nontrivial solutions for the Duffing-type equations such as (1.3) have been obtained;
we refer to [5–11] and references therein. There are also authorswho studied the Duffing-type
equations by using the critical point theory (see [12, 13]). In [12], by using a saddle point
theorem, Tomiczek obtained the existence of a solution of the following Duffing-type system:

u′′(t) + σu′(t) +

(
m2 − σ2

4

)
u(t) + f(t, u(t)) = p(t), a.e. t ∈ [0, ω],

u(0) = 0 = u(ω),

(1.4)

which is a special case of problems (1.1)-(1.2). However, to the best of our knowledge, there
are few results for the existence of multiple solutions of (1.3).

Our aim in this paper is to study the variational structure of problems (1.1)-(1.2) in
an appropriate space of functions and the existence of solutions for problems (1.1)-(1.2)
by means of some critical point theorems. The organization of this paper is as follows. In
Section 2, we shall study the variational structure of problems (1.1)-(1.2) and give some
important lemmas which will be used in later section. In Section 3, by applying some critical
point theorems, we establish sufficient conditions for the existence of three distinct solutions
to problems (1.1)-(1.2).

2. Variational Structure

In the Sobolev spaceH := H1
0(0, ω), consider the inner product

〈u, v〉H =
∫ω

0
u′(s)v′(s)ds ∀u, v ∈ H, (2.1)
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inducing the norm

‖u‖H =
√
〈u, v〉H =

(∫ω

0

∣∣u′(s)
∣∣2ds)1/2

∀u ∈ H. (2.2)

We also consider the inner product

〈u, v〉 =
∫ω

0
eσsu′(s)v′(s)ds ∀u, v ∈ H, (2.3)

and the norm

‖u‖ =
√
〈u, v〉 =

(∫ω

0
eσs

∣∣u′(s)
∣∣2ds)1/2

∀u ∈ H. (2.4)

Obviously, the norm ‖ · ‖ and the norm ‖ · ‖H are equivalent. SoH is a Hilbert space with the
norm ‖ · ‖.

By Poincaré’s inequality,

‖u‖22 :=
∫ω

0
|u(s)|2ds ≤ 1

λ1

∫ω

0

∣∣u′(s)
∣∣2ds

≤ 1
λ1 min{1, eσω}

∫ω

0
eσs

∣∣u′(s)
∣∣2ds := λ0‖u‖2 ∀u ∈ H,

(2.5)

where λ0 := 1/λ1 min{1, eσω}, λ1 := π2/ω2 is the first eigenvalue of the problem

−u′′(t) = λu(t), t ∈ [0, ω],

u(0) = 0 = u(ω).
(2.6)

Usually, in order to find the solution of problems (1.1)-(1.2), we should consider the
following functional Φ, Ψ defined onH :

Φ(u) =
1
2

∫ω

0
eσs|u′(s)|2ds +

∫ω

0
eσsp(s)u(s)ds −

∫ω

0
eσsF(s, u(s))ds

Ψ(u) = −
∫ω

0
eσsG(s, u(s))ds,

(2.7)

where F(s, u) =
∫u
0 f(s, μ)dμ, G(s, u) =

∫u
0 g(s, μ)dμ.
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Finding solutions of problem (1.1) is equivalent to finding critical points of I := Φ+λΨ
in H and

〈
I ′(u), v

〉
=
∫ω

0
eσsu′(s)v′(s)ds +

∫ω

0
eσsp(s)v(s)ds

−
∫ω

0
eσsf(s, u)v(s)ds −

∫ω

0
eσsλg(s, u)v(s)ds, ∀u, v ∈ H.

(2.8)

Lemma 2.1 (Hölder Inequality). Let f, g ∈ C([a, b]), p > 1, and q the conjugate number of p. Then

∫b

a

∣∣f(s)g(s)∣∣ds ≤
(∫b

a

∣∣f(s)∣∣pds
)1/p

·
(∫b

a

∣∣g(s)∣∣qds
)1/q

. (2.9)

Lemma 2.2. Assume the following condition holds.

(f1) There exist positive constants α, β, and γ ∈ [0, 1) such that

∣∣f(s, x)∣∣ ≤ α + β|x|γ ∀(s, x) ∈ [0, ω] ×R. (2.10)

Then Φ is coercive.

Proof. Let {un}n∈N ⊂ H be a sequence such that limn→+∞‖un‖ = +∞. It follows from (f1) and
Hölder inequality that

Φ(un) =
1
2

∫ω

0
eσs

∣∣u′
n(s)

∣∣2ds + ∫ω

0
eσsp(s)un(s)ds −

∫ω

0
eσsF(s, un(s))ds

≥ 1
2
‖un‖2 −

(∫ω

0
e2σs

∣∣p(s)∣∣2ds)1/2

‖un‖2 −max{1, eσω}
∫ω

0

(
α|un| + β|un|γ+1

)
ds

≥ 1
2
‖un‖2 −

(∫ω

0
e2σs

∣∣p(s)∣∣2ds)1/2

‖un‖2

− α
√
ωmax{1, eσω}‖un‖2 − β

√
ω1−γ max{1, eσω}‖un‖γ+12

≥ 1
2
‖un‖2 −

√
λ0

[(∫ω

0
e2σs

∣∣p(s)∣∣2ds)1/2

+ α
√
ωmax{1, eσω}

]
‖un‖

−
√
λ
γ+1
0 β

√
ω1−γ max{1, eσω}‖un‖γ+1,

(2.11)

which implies from γ ∈ [0, 1) that limn→+∞Φ(un) = +∞. This completes the proof.

From the proof of Lemma 2.2, we can show the following Lemma.
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Lemma 2.3. Assume that 2βλ0 max{eσω, 1} < 1 and the following condition holds.

(f2) There exist positive constants α0 and β0 such that

∣∣f(s, x)∣∣ ≤ α0 + β0|x| ∀(s, x) ∈ [0, ω] ×R. (2.12)

Then Φ is coercive.

Lemma 2.4. Assume the following condition holds.

(f3) lim|x|→+∞
∫x
0 f(s, μ)dμ ≤ 0 for all s ∈ [0, ω].

Then Φ is coercive.

Proof. Let {un}n∈N ⊂ H be a sequence such that limn→+∞‖un‖ = +∞. Fix ε > 0, from (f3), there
exists K = K(ε) > 0 such that

F(s, x) ≤ −ε ∀s ∈ [0, ω], |x| > K. (2.13)

Denote by {|u| ≤ K} the set {s ∈ [0, ω] : |u(s)| ≤ K} and by {|u| > K} its complement in
[0, ω]. Put φK(s) := sup|x|≤K|F(s, x)| for all s ∈ [0, ω]. By the continuity of f , we know that
sups∈[0,ω]φK(s) < +∞. Then one has

Φ(un) =
1
2

∫ω

0
eσs

∣∣u′
n(s)

∣∣2ds + ∫ω

0
eσsp(s)un(s)ds

−
∫

{|un |≤K}

eσsF(s, un(s))ds −
∫

{|un |>K}

eσsF(s, un(s))ds

≥ 1
2
‖un‖2 −

√
λ0

(∫ω

0
e2σs

∣∣p(s)∣∣2ds)1/2

‖un‖ −
∫ω

0
eσsφK(s)ds,

(2.14)

which implies that limn→+∞Φ(un) = +∞. This completes the proof.

Based on Ricceri’s variational principle in [14, 15], Fan and Deng [16] obtained the
following result which is a main tool used in our paper.

Lemma 2.5 (see [16]). Suppose that D is a bounded convex open subset of H , v1, v2 ∈ D, Φ(v1) =
infDΦ = c0, inf∂DΦ = b > c0, v2 is a strict local minimizer of Φ, and Φ(v2) = c1 > c0. Then, for
ε > 0 small enough and any ρ2 > c1, ρ1 ∈ (c0,min{b, c1}), there exists λ∗ > 0 such that for each
λ ∈ (0, λ∗),Φ+λΨ has at least two local minima u1 and u2 lying inD, where u1 ∈ Φ−1((−∞, ρ0))∩D,
u2 ∈ Φ−1((−∞, ρ1)) ∩ B(u1, ε), where B(u1, ε) = {u ∈ H : ‖u − u1‖ < ε}, and u2∈ B(u1, ε).

3. Main Results

In this section, we will prove that problems (1.1)-(1.2) have three distinct solutions by using
the variational principle of Ricceri and a local mountain pass lemma.
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Theorem 3.1. Assume that (f1) holds. Suppose further that

(f4) there exists δ > 0 such that

x2

2λ0eσs
+ p(s)x >

∫x

0
f
(
s, μ

)
dμ ∀(s, x) ∈ [0, ω] × [−δ, 0) ∪ (0, δ], (3.1)

(f5) there exists x0 ∈ H such that Φ(x0) < 0.

Then there exist λ∗ > 0 and r > 0 such that, for every λ ∈ (−λ∗, λ∗), problem (1.1) admits at least
three distinct solutions which belong to B(0, r) ⊆ H .

Proof. By Lemma 2.2, condition (f1) implies that the functional Φ is coercive. Since Φ is
sequentially weakly lower semicontinuous (see [16, Propositions 2.5 and 2.6]),Φ has a global
minimizer v1. By (f5), we obtainΦ(v1) = infHΦ = c0 < 0. LetD := B(0, η) = {u ∈ H : ‖u‖ < η}.
Since Φ is coercive, we can choose a large enough η such that

v1 ∈ D, Φ(v1) = inf
D

Φ = c0 < 0, inf
∂D

Φ = b > 0 > c0. (3.2)

Nowwe prove thatΦ has a strict local minimum at v2 = 0. By the compact embedding
of H into C(0, ω;R), there exists a constant c1 > 0 such that

max
s∈[0,ω]

|u(s)| ≤ c1‖u‖ ∀u ∈ H. (3.3)

Choosing rδ < δ/c1, it results that

B(0, rδ) = {u ∈ H : ‖u‖ ≤ rδ} ⊆
{
u ∈ H : max

s∈[0,ω]
|u(s)| < δ

}
. (3.4)

Therefore, for every u ∈ B(0, rδ) \ {0}, it follows from (f4) that

Φ(u) =
1
2

∫ω

0
eσs

∣∣u′(s)
∣∣2ds + ∫ω

0
eσsp(s)u(s)ds −

∫ω

0
eσsF(s, u(s))ds

≥ 1
2λ0

∫ω

0
|u(s)|2ds +

∫ω

0
eσsp(s)u(s)ds −

∫ω

0
eσsF(s, u(s))ds

=
∫ω

0
eσs

(
|u(s)|2
2λ0eσs

+ p(s)u(s) − F(s, u(s))

)
ds

> Φ(0) = 0,

(3.5)

which implies that v2 = 0 is a strict local minimum of Φ inH with c1 := Φ(v2) = 0 > c0.
At this point, we can apply Lemma 2.5 taking Ψ and −Ψ as perturbing terms. Then,

for ε ∈ (0, rδ] small enough and any ρ1 ∈ (c0,min{b, c1}), ρ2 ∈ (0,+∞), we can obtain the
following.
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(i) There exists λ̂ > 0 such that, for each λ ∈ (−λ̂, λ̂), Φ + λΨ has two distinct local
minima u1 and u2 satisfying

u1 ∈ Φ−1((−∞, ρ1
))
, u2 ∈ Φ−1((−∞, ρ2

)) ∩ B(0, ε). (3.6)

(ii) θ := inf‖u‖=εΦ(u) > 0 (see [16, Theorem3.6])

Let r1 > 0 be such that

Φ−1((−∞, ρ1
)) ∪ B(0, ε) ⊆ B(0, r1), (3.7)

and put b = sup‖u‖≤r1 |Φ(u)|. Owing to the coerciveness of Φ, there exists r2 > r1 such that
inf‖u‖=r2Φ(u) = d > b. Since g : [0, ω] ×R → R is continuous, then

sup
‖u‖≤r2

|Ψ(u)| < +∞. (3.8)

Choosing λ < (d − b)/2sup‖u‖≤r2 |Ψ(u)|, hence, for every u ∈ H with ‖u‖ = r2, one has

Φ(u) + λΨ(u) ≥ d − |λ| sup
‖u‖≤r2

|Ψ(u)| > b + d

2
, (3.9)

and when ‖u‖ ≤ r1

Φ(u) + λΨ(u) ≤ b + |λ| sup
‖u‖≤r2

|Ψ(u)| < b +
d − b

2
:=

d + b

2
. (3.10)

Further, from (3.6), we have that −∞ < Φ(u2) < ρ2. Since ρ2 ∈ (0,+∞) is arbitrary, letting
ρ2 := θ/4 > 0, we can obtain that

Φ(u2) <
θ

4
. (3.11)

Therefore, by (3.6) and (3.11), λ̂ can be chosen small enough that

Φ(u1) + λΨ(u1) ≤ 0, Φ(u2) + λΨ(u2) <
θ

2
, inf

‖u‖=ε
(Φ(u) + λΨ(u)) ≥ θ

2
, (3.12)

and (3.9)-(3.10) hold, for every λ ∈ (−λ̂, λ̂).
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For a given λ in the interval above, define the set of paths going from u1 to u2

A =
{
ϕ ∈ C([0, 1],H) : ϕ(0) = u1, ϕ(1) = u2

}
, (3.13)

and consider the real number c := infϕ∈Asups∈[0,1](Φ(ϕ(s)) + λΨ(ϕ(s))). Since u1∈B(0, ε) and
each path ϕ goes through ∂B(0, ε), one has c ≥ θ/2.

By (3.9) and (3.10), in the definition of c, there is no need to consider the paths going
through ∂B(0, r2). Hence, there exists a sequence of paths {ϕn} ⊂ A such that ϕn([0, 1]) ⊂
B(0, r2) and

sup
s∈[0,1]

(
Φ
(
ϕn(s)

)
+ λΨ

(
ϕn(s)

)) −→ c as n −→ +∞. (3.14)

Applying a general mountain pass lemma without the (PS) condition (see [17, Theorem2.8]),
there exists a sequence {un} ⊂ B(0, r2) such thatΦ(un)+λΨ(un) → c andΦ′(un)+λΨ′(un) →
0 as n → +∞. Hence {un} is a bounded (PS)c sequence and, taking into account the fact that
Φ′ + λΨ′ is an (S+) type mapping, admits a convergent subsequence to some u3. So, such u3

turns to be a critical point of Φ+ λΨ, with Φ(u3) + λΨ(u3) = c, hence different from u1 and u2

and u3 /= 0. This completes the proof.

Taking λ = 0 in Theorem 3.1, we can obtain the existence of three distinct solutions for
the Duffing-type equation without perturbation (1.2) as following.

Theorem 3.2. Assume that (f1), (f4), and (f5) hold; then problem (1.2) admits at least three distinct
solutions.

Together with Lemma 2.3 and Lemma 2.4, we can easily show that the following
corollary.

Corollary 3.3. Assume that (f2), (f4), and (f5) hold; then there exist λ∗ > 0 and r > 0 such that, for
every λ ∈ (−λ∗, λ∗), problem (1.1) admits at least three distinct solutions which belong toB(0, r) ⊆ H .
Furthermore, problem (1.2) admits at least three distinct solutions.

Corollary 3.4. Assume that (f3), (f4), and (f5); hold, then there exist λ∗ > 0 and r > 0 such that, for
every λ ∈ (−λ∗, λ∗), problem (1.1) admits at least three distinct solutions which belong toB(0, r) ⊆ H .
Furthermore, problem (1.2) admits at least three distinct solutions.

4. Some Examples

Example 4.1. Consider the following resonant Duffing-type equations with damping and
perturbed term

u′′(t) + σu′(t) + f(t, u(t)) + λg(t, u(t)) = p(t), a.e. t ∈ [0, 2π],

u(0) = 0 = u(2π),
(4.1)
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where σ = 1, λ ∈ R, g(s, x) = sx4, p(s) = 20 cos2s, and

f(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

20 cos2s + x1/3 for (s, x) ∈ [0, 2π] × (−∞,−1),

20 cos2s +Q1(x) for (s, x) ∈ [0, 2π] × [−1,−0.001),

20 cos2s − x1/3 for (s, x) ∈ [0, 2π] × [−0.001, 0.001],

20 cos2s +Q2(x) for (s, x) ∈ [0, 2π] × (0.001, 1],

20 cos2s + x1/3 for (s, x) ∈ [0, 2π] × (1,+∞),

(4.2)

in which Q1 ∈ C([−1,−0.001]) and Q2 ∈ C ([0.001, 1]) satisfy

Q1(−1) = −1, Q1(−0.001) = 0.1, Q2(0.001) = −0.1, Q2(1) = 1,
∫1

0.001
Q2(s)ds > 1.

(4.3)

Then there exists λ∗ > 0, for every λ ∈ (−λ∗, λ∗), problem (8) admits at least three distinct
solutions.

Proof. Obviously, from the definitions of Q1 and Q2, it is easy to see that f : [0, ω] × R → R
is continuous and (f1) holds. Taking δ = 0.001, for (s, x) ∈ [0, 2π]× [−0.001, 0)∪ (0, 0.001], we
have that

x2

2λ0eσs
+ p(s)x −

∫x

0
f
(
s, μ

)
dμ ≥ x2

8e2π
+ 20

(
cos2s

)
x −

[
20

(
cos2s

)
x − 3

4
x4/3

]

=
x2

8e2π
+
3
4
x4/3

> 0,

(4.4)

which implies that (f4) is satisfied. Define

x0(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, for s = 0,

104 + sin s, for s ∈ (0, 2π),

0, for s = 2π.

(4.5)
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Clearly, x0 ∈ H . Then we obtain that

Φ(x0(s)) =
1
2

∫2π

0
escos2sds + 20 cos2t

∫2π

0
es
(
104 + sin s

)
ds

−
∫2π

0
es
(∫0.001

0
+
∫1

0.001
+
∫104+sin s

1

)
f
(
s, μ

)
dμds

=
e2ππ

2
+
∫2π

0
es

∫0.001

0
μ1/3dμds

−
∫2π

0
es

∫1

0.001
Q2

(
μ
)
dμds −

∫2π

0
es

∫104+sin s

1
μ1/3dμds

≤ e2ππ

2
− 104

< 0.

(4.6)

So Φ(x0) < 0, which implies that (f5) is satisfied. To this end, all assumptions of Theorem 3.1
hold. By Theorem 3.1, there exists λ∗ > 0, for every λ ∈ (−λ∗, λ∗), problem (8) admits at least
three distinct solutions.

Example 4.2. Let λ = 0. From Example 4.1, we can obtain that the following resonant Duffing-
type equations with damping:

u′′(t) + u′(t) + 100e2π
√
x = 10, a.e. t ∈ [0, 2π],

u(0) = 0 = u(2π)
(4.7)

admits at least three distinct solutions.
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