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We are concerned with the following second-order p-Laplacian dynamic equations on time scales
(ϕp(xΔ(t)))∇ + λf(t, x(t), xΔ(t)) = 0, t ∈ (0, T)

T
, with integral boundary conditions xΔ(0) = 0,

αx(T)−βx(0) = ∫T
0 g(s)x(s)∇s. By using Legget-Williams fixed point theorem, some criteria for the

existence of at least three positive solutions are established. An example is presented to illustrate
the main result.

1. Introduction

Boundary value problems with p-Laplacian have received a lot of attention in recent years.
They often occur in the study of the n-dimensional p-Laplacian equation, non-Newtonian
fluid theory, and the turbulent flow of gas in porous medium [1–7]. Many works have been
carried out to discuss the existence of solutions or positive solutions and multiple solutions
for the local or nonlocal boundary value problems.

On the other hand, the study of dynamic equations on time scales goes back to
its founder Stefan Hilger [8] and is a new area of still fairly theoretical exploration in
mathematics. Motivating the subject is the notion that dynamic equations on time scales can
build bridges between continuous and discrete equations. Further, the study of time scales
has led to several important applications, for example, in the study of insect population
models, neural networks, heat transfer, and epidemic models, we refer to [8–10]. In addition,
the study of BVPs on time scales has received a lot of attention in the literature, with the
pioneering existence results to be found in [11–16].

However, existence results are not available for dynamic equations on time scales with
integral boundary conditions. Motivated by above, we aim at studying the second-order
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p-Laplacian dynamic equations on time scales in the form of

(
ϕp

(
xΔ(t)

))∇
+ λf

(
t, x(t), xΔ(t)

)
= 0, t ∈ (0, T)

T
(1.1)

with integral boundary condition

xΔ(0) = 0, αx(T) − βx(0) =
∫T

0
g(s)x(s)∇s, (1.2)

where λ is positive parameter, ϕp(s) = |s|p−2s for p > 1 with ϕ−1
p = ϕq and 1/p + 1/q = 1,

Δ is the delta derivative, ∇ is the nabla derivative, T is a time scale which is a nonempty
closed subset of R with the topology and ordering inherited from R, 0 and T are points in T,
an interval [0, T]

T
:= [0, T] ∩ T, f ∈ C([0, T]

T
× R

2, [0,∞)) with f(t, 0, 0)/= 0 for all t ∈ [0, T]
T
,

g ∈ Cld([0, T]T, [0,∞)), α, β > 0 with α − g0 > β, and where g0 =
∫T
0 g(s)∇s.

The main purpose of this paper is to establish some sufficient conditions for the
existence of at least three positive solutions for BVPs (1.1)-(1.2) by using Legget-Williams
fixed point theorem. This paper is organized as follows. In Section 2, some useful lemmas
are established. In Section 3, by using Legget-Williams fixed point theorem, we establish
sufficient conditions for the existence of at least three positive solutions for BVPs (1.1)-(1.2).
An illustrative example is given in Section 4.

2. Preliminaries

In this section, we will first recall some basic definitions and lemmas which are used in what
follows.

Definition 2.1 (see [8]). A time scale T is an arbitrary nonempty closed subset of the real set R
with the topology and ordering inherited from R. The forward and backward jump operators
σ, ρ : T → T and the graininess μ, ν : T → R

+ are defined, respectively, by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, μ(t) := σ(t) − t, ν(t) := t − ρ(t).
(2.1)

The point t ∈ T is called left-dense, left-scattered, right-dense, or right-scattered if ρ(t) = t,
ρ(t) < t, and σ(t) = t or σ(t) > t, respectively. Points that are right-dense and left-dense
at the same time are called dense. If T has a left-scattered maximum m1, defined T

κ = T −
{m1}; otherwise, set Tκ = T. If T has a right-scattered minimum m2, defined Tκ = T − {m2};
otherwise, set Tκ = T.

Definition 2.2 (see [8]). For f : T → R and t ∈ T
κ, then the delta derivative of f at the point

t is defined to be the number fΔ(t) (provided it exists) with the property that for each ε > 0,
there is a neighborhood U of t such that

∣∣∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)
∣∣∣ ≤ ε|σ(t) − s| ∀s ∈ U. (2.2)
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For f : T → R and t ∈ Tκ, then the nabla derivative of f at the point t is defined to
be the number f∇(t) (provided it exists) with the property that for each ε > 0, there is a
neighborhood U of t such that

∣
∣
∣f
(
ρ(t)

) − f(s) − f∇(t)
(
ρ(t) − s

)∣∣
∣ ≤ ε

∣
∣ρ(t) − s

∣
∣ ∀s ∈ U. (2.3)

Definition 2.3 (see [8]). A function f is rd-continuous provided it is continuous at each right-
dense point in T and has a left-sided limit at each left-dense point in T. The set of rd-
continuous functions f will be denoted by Crd(T). A function g is left-dense continuous (i.e.,
ld-continuous) if g is continuous at each left-dense point in T and its right-sided limit exists
(finite) at each right-dense point in T. The set of left-dense continuous functions g will be
denoted by Cld(T).

Definition 2.4 (see [8]). If FΔ(t) = f(t), then we define the delta integral by

∫b

a

f(s)Δs = F(b) − F(a). (2.4)

If G∇(t) = g(t), then we define the nabla integral by

∫b

a

g(s)∇s = G(b) −G(a). (2.5)

Lemma 2.5 (see [8]). If f ∈ Crd(T) and t ∈ T
κ, then

∫σ(t)

t

f(s)Δs = μ(t)f(t). (2.6)

If g ∈ Cld(T) and t ∈ Tκ, then

∫ t

ρ(t)
g(s)∇s = ν(t)g(t). (2.7)

Let the Banach space

B = C1
ld([0, T]T)

=
{
x : [0, T]

T
−→ R | x is Δ-differentiable on [0, T]

T
, and xΔis ld-continuous on[0, T]

T

}

(2.8)

be endowed with the norm ‖x‖ = max{‖x‖0, ‖xΔ‖0}, where

‖x‖0 = sup
t∈[0,T]

T

|x(t)|,
∥∥∥xΔ

∥∥∥
0
= sup

t∈[0,T]
T

∣∣∣xΔ(t)
∣∣∣ (2.9)



4 Boundary Value Problems

and choose a cone P ⊂ B defined by

P =

⎧
⎪⎨

⎪⎩

x ∈ B : x(t) ≥ 0, xΔ(t) ≤ 0, xΔ∇(t) ≤ 0 ∀t ∈ [0, T]
T
,

αx(T) − βx(0) =
∫T

0
g(s)x(s)∇s

⎫
⎪⎬

⎪⎭
. (2.10)

Lemma 2.6. If x ∈ P, then x(t) ≥ β/(α − g0)‖x‖0 for all t ∈ [0, T]
T
.

Proof. If x ∈ P, then xΔ ≤ 0. It follows that

x(T) = min
t∈[0,T]

T

x(t), ‖x‖0 = x(0) = max
t∈[0,T]

T

x(t). (2.11)

With αx(T) − βx(0) =
∫T
0 g(s)x(s)∇s and xΔ ≤ 0, one obtains

αx(T) = βx(0) +
∫T

0
g(s)x(s)∇s ≥ βx(0) +

∫T

0
g(s)∇sx(T) = βx(0) + g0x(T). (2.12)

Therefore,

x(T) ≥ β

α − g0
x(0) =

β

α − g0
‖x‖0. (2.13)

From (2.11)–(2.13), we can get that

x(t) ≥ min
t∈[0,T]

T

x(t) = x(T) ≥ β

α − g0
x(0) =

β

α − g0
‖x‖0. (2.14)

So Lemma 2.6 is proved.

Lemma 2.7. x ∈ B is a solution of BVPs (1.1)-(1.2) if and only if x ∈ B is a solution of the following
integral equation:

x(t) =
∫T

0
Θ
(
β + V (s)

)
ϕq

(∫ s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

+
∫T

t

ϕq

(∫s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs,

(2.15)

where

Θ =
1

α − β − ∫T
0 g(s)∇s

=
1

α − β − g0
,

V (t) =
∫ t

0
g(s)∇s ∀t ∈ [0,T]

T
.

(2.16)
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Proof. First assume x ∈ B is a solution of BVPs (1.1)-(1.2); then we have

ϕp

(
xΔ(t)

)
= ϕp

(
xΔ(0)

)
−
∫ t

0
λf

(
s, x(s), xΔ(s)

)
∇s = −

∫ t

0
λf

(
s, x(s), xΔ(s)

)
∇s. (2.17)

That is,

xΔ(t) = −ϕq

(∫ t

0
λf

(
s, x(s), xΔ(s)

)
∇s

)

= −H(t). (2.18)

Integrating (2.18) from t to T , it follows that

x(t) = x(T) +
∫T

t

H(s)Δs. (2.19)

Together with (2.19) and αx(T) − βx(0) =
∫T
0 g(s)x(s)∇s, we obtain

αx(T) − β

(

x(T) +
∫T

0
H(s)Δs

)

=
∫T

0
g(s)

(

x(T) +
∫T

s

H(r)Δr

)

∇s. (2.20)

Thus,

(

α − β −
∫T

0
g(s)∇s

)

x(T) = β

∫T

0
H(s)Δs +

∫T

0
g(s)

(∫T

s

H(r)Δr

)

∇s

= β

∫T

0
H(s)Δs +

∫T

0

(∫T

s

(V (s) − V (r))H(r)Δr

)∇
∇s

= β

∫T

0
H(s)Δs −

∫T

0
(V (0) − V (s))H(s)Δs

= β

∫T

0
H(s)Δs +

∫T

0
V (s)H(s)Δs,

(2.21)

namely,

x(T) = βΘ
∫T

0
H(s)Δs + Θ

∫T

0
V (s)H(s)Δs. (2.22)
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Substituting (2.22) into (2.19), we obtain

x(t) = βΘ
∫T

0
H(s)Δs + Θ

∫T

0
V (s)H(s)Δs +

∫T

t

H(s)Δs

=
∫T

0
Θ
(
β + V (s)

)
ϕq

(∫ s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

+
∫T

t

ϕq

(∫s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs.

(2.23)

The proof of sufficiency is complete.
Conversely, assume x ∈ B is a solution of the following integral equation:

x(t) =
∫T

0
Θ
(
β + V (s)

)
ϕq

(∫ s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

+
∫T

t

ϕq

(∫s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

=
∫T

0
Θ
(
β + V (s)

)
H(s)Δs +

∫T

t

H(s)Δs.

(2.24)

It follows that

xΔ(t) = −ϕq

(∫ t

0
λf

(
s, x(s), xΔ(s)

)
∇s

)

= −H(t),

(
ϕp

(
xΔ(t)

))∇
+ λf

(
t, x(t), xΔ(t)

)
= 0.

(2.25)

So xΔ(0) = 0. Furthermore, we have

αx(T) − βx(0) = α

∫T

0
Θ
(
β + V (s)

)
H(s)Δs − β

∫T

0
Θ
(
β + V (s)

)
H(s)Δs − β

∫T

0
H(s)Δs

=
(
α − β

)
∫T

0
Θ
(
β + V (s)

)
H(s)Δs − β

∫T

0
H(s)Δs,

∫T

0
g(s)x(s)∇s =

∫T

0
g(s)

(∫T

0
Θ
(
β + V (r)

)
H(r)Δr +

∫T

s

H(r)Δr

)

∇s

=
∫T

0
g(s)∇s

∫T

0
Θ
(
β + V (s)

)
H(s)Δs +

∫T

0

∫T

s

g(s)H(r)Δr∇s
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=
∫T

0
g(s)∇s

∫T

0
Θ
(
β + V (s)

)
H(s)Δs

+
∫T

0

(∫T

s

(V (s) − V (r))H(r)Δr

)∇
∇s

=
∫T

0
g(s)∇s

∫T

0
Θ
(
β + V (s)

)
H(s)Δs +

∫T

0
V (s)H(s)Δs,

(2.26)

which imply that

αx(T) − βx(0) −
∫T

0
g(s)x(s)∇s =

(
α − β

)
∫T

0
Θ
(
β + V (s)

)
H(s)Δs

− β

∫T

0
H(s)Δs −

∫T

0
g(s)∇s

∫T

0
Θ
(
β + V (s)

)
H(s)Δs

−
∫T

0
V (s)H(s)Δs

= 0.
(2.27)

The proof of Lemma 2.7 is complete.

Define the operator Ψ : P → B by

(Ψx)(t) =
∫T

0
Θ
(
β + V (s)

)
ϕq

(∫s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

+
∫T

t

ϕq

(∫ s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

(2.28)

for all t ∈ [0, T]
T
. Obviously, Ψx(t) ≥ 0 for all t ∈ [0, T]

T
.

Lemma 2.8. If x ∈ P, then Ψx ∈ P.

Proof. It is easily obtained from the second part of the proof in Lemma 2.7. The proof is
complete.

Lemma 2.9. Ψ : P → P is complete continuous.

Proof. First, we show thatΨmaps bounded set into itself. Assume c is a positive constant and
x ∈ Pc = {x ∈ P : ‖x‖ ≤ c}. Note that the continuity of f(t, x, xΔ) guarantees that there is a
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C > 0 such that f(t, x, xΔ) ≤ ϕp(C) for all t ∈ [0, T]
T
. So we get from ΨΔx ≤ 0 and ΨΔ∇x ≤ 0

that

‖Ψx‖0 = Ψx(0)

=
∫T

0
Θ
(
β + V (s)

)
ϕq

(∫ s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

+
∫T

0
ϕq

(∫ s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

≤ Cλq−1Tq−1
∫T

0
Θ
(
β + V (s)

)
Δs + Cλq−1Tq,

(2.29)

∥
∥
∥ΨΔx

∥
∥
∥
0
=
∣
∣
∣ΨΔx(T)

∣
∣
∣

= ϕq

(∫T

0
λf

(
r, x(r), xΔ(r)

)
∇r

)

≤ Cλq−1Tq−1.

(2.30)

That is, ΨPc is uniformly bounded. In addition, notice that

|(Ψx)(t1) − (Ψx)(t2)| =
∣∣∣∣∣

∫ t1

t2

ϕq

(∫ s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

∣∣∣∣∣

≤ Cλq−1Tq−1|t1 − t2|,
(2.31)

which implies that

|(Ψx)(t1) − (Ψx)(t2)| −→ 0 as t1 − t2 −→ 0,
∣∣∣∣
(
(Ψx)Δ(t1)

)p−1 −
(
(Ψx)Δ(t2)

)p−1∣∣∣∣ =
∣∣∣ϕp

(
(Ψx)Δ(t1)

)
− ϕp

(
(Ψx)Δ(t2)

)∣∣∣

=

∣∣∣∣∣

∫ t1

t2

λf
(
r, x(r), xΔ(r)

)
∇r

∣∣∣∣∣

≤ λϕp(C)|t1 − t2|,

(2.32)

which implies that

∣∣∣∣
(
(Ψx)Δ(t1)

)p−1 −
(
(Ψx)Δ(t2)

)p−1∣∣∣∣ −→ 0 as t1 − t2 −→ 0. (2.33)

That is,

∣∣∣(Ψx)Δ(t1) − (Ψx)Δ(t2)
∣∣∣ −→ 0 as t1 − t2 −→ 0. (2.34)



Boundary Value Problems 9

So Ψx is equicontinuous for any x ∈ Pc. Using Arzela-Ascoli theorem on time scales [17], we
obtain thatΨ Pc is relatively compact. In view of Lebesgue’s dominated convergence theorem
on time scales [18], it is easy to prove that Ψ is continuous. Hence, Ψ is complete continuous.
The proof of this lemma is complete.

Let υ and ω be nonnegative continuous convex functionals on a pone P, ψ a
nonnegative continuous concave functional on P, and r, a, L positive numbers with r > a
we defined the following convex sets:

P(υ, r;ω, l) = {x ∈ P : υ(x) < r,ω(x) < l},

P(υ, r;ω, l) = {x ∈ P : υ(x) ≤ r, ω(x) ≤ l},
P
(
υ, r;ω, l;ψ, a

)
=
{
x ∈ P : υ(x) < r,ω(x) < l, ψ(x) > a

}
,

P
(
υ, r;ω, l;ψ, a

)
=
{
x ∈ P : υ(x) ≤ r, ω(x) ≤ l, ψ(x) ≥ a

}

(2.35)

and introduce two assumptions with regard to the functionals υ, ω as follows:

(H1) there exists M > 0 such that ‖x‖ ≤ M max{υ(x), ω(x)} for all x ∈ P;

(H2) P(υ, r;ω, l)/= ∅ for any r > 0 and l > 0.

The following fixed point theorem duo to Bai and Ge is crucial in the arguments of our
main result.

Lemma 2.10 (see [19]). Let B be Banach space, P ⊂ B a cone, and r2 ≥ d > b > r1 > 0, l2 ≥ l1 > 0.
Assume that υ and ω are nonnegative continuous convex functionals satisfying (H1) and (H2), ψ is
a nonnegative continuous concave functional on P such that ψ(x) ≤ υ(x) for all x ∈ P(υ, r2;ω, l2),
and Ψ : P(υ, r2;ω, l2) → P(υ, r2;ω, l2) is a complete continuous operator. Suppose

(C1) {x ∈ P(υ, d;ω, l2;ψ, b)}/= ∅, ψ(Ψx) > b for x ∈ P(υ, d;ω, l2;ψ, b);

(C2) υ(Ψx) < r1, ω(Ψx) < l1 for x ∈ P(υ, r1;ω, l1);

(C3) ψ(Ψx) > b for x ∈ P(υ, r2;ω, l2;ψ, b) with υ(Ψx) > d.

Then Ψ has at least three fixed points x1, x2, x3 ∈ P(υ, r2;ω, l2) with

x1 ∈ P(υ, r1;ω, l1),

x2 ∈
{
x ∈ P

(
υ, r2;ω, l2;ψ, b

)
: ψ(x) > b

}
,

x3 ∈ P(υ, r2;ω, l2) \
(
P
(
υ, r2;ω, l2;ψ, b

) ∪ P(υ, r1;ω, l1)
)
.

(2.36)

3. Main Result

In this section, we will give sufficient conditions for the existence of at least three positive
solutions to BVPs (1.1)-(1.2).
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Theorem 3.1. Suppose that there are positive numbers 0 < ε0 < ε < T , l2 ≥ l1 > 0, and r2 > b >
r1 > 0 with ε0, ε ∈ [0, T]

T
, b/N ≤ min{r2/K, l2/L} and αb − g0b ≤ r2β such that the following

conditions are satisfied.

(H3) f(t, u, v) ≤ min{ϕp(r2/K), ϕp(l2/L)} for all (t, u, v) ∈ [0, T]
T
× [0, r2]× [−l2, l2], where

K = λq−1
(∫T

0
Θ
(
β + V (s)

)
sq−1Δs +

∫T

0
sq−1Δs

)

, L = λq−1T q−1. (3.1)

(H4) f(t, u, v) < min{ϕp(r1/K), ϕp(l1/L)} for all (t, u, v) ∈ [0, T]
T
× [0, r1] × [−l1, l1].

(H5) f(t, u, v) > ϕp(b/N) for all (t, u, v) ∈ [ε0, ε]T × [b, (αb − g0b)/β] × [−l2, l2], where

N = λq−1(ε − ε0)q−1
∫T

ε

Θ
(
β + V (s)

)
Δs. (3.2)

Then BVPs (1.1)-(1.2) have at least three positive solutions.

Proof. By the definition of the operator Ψ and its properties, it suffices to show that the
conditions of Lemma 2.10 hold with respect to the operator Ψ.

Let the nonnegative continuous convex functionals υ, ω and the nonnegative
continuous concave functional ψ be defined on the cone P by

υ(x) = max
t∈[0,T]

T

|x(t)| = x(0), ω(x) = max
t∈[0,T]

T

∣∣∣xΔ(t)
∣∣∣ = xΔ(T), ψ(x) = min

t∈[ε,T]
T

x(t) = x(T).

(3.3)

Then it is easy to see that ‖x‖ = max{υ(x), ω(x)} and (H1)-(H2) hold.

First of all, we show that Ψ : P(υ, r2;ω, l2) → P(υ, r2;ω, l2). In fact, if x ∈ P(υ, r2;ω, l2),
then

υ(x) = max
t∈[0,T]

T

|x(t)| ≤ r2, ω(x) = max
t∈[0,T]

T

∣∣∣xΔ(t)
∣∣∣ ≤ l2 (3.4)

and assumption (H3) implies that

f
(
t, x(t), xΔ(t)

)
≤ min

{
ϕp

( r2
K

)
, ϕp

(
l2
L

)}
∀t ∈ [0, T]

T
. (3.5)
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On the other hand, for x ∈ P, there is Ψx ∈ P; thus

υ(Ψx) = max
t∈[0,T]

T

|(Ψx)(t)|

= max
t∈[0,T]

T

∣
∣
∣
∣
∣

∫T

0
Θ
(
β + V (s)

)
ϕq

(∫s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

+
∫T

t

ϕq

(∫s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫T

0
Θ
(
β + V (s)

)
ϕq

(∫s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

+
∫T

0
ϕq

(∫s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

∣
∣
∣
∣∣

≤
∫T

0
Θ
(
β + V (s)

)
ϕq

(∫s

0
λϕp

( r2
K

)
∇r

)
Δs

+
∫T

0
ϕq

(∫ s

0
λϕp

( r2
K

)
∇r

)
Δs

=
r2
K

∫T

0
Θ
(
β + V (s)

)
ϕq

(∫s

0
λ∇r

)
Δs +

r2
K

∫T

0
ϕq

(∫ s

0
λ∇r

)
Δs

=
r2
K
λq−1

(∫T

0
Θ
(
β + V (s)

)
sq−1Δs +

∫T

0
sq−1Δs

)

=
r2
K

·K

= r2,

ω(Ψx) = max
t∈[0,T]

T

∣∣∣(Ψx)Δ(t)
∣∣∣

= max
t∈[0,T]

T

∣∣∣∣∣
−ϕq

(∫ t

0
λf

(
r, x(r), xΔ(r)

)
∇r

)∣∣∣∣∣

= ϕq

(∫T

0
λf

(
r, x(r), xΔ(r)

)
∇r

)

≤ ϕq

(∫T

0
λϕp

(
l2
L

)
∇r

)

=
l2
L
ϕq

(∫T

0
λ∇r

)

= l2. (3.6)

Therefore, Ψ : P(υ, r2;ω, l2) → P(υ, r2;ω, l2).
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In the same way, if x ∈ P(υ, r1;ω, l1), then assumption (H4) implies

f
(
t, x(t), xΔ(t)

)
< min

{
ϕp

( r1
K

)
, ϕp

(
l1
L

)}
∀t ∈ [0,T]

T
. (3.7)

As in the argument above, we can get that Ψ : P(υ, r1;ω, l1) → P(υ, r1;ω, l1). Thus, condition
(C2) of Lemma 2.10 holds.

To check condition (C1) in Lemma 2.10. Let d = (αb − g0b)/β. We choose x(t) ≡ d > b
for t ∈ [0, T]

T
. It is easy to see that

x(t) ≡ d ∈ P
(
υ, d;ω, l2;ψ, b

)
, ψ(x) = d > b. (3.8)

Consequently,

{
x ∈ P

(
υ, d;ω, l2;ψ, b

)
: ψ(x) > b

}
/= ∅. (3.9)

Hence, for x ∈ P(υ, d;ω, l2;ψ, b), there are

b ≤ x(t) ≤ d,
∣∣∣xΔ(t)

∣∣∣ ≤ l2 ∀t ∈ [ε, T]
T
. (3.10)

In view of assumption (H5), we have

f
(
t, x(t), xΔ(t)

)
> ϕp

(
b

N

)
∀t ∈ [ε0, ε]T. (3.11)

It follows that

ψ(Ψx) = min
t∈[ε,T]

T

(Ψx)(t)

= (Ψx)(T)

=
∫T

0
Θ
(
β + V (s)

)
ϕq

(∫ s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

≥
∫T

ε

Θ
(
β + V (s)

)
ϕq

(∫ s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

≥
∫T

ε

Θ
(
β + V (s)

)
ϕq

(∫ ε

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

≥
∫T

ε

Θ
(
β + V (s)

)
ϕq

(∫ε

ε0

λf
(
r, x(r), xΔ(r)

)
∇r

)

Δs

>

∫T

ε

Θ
(
β + V (s)

)
ϕq

(∫ε

ε0

λϕp

(
b

N

)
∇r

)

Δs
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= λq−1(ε − ε0)q−1
∫T

ε

Θ
(
β + V (s)

)
Δs

b

N

= N · b

N

= b.

(3.12)

Therefore, ψ(Ψx) > b for x ∈ P(υ, d;ω, l2;ψ, b). So condition (C1) in Lemma 2.10 is satisfied.
Finally, we show that (C3) in Lemma 2.10 holds. In fact, for x ∈ P(υ, r2;ω, l2;ψ, b) and

υ(Ψx) > d = (αb − g0b)/β, we have

ψ(Ψx) = min
t∈[ε,T]

T

(Ψx)(t) = (Ψx)(T) ≥ β

α − g0
max
t∈[0,T]

T

(Ψx)(t) =
β

α − g0
υ(Ψx) > b. (3.13)

Thus by Lemma 2.10 and the assumption that f(t, 0, 0)/= 0 on [0, T]
T
, BVPs (1.1)-(1.2) have at

least three positive solutions. The proof is complete.

Theorem 3.2. Suppose that there are positive numbers 0 < ξ < T , l2 ≥ l1 > 0, and r2 > b > r1 > 0
with ξ ∈ [0, T]

T
, b/F ≤ min{r 2/K, l2/L}, and αb−g0b ≤ r2β such that (H3)-(H4) and the following

condition are satisfied.

(H6) f(t, u, v) > ϕp(b/F) for all (t, u, v) ∈ [0, ξ]
T
× [b, (αb − g0b)/β] × [−l2, l2], where

F = λq−1ξq−1(T − ξ). (3.14)

Then BVPs (1.1)-(1.2) have at least three positive solutions.

Proof. Let the nonnegative continuous convex functionals υ, ω be defined on the cone P as
Theorem 3.1 and the nonnegative continuous concave functional ψ be defined on the cone P

by

ψ(x) = min
t∈[0,ξ]

T

x(t) = x(ξ). (3.15)

Wewill show that condition (C1) in Lemma 2.10 holds. Let d = (αb−g0b)/β. We choose
x(t) ≡ d > b for t ∈ [0, T]

T
. It is easy to see that

x(t) ≡ d ∈ P
(
υ, d;ω, l2;ψ, b

)
, ψ(x) = d > b. (3.16)

Consequently,

{
x ∈ P

(
υ, d;ω, l2;ψ, b

)
: ψ(x) > b

}
/= ∅. (3.17)
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Hence, for x ∈ P(υ, d;ω, l2;ψ, b), there are

b ≤ x(t) ≤ d,
∣
∣
∣xΔ(t)

∣
∣
∣ ≤ l2 ∀t ∈ [0, ξ]

T
. (3.18)

In view of assumption (H6), we have

f
(
t, x(t), xΔ(t)

)
> ϕp

(
b

F

)
∀t ∈ [0, ξ]

T
. (3.19)

It follows that

ψ(Ψx) = min
t∈[0,ξ]

T

(Ψx)(t)

= (Ψx)(ξ)

=
∫T

0
Θ
(
β + V (s)

)
ϕq

(∫ s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

+
∫T

ξ

ϕq

(∫s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

≥
∫T

ξ

ϕq

(∫s

0
λf

(
r, x(r), xΔ(r)

)
∇r

)
Δs

≥
∫T

ξ

ϕq

(∫ ξ

0
λf

(
r, x(r), xΔ(r)

)
∇r

)

Δs

>

∫T

ξ

ϕq

(∫ ξ

0
λϕp

(
b

F

)
∇r

)

Δs

= λq−1ξq−1(T − ξ)
b

F

= F · b
F

= b.

(3.20)

Therefore, ψ(Ψx) > b for x ∈ P(υ, d;ω, l2;ψ, b). So condition (C1) in Lemma 2.10 is satisfied.
Using a similar proof to Theorem 3.1, the other conditions in Lemma 2.10 are satisfied. By
Lemma 2.10, BVPs (1.1)-(1.2) have at least three positive solutions. The proof is complete.

4. An Example

Example 4.1. Consider the following second-order Laplacian dynamic equations on time
scales

(
ϕ1.5

(
xΔ(t)

))∇
+ f

(
t, x(t), xΔ(t)

)
= 0, t ∈ (0, 1)

T
(4.1)
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with integral boundary condition

xΔ(0) = 0, 3x(1) − x(0) =
∫1

0
es−1x(s)∇s, (4.2)

where

f(t, u, v) =

⎧
⎨

⎩

10−5(t + 5|v|) + 6|u| ∀(t, u, v) ∈ ([0, 1]
T
× [0, 12] × (−∞,+∞)),

10−5(t + 5|v|) + 72 ∀(t, u, v) ∈ ([0, 1]
T
× (12,+∞] × (−∞,+∞)).

(4.3)

Then BVPs (4.1)-(4.2) have at least three positive solutions.

Proof. Take ε0 = 0.25, ε = 0.5, r1 = l1 = 0.009, r2 = 30000, l2 = 10000, and b = 4. It follows that

Θ =
1

α − β − g0
=

1

3 − 1 − ∫1
0 e

s−1∇s
≤ 1

3 − 1 − 1
= 1,

Θ =
1

α − β − g0
=

1

3 − 1 − ∫1
0 e

s−1∇s
≥ 1

3 − 1 − e−1
= 0.5.

(4.4)

From (4.1)-(4.2), it is easy to obtain

V (t) =
∫ t

0
g(s)∇s =

∫ t

0
es−1∇s ≤ 1 ∀t ∈ [0, 1]

T
,

V (t) =
∫ t

0
g(s)∇s =

∫ t

0
es−1∇s ≥ e−1 ≥ 0.25 ∀t ∈ [0, 1]

T
,

K =
∫1

0
Θ(1 + V (s))s3−1Δs +

∫1

0
s3−1Δs ≤ 3 = K, L = 1,

N = (0.5 − 0.25)3−1
∫1

0.5
Θ(1 + V (s))Δs ≤ 0.07 = N,

N = (0.5 − 0.25)3−1
∫1

0.5
Θ(1 + V (s))Δs > 0.01.

(4.5)

Hence, we have

b

N
≤ 400 < 10000 = min

{
r2
K
,
l2
L

}
,

αb − g0b − r2β ≤ 12 − 30000 < 0.

(4.6)

Moreover, we have
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(H3) for all (t, u, v) ∈ [0, 1]
T
× [0, 30000] × [−10000, 10000],

f(t, u, v) < 80 < 100 = min
{
ϕ1.5

(
r2

K

)
, ϕ1.5

(
l2
L

)}
≤ min

{
ϕp

( r2
K

)
, ϕp

(
l2
L

)}
; (4.7)

(H4) for all (t, u, v) ∈ [0, 1]
T
× [0, 0.009] × [−0.009, 0.009],

f(t, u, v) ≤ 0.05401045 < min
{
ϕ1.5

(
r1

K

)
, ϕ1.5

(
l1
L

)}
≤ min

{
ϕp

( r1
K

)
, ϕp

(
l1
L

)}
; (4.8)

(H5) for all (t, u, v) ∈ [0.25, 0.5]
T
× [4, 12] × [−10000, 10000],

f(t, u, v) ≥ 6|u| ≥ 24 > ϕ1.5

(
b

N

)
. (4.9)

Therefore, conditions (H3)–(H5) in Theorem 3.1 are satisfied. Further, it is easy to verify that
the other conditions in Theorem 3.1 hold. By Theorem 3.1, BVPs (4.1)-(4.2) have at least three
positive solutions. The proof is complete.
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