MULTIPLE POSITIVE SOLUTIONS OF SINGULAR p-LAPLACIAN PROBLEMS BY VARIATIONAL METHODS

KANISHKA PERERA AND ZHITAO ZHANG

Received 20 July 2004

We obtain multiple positive solutions of singular p-Laplacian problems using variational methods. The techniques are applicable to other types of singular problems as well.

1. Introduction

We consider the singular quasilinear elliptic boundary value problem

$$
-\Delta_p u = a(x)u^{-\gamma} + \lambda f(x,u) \quad \text{in } \Omega,
$$
$$
u > 0 \quad \text{in } \Omega,
$$
$$
u = 0 \quad \text{on } \partial \Omega,
$$

(1.1)

where Ω is a bounded C^2 domain in \mathbb{R}^n, $n \geq 1$, $\Delta_p u = \text{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian, $1 < p < \infty$, $a \geq 0$ is a nontrivial measurable function, $\gamma > 0$ is a constant, $\lambda > 0$ is a parameter, and f is a Carathéodory function on $\Omega \times [0, \infty)$ satisfying

$$
\sup_{(x,t) \in \Omega \times [0,T]} |f(x,t)| < \infty \quad \forall T > 0.
$$

(1.2)

The semilinear case $p = 2$ with $\gamma < 1$ and $f = 0$ has been studied extensively in both bounded and unbounded domains (see [5, 6, 7, 10, 11, 12, 14, 20] and their references). In particular, Lair and Shaker [11] showed the existence of a unique (weak) solution when Ω is bounded and $a \in L^2(\Omega)$. Their result was extended to the sublinear case $f(t) = t^\beta$, $0 < \beta \leq 1$ by Shi and Yao [15] and Wiegner [18]. In the superlinear case $1 < \beta < 2^* - 1$ and for small λ, Coclite and Palmieri [4] obtained a solution when $a = 1$ and Sun et al. [16] obtained two solutions using the Ekeland’s variational principle for more general a’s. Zhang [19] extended their multiplicity result to more general superlinear terms $f(t) \geq 0$ using critical point theory on closed convex sets. The ODE case $n = 1$ was studied by Agarwal and O’Regan [1] using fixed point theory and by Agarwal et al. [2] using variational methods. The purpose of the present paper is to treat the general quasilinear case $p \in (1, \infty)$, $\gamma \in (0, \infty)$, and f is allowed to change sign. We use a simple cutoff argument and only the basic critical point theory. Our results seem to be new even for $p = 2$.

Copyright © 2006 Hindawi Publishing Corporation
DOI: 10.1155/BVP.2005.377
First we assume

\((H_1)\) \(\exists \varphi \geq 0\) in \(C_0^1(\Omega)\) and \(q > n\) such that \(a\varphi^{-\gamma} \in L^q(\Omega)\).

This does not require \(\gamma < 1\) as usually assumed in the literature. For example, when \(\Omega\) is the unit ball, \(a(x) = (1 - |x|^2)^\sigma, \sigma \geq 0,\) and \(\gamma < \sigma + 1/n,\) we can take \(\varphi(x) = 1 - |x|^2\) and \(q < 1/(\gamma - \sigma)\) (resp., \(q\) with no additional restrictions) if \(\gamma > \sigma\) (resp., \(\gamma \leq \sigma\)).

Theorem 1.1. If \((H_1)\) and (1.2) hold and \(f \geq 0\), then there exists \(\lambda_0 > 0\) such that problem (1.1) has a solution \(\forall \lambda \in (0, \lambda_0)\).

Corollary 1.2. Problem (1.1) with \(f = 0\) has a solution if \((H_1)\) holds.

Next we allow \(f\) to change sign, but strengthen \((H_1)\) to

\((H_2)\) \(a \in L^\infty(\Omega)\) with \(a_0 := \inf_{\Omega} a > 0\) and \(\gamma < 1/n\).

This implies that \(a\varphi^{-\gamma} \in L^q(\Omega)\) for any \(\varphi\) whose interior normal derivative \(\partial \varphi / \partial \nu > 0\) on \(\partial \Omega\) and \(q < 1/\gamma\).

Theorem 1.3. If \((H_2)\) and (1.2) hold, then \(\exists \lambda_0 > 0\) such that problem (1.1) has a solution \(\forall \lambda \in (0, \lambda_0)\).

Finally we assume that \(f\) is \(C^1\) in \(t\), satisfies

\[|f_t(x,t)| \leq C(t^{r-2} + 1) \quad (1.3) \]

for some \(2 \leq r < p^*\), and \(p\)-superlinear:

\[0 < \theta F(x,t) \leq t f(x,t), \quad t \text{ large} \quad (1.4) \]

for some \(\theta > p\). Here \(p^* = np/(n - p)\) (resp., \(\infty\)) if \(p < n\) (resp., \(p \geq n\)) is the critical Sobolev exponent and \(C\) denotes a generic positive constant.

Theorem 1.4. If \(p \geq 2, \ (H_1), \ (1.3), \) and (1.4) hold, and \(f \geq 0\), then \(\exists \lambda_0 > 0\) such that problem (1.1) has two solutions \(\forall \lambda \in (0, \lambda_0)\).

Theorem 1.5. If \(p \geq 2\) and \((H_2), \ (1.3), \) and (1.4) hold, then \(\exists \lambda_0 > 0\) such that problem (1.1) has two solutions \(\forall \lambda \in (0, \lambda_0)\).

2. Preliminaries on the \(p\)-Laplacian

Consider the problem

\[-\Delta_p u = g(x) \quad \text{in} \ \Omega, \]
\[u = 0 \quad \text{on} \ \partial \Omega. \quad (2.1)\]

Proposition 2.1. If \(g \in L^q(\Omega)\) for some \(q > n\), then (2.1) has a unique weak solution \(u \in C_0^1(\Omega)\). If, in addition, \(g \geq 0\) is nontrivial, then

\[u > 0 \quad \text{in} \ \Omega, \quad \partial u / \partial \nu > 0 \quad \text{on} \ \partial \Omega. \quad (2.2)\]
Proof. The existence of a unique solution $u \in W^{1,p}_0(\Omega)$ is well-known. The problem

\[-\Delta v = g(x) \quad \text{in } \Omega,
\]
\[v = 0 \quad \text{on } \partial \Omega
\]

has a unique solution $v \in W^{2,q}(\Omega) \hookrightarrow C^{1,a}(\overline{\Omega})$, $a = 1 - n/q$. Then u satisfies

\[
\text{div} \left(|\nabla u|^{p-2} \nabla u - G(x) \right) = 0 \quad \text{in } \Omega,
\]
\[u = 0 \quad \text{on } \partial \Omega,
\]

where $G = \nabla v \in C^{a}(\overline{\Omega})$, and u is bounded by Guedda and Véron [8] since $q > n/p$ if $p \leq n$, so $u \in C^{1}(\overline{\Omega})$ by Lieberman [13]. The rest now follows from Vázquez [17]. \qed

3. Proofs of Theorems 1.1 and 1.3

Proof of Theorem 1.1. Since $a \in L^q(\Omega)$ by (H1), the problem

\[-\Delta_p v = a(x) \quad \text{in } \Omega,
\]
\[v = 0 \quad \text{on } \partial \Omega
\]

has a unique positive solution $v \in C^{1}(\Omega)$ with $\partial v/\partial v > 0$ on $\partial \Omega$ by Proposition 2.1. Then $\inf_{\Omega}(v/\varphi) > 0$ and hence $a v^{-\gamma} \in L^q(\Omega)$. Fix $0 < \varepsilon \leq 1$ so small that $u := \varepsilon^{1/(p-1)} v \leq 1$. Then

\[-\Delta_p u - a(x) u^{-\gamma} - \lambda f(x,u) \leq -(1 - \varepsilon) a(x) \leq 0,
\]

so u is a subsolution of (1.1).

Since $a u^{-\gamma} \in L^q(\Omega)$, the problem

\[-\Delta_p u = a(x) u(x)^{-\gamma} + 1 \quad \text{in } \Omega,
\]
\[u = 0 \quad \text{on } \partial \Omega
\]

has a unique solution $\overline{u} \in C^{1}(\Omega)$ by Proposition 2.1, and $\overline{u} \geq u$ since

\[-\Delta_p \overline{u} \geq a(x) \geq \varepsilon a(x) = -\Delta_p u.
\]

Then

\[-\Delta_p \overline{u} - a(x) \overline{u}^{-\gamma} - \lambda f(x,\overline{u}) \geq 1 - \lambda \sup_{x \in \Omega, t \leq \max_{\Omega} \overline{u}} f(x,t),
\]

so $\exists \lambda_0 > 0$ such that \(\overline{u} \) is a supersolution of (1.1) $\forall \lambda \in (0,\lambda_0)$ by (1.2).
Let
\[g_{λ,π}(x,t) = \begin{cases} a(x)\bar{u}(x)^{-γ} + λ f(x,\bar{u}(x)), & t > \bar{u}(x) \\ a(x)t^{-γ} + λ f(x,t), & u(x) \leq t \leq \bar{u}(x) \\ a(x)u(x)^{-γ} + λ f(x,u(x)), & t < u(x) \end{cases} \]
(3.6)

\[G_{λ,π}(x,t) = \int_0^t g_{λ,π}(x,s)ds, \]

\[Φ_{λ,π}(u) = \int_{Ω} |∇u|^p - pG_{λ,π}(x,u), \quad u ∈ W_0^{1,p}(Ω). \]

Since
\[0 ≤ g_{λ,π}(x,t) ≤ a(x)u(x)^{-γ} + λ \sup_{x ∈ Ω, t ≤ \max u} f(x,t), \quad ∀ (x,t) ∈ Ω × ℝ, \] (3.7)

and \(au^{-γ} ∈ L^q(Ω) \), \(Φ_{λ,π} \) is bounded from below and has a global minimizer \(u_0 \), which then is a solution of (1.1) in the order interval \([u,\bar{u}]\). □

Proof of Theorem 1.3. The problem
\[-Δ_p v = a_0 \quad \text{in } Ω, \]
\[v = 0 \quad \text{on } ∂Ω \]
(3.8)

has a unique positive solution \(v ∈ C^1_0(Ω) \) with \(∂v/∂ν > 0 \) on \(∂Ω \). Fix \(0 < ε < 1 \) so small that \(u := ε^{1/(p-1)} v ≤ 1 \). Then
\[-Δ_p u - a(x)u^{-γ} - λ f(x,u) ≤ -(1 - ε)a_0 + λ \sup_{x ∈ Ω, t ≤ \max u} |f(x,t)|, \] (3.9)

so \(∃ λ_0 > 0 \) such that \(u \) is a subsolution of (1.1) \(∀ λ ∈ (0,λ_0) \). The rest of the proof now proceeds as above. □

4. Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Define a Carathéodory function on \(Ω × ℝ \) by
\[g_{λ}(x,t) = \begin{cases} a(x)t^{-γ} + λ f(x,t), & t ≥ u(x) \\ a(x)u(x)^{-γ} + λ f(x,u(x)), & t < u(x) \end{cases} \]
(4.1)

and consider the problem
\[-Δ_p u = g_{λ}(x,u) \quad \text{in } Ω, \]
\[u = 0 \quad \text{on } ∂Ω. \]
(4.2)

Every solution of (4.2) is \(≥ u \) and hence also a solution of (1.1). By (1.3),
\[0 ≤ g_{λ}(x,t) ≤ a(x)u(x)^{-γ} + λC((t^+)^{p-1} + 1), \quad ∀ (x,t) ∈ Ω × ℝ \] (4.3)
so solutions of (4.2) are the critical points of the C^1 functional

$$\Phi_\lambda(u) = \int_\Omega |\nabla u|^p - pG_\lambda(x,u), \quad u \in W^{1,p}_0(\Omega),$$

(4.4)

where

$$G_\lambda(x,t) = \int_0^t g_\lambda(x,s)ds.$$

Since u_0 solves

$$-\Delta_p u = g_{\lambda,\pi}(x,u_0(x)) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega$$

(4.5)

and $g_{\lambda,\pi}(\cdot, u_0(\cdot)) \in L^q(\Omega)$ by (3.7), $u_0 \in C^1_0(\Omega)$ by Proposition 2.1. Note that, with a possibly smaller λ_0, $2\overline{u}$ is also a supersolution of (1.1) $\forall \lambda \in (0, \lambda_0)$. We assume that u_0 is the global minimizer of the corresponding functional $\Phi_{\lambda,2\overline{u}}$ also, for otherwise we are done. Since

$$u_0 \leq \overline{u} < 2\overline{u} \quad \text{in } \Omega, \quad \partial u_0/\partial \nu \leq \partial \overline{u}/\partial \nu < \partial (2\overline{u})/\partial \nu \quad \text{on } \partial \Omega,$$

(4.6)

$\Phi_{\lambda,2\overline{u}} = \Phi_\lambda$ in a $C^1_0(\Omega)$-neighborhood of u_0, so u_0 is a local minimizer of $\Phi_\lambda|_{C^1_0(\Omega)}$, and hence also of Φ_λ by Brezis and Nirenberg [3] for $p = 2$ and by Guo and Zhang [9] for $p > 2$. The mountain pass lemma now gives a second critical point as (1.4) implies that Φ_λ satisfies the (PS) condition and $\Phi_\lambda(tu) \to -\infty$ as $t \to \infty$. □

Proof of Theorem 1.5 is similar and therefore omitted.

Acknowledgments

We would like to thank Professor Marco Degiovanni for showing us the proof of Proposition 2.1 and Professor Mabel Cuesta and Professor Jean-Pierre Gossez for their helpful comments about the p-Laplacian. The first author was supported in part by the National Science Foundation. The second author was supported in part by the National Natural Science Foundation of China, Ky and Yu-Fen Fan Endowment of the AMS, Florida Institute of Technology, and the Humboldt Foundation.

References

Positive solutions of singular p-Laplacian problems

Kanishka Perera: Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
E-mail address: kperera@fit.edu

Zhita Zhang: Academy of Mathematics and Systems Science, Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China
E-mail address: zzt@math.ac.cn