BOUNDARY VALUE PROBLEMS FOR THE 2ND-ORDER SEIBERG-WITTEN EQUATIONS

CELSO MELCHIADES DORIA

Received 8 June 2004

It is shown that the nonhomogeneous Dirichlet and Neuman problems for the 2nd-order Seiberg-Witten equation on a compact 4-manifold X admit a regular solution once the nonhomogeneous Palais-Smale condition $\mathcal H$ is satisfied. The approach consists in applying the elliptic techniques to the variational setting of the Seiberg-Witten equation. The gauge invariance of the functional allows to restrict the problem to the Coulomb subspace $\mathscr C_\alpha$ of configuration space. The coercivity of the $\mathscr FW_\alpha$ -functional, when restricted into the Coulomb subspace, imply the existence of a weak solution. The regularity then follows from the boundedness of L^∞ -norms of spinor solutions and the gauge fixing lemma.

1. Introduction

Let X be a compact smooth 4-manifold with nonempty boundary. In our context, the Seiberg-Witten equations are the 2nd-order Euler-Lagrange equation of the functional defined in Definition 2.3. When the boundary is empty, their variational aspects were first studied in [3] and the topological ones in [1]. Thus, the main aim here is to obtain the existence of a solution to the nonhomogeneous equations whenever $\partial X \neq \emptyset$. The nonemptiness of the boundary inflicts boundary conditions on the problem. Classically, this sort of problem is classified according to its boundary conditions in *Dirichlet problem* (\mathfrak{D}) or *Neumann problem* (\mathcal{N}) .

Originally, the Seiberg-Witten equations were described in [8] as a pair of 1st-order PDE. The solutions of these equations were known as \mathcal{SW}_{α} -monopoles, and their main achievement were to shed light on the understanding of the 4-dimensional differential topology, since new smooth invariants were defined by the topology of their moduli space of solutions (moduli gauge group). In the same article, Witten introduced a variational formulation for the equations and showed that its stable critical points turn out to be exactly the \mathcal{SW}_{α} -monopoles. The variational aspects of the \mathcal{SW}_{α} -equations were first explored in [3], where they proved that the functional satisfies the Palais-Smale condition and the solutions of the Euler-Lagrange (2nd-order) equations share the same important analytical properties as the \mathcal{SW}_{α} -monopoles. Therefore, it is natural to ask if the equations fit into a Morse-Bott-Smale theory, where the lower number of critical points

Copyright © 2005 Hindawi Publishing Corporation Boundary Value Problems 2005:1 (2005) 73–91 DOI: 10.1155/BVP.2005.73 is the Betti number of the configuration space. The topology of the configuration space was described in [1]. Besides, if the SW-theory is a Morse theory, another natural question is to argue about the existence of a Morse-Smale-Witten complex, as in [6]. In the last question, the \mathcal{SW}_{α} -equations on manifolds endowed with tubular ends or boundary also demand attention. The analogy of the \mathcal{SW}_{α} -equation's variational formulation, with the variational principle of the Ginzburg-Landau equation in superconductivity, further motivates the present study.

1.1. Spin^c **structure.** The space of Spin^c structures on X is identified with

$$Spin^{c}(X) = \{\alpha + \beta \in H^{2}(X, \mathbb{Z}) \oplus H^{1}(X, \mathbb{Z}_{2}) \mid w_{2}(X) = \alpha \pmod{2}\}. \tag{1.1}$$

For each $\alpha \in \operatorname{Spin}^c(X)$, there is a representation $\rho_\alpha : \operatorname{SO}_4 \to \mathbb{C}l_4$, induced by a Spin^c representation, and a pair of vector bundles $(\mathcal{G}_\alpha^+, \mathcal{L}_\alpha)$ over X (see [4]). Let P_{SO_4} be the frame bundle of X, so

- (i) $\mathcal{G}_{\alpha} = P_{SO_4} \times_{\rho_{\alpha}} V = \mathcal{G}_{\alpha}^+ \oplus \mathcal{G}_{\alpha}^-$. The bundle \mathcal{G}_{α}^+ is the positive complex spinors bundle (fibers are $Spin_4^c$ -modules isomorphic to \mathbb{C}^2),
- (ii) $\mathcal{L}_{\alpha} = P_{SO_4} \times_{\det(\alpha)} \mathbb{C}$. It is called the *determinant line bundle* associated to the Spin^c-structure $\alpha \cdot (c_1(\mathcal{L}_{\alpha}) = \alpha)$.

Thus, for each $\alpha \in \operatorname{Spin}^{c}(X)$, we associate a pair of bundles

$$\alpha \in \operatorname{Spin}^{c}(X) \leadsto (\mathcal{L}_{\alpha}, \mathcal{G}_{\alpha}^{+}).$$
 (1.2)

From now on, we considered on X a Riemannian metric g and on \mathcal{G}_{α} a Hermitian structure h.

Let P_{α} be the U_1 -principal bundle over X obtained as the frame bundle of \mathcal{L}_{α} ($c_1(P_{\alpha}) = \alpha$). Also, we consider the adjoint bundles

$$Ad(U_1) = P_{U_1} \times_{Ad} U_1, \quad ad(u_1) = P_{U_1} \times_{ad} u_1,$$
 (1.3)

where $Ad(U_1)$ is a fiber bundle with fiber U_1 , and $ad(u_1)$ is a vector bundle with fiber isomorphic to the Lie algebra u_1 .

1.2. The main theorem. Let \mathcal{A}_{α} be (formally) the space of connections (covariant derivative) on \mathcal{L}_{α} , $\Gamma(\mathcal{G}_{\alpha}^{+})$ the space of sections of \mathcal{G}_{α}^{+} , and $\mathcal{G}_{\alpha} = \Gamma(\mathrm{Ad}(U_{1}))$ the gauge group acting on $\mathcal{A}_{\alpha} \times \Gamma(\mathcal{G}_{\alpha}^{+})$ as follows:

$$g \cdot (A, \phi) = (A + g^{-1}dg, g^{-1}\phi).$$
 (1.4)

 \mathcal{A}_{α} is an affine space with vector space structure, after fixing an origin, isomorphic to the space $\Omega^1(\operatorname{ad}(\mathfrak{u}_1))$ of $\operatorname{ad}(\mathfrak{u}_1)$ -valued 1-forms. Once a connection $\nabla^0 \in \mathcal{A}_{\alpha}$ is fixed, a bijection $\mathcal{A}_{\alpha} \leftrightarrow \Omega^1(\operatorname{ad}(\mathfrak{u}_1))$ is exposed by $\nabla^A \leftrightarrow A$, where $\nabla^A = \nabla^0 + A$. $\mathcal{G}_{\alpha} = \operatorname{Map}(X, U_1)$, since $\operatorname{Ad}(U_1) \simeq X \times U_1$. The curvature of a 1-connection form $A \in \Omega^1(\operatorname{ad}(\mathfrak{u}_1))$ is the 2-form $F_A = dA \in \Omega^2(\operatorname{ad}(\mathfrak{u}_1))$.

Definition 1.1. (1) The configuration space of the \mathbb{D}-problem is

$$\mathscr{C}_{\alpha}^{\mathfrak{D}} = \{ (A, \phi) \in \mathscr{A}_{\alpha} \times \Gamma(\mathscr{G}_{\alpha}^{+}) \, \big| \, (A, \phi) \, \big|_{Y} \stackrel{\text{gauge}}{\sim} (A_{0}, \phi_{0}) \}, \tag{1.5}$$

(2) the configuration space of the \mathcal{N} -problem is

$$\mathscr{C}_{\alpha}^{\mathcal{N}} = \mathscr{A}_{\alpha} \times \Gamma(\mathscr{S}_{\alpha}^{+}). \tag{1.6}$$

Although each boundary problem requires its own configuration space, the superscripts \mathfrak{D} and \mathcal{N} will be used whenever the distinction is necessary, since most arguments work for both sort of problems. The gauge group \mathcal{G}_{α} action on each of the configuration spaces is given by (1.4).

The Dirichlet (\mathfrak{D}) and Neumann (\mathcal{N}) boundary value problems associated to the \mathscr{SW}_{α} -equations are the following: we consider $(\Theta,\sigma)\in\Omega^1(\operatorname{ad}(\mathfrak{u}_1))\oplus\Gamma(\mathcal{G}_{\alpha}^+)$ and (A_0,ϕ_0) defined on the manifold ∂X $(A_0$ is a connection on $\mathscr{L}_{\alpha}\mid_{\partial X}$, ϕ_0 is a section of $\Gamma(\mathcal{G}_{\alpha}^+\mid_{\partial X})$). In this way, find $(A,\phi)\in\mathscr{C}_{\alpha}^{\mathfrak{D}}$ satisfying \mathfrak{D} and $(A,\phi)\in\mathscr{C}_{\alpha}^{\mathfrak{D}}$ satisfying \mathcal{N} , where

(1)

$$\mathfrak{D} = \begin{cases}
d^* F_A + 4\Phi^* (\nabla^A \phi) = \Theta, \\
\Delta_A \phi + \frac{(|\phi|^2 + k_g)}{4} \phi = \sigma, \\
(A, \phi) \mid_{\partial X} \stackrel{\text{gauge}}{\sim} (A_0, \phi_0),
\end{cases}
\mathcal{N} = \begin{cases}
d^* F_A + 4\Phi^* (\nabla^A \phi) = \Theta, \\
\Delta_A \phi + \frac{(|\phi|^2 + k_g)}{4} \phi = \sigma, \\
i^* (*F_A) = 0, \quad \nabla^A_{\nu} \phi = 0,
\end{cases}$$
(1.7)

(2) the operator $\Phi^* : \Omega^1(\mathcal{G}^+_{\alpha}) \to \Omega^1(\mathfrak{u}_1)$ is locally given by

$$\Phi^*(\nabla^A \phi) = \frac{1}{2} \nabla^A (|\phi|^2) = \sum_i \langle \nabla_i^A \phi, \phi \rangle \eta_i, \tag{1.8}$$

and $\eta = {\eta_i}$ is an orthonormal frame in $\Omega^1(ad(\mathfrak{u}_1))$,

(3) $i^*(*F_A) = F_4$, where $F_4 = (F_{14}, F_{24}, F_{34}, 0)$ is the local representation of the 4th component (normal to ∂X) of the 2-form of curvature in the local chart (x, U) of X; $x(U) = \{x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4; ||x|| < \epsilon, x_4 \ge 0\}$, and $x(U \cap \partial X) \subset \{x \in x(U) \mid x_4 = 0\}$. Let $\{e_1, e_2, e_3, e_4\}$ be the canonical base of \mathbb{R}^4 , so $\nu = -e_4$ is the normal vector field along ∂X .

Theorem 1.2 (main theorem). If the pair $(\Theta, \sigma) \in L^{k,2} \oplus (L^{k,2} \cap L^{\infty})$ satisfies the \mathcal{H} -Condition 3.1, then the problems \mathfrak{D} and \mathcal{N} admit a C^r -regular solution (A, ϕ) , whenever 2 < k and r < k.

2. Basic set up

2.1. Sobolev spaces. As a vector bundle *E* over (X,g) is endowed with a metric and a covariant derivative ∇ , we define the Sobolev norm of a section $\phi \in \Omega^0(E)$ as

$$\|\phi\|_{L^{k,p}} = \sum_{|i|=0}^{k} \left(\int_{X} |\nabla^{i}\phi|^{p} \right)^{1/p}. \tag{2.1}$$

In this way, the $L^{k,p}$ -Sobolev Spaces of sections of E is defined as

$$L^{k,p}(E) = \{ \phi \in \Omega^0(E) \mid \|\phi\|_{L^{k,p}} < \infty \}. \tag{2.2}$$

In our context, in which we fixed a connection ∇^0 on \mathcal{L}_{α} , a metric g on X, and a Hermitian structure on \mathcal{S}_{α} , the Sobolev spaces on which the basic setting is made are the following:

- (i) $\mathcal{A}_{\alpha} = L^{1,2}(\Omega^1(\operatorname{ad}(\mathfrak{u}_1)));$
- (ii) $\Gamma(\mathcal{G}_{\alpha}^{+}) = L^{1,2}(\Omega^{0}(X,\mathcal{G}_{\alpha}^{+}));$
- (iii) $\mathscr{C}_{\alpha} = \mathscr{A}_{\alpha} \times \Gamma(\mathscr{S}_{\alpha}^{+});$
- (iv) $\mathcal{G}_{\alpha} = L^{2,2}(X, U_1) = L^{2,2}(\operatorname{Map}(X, U_1))$. (\mathcal{G}_{α} is an ∞ -dimensional Lie group with Lie algebra $\mathfrak{g} = L^{1,2}(X, \mathfrak{u}_1)$).

The above Sobolev spaces induce a Sobolev structure on $\mathscr{C}^{\mathfrak{D}}_{\alpha}$ and on $\mathscr{C}^{\mathfrak{N}}_{\alpha}$. From now on, the configuration spaces will be denoted by \mathscr{C}_{α} by ignoring the superscripts, unless needed.

The most basic analytical results needed to achieve the main result is the *gauge fixing lemma* (see [7]) and the estimate (2.3), both extended by Marini [5] to manifolds with boundary.

Lemma 2.1 (gauge fixing lemma). Every connection $\hat{A} \in \mathcal{A}_{\alpha}$ is gauge equivalent, by a gauge transformation $g \in \mathcal{G}_{\alpha}$ named Coulomb (\mathfrak{C}) gauge, to a connection $A \in \mathcal{A}_{\alpha}$ satisfying

- $(1) d_{\tau}^{*_f} A_{\tau} = 0 \text{ on } \partial X,$
- (2) $d^*A = 0$ on X,
- (3) in the N-problem, the connection A satisfies $A_{\nu} = 0 \ (\nu \perp \partial X)$.

COROLLARY 2.2. Under the hypothesis of Lemma 2.1, there exists a constant K > 0 such that the connection A, gauge equivalent to \widehat{A} by the Coulomb gauge, satisfies the following estimates:

$$||A||_{L^{1,p}} \le K \cdot ||F_A||_{L^p}.$$
 (2.3)

Notation. $*_f$ is the Hodge operator in the flat metric and the index τ denotes tangential components.

2.2. Variational formulation. A global formulation for problems $\mathfrak D$ and $\mathcal N$ is made using the Seiberg-Witten functional.

Definition 2.3. Let $\alpha \in \operatorname{Spin}^{c}(X)$. The Seiberg-Witten functional $\mathscr{SW}_{\alpha} : \mathscr{C}_{\alpha} \to \mathbb{R}$ is defined as

$$\mathcal{GW}_{\alpha}(A,\phi) = \int_{X} \left\{ \frac{1}{4} \left| F_{A} \right|^{2} + \left| \nabla^{A} \phi \right|^{2} + \frac{1}{8} |\phi|^{4} + \frac{k_{g}}{4} |\phi|^{2} \right\} d\nu_{g} + \pi^{2} \alpha^{2}, \tag{2.4}$$

where k_g = scalar curvature of (X,g).

Remark 2.4. The \mathcal{G}_{α} -action on \mathcal{C}_{α} has the following properties:

- (1) the \mathcal{GW}_{α} -functional is \mathcal{G}_{α} -invariant,
- (2) the \mathcal{G}_{α} -action on \mathcal{C}_{α} induces on $T\mathcal{C}_{\alpha}$ a \mathcal{C}_{α} -action as follows: let $(\Lambda, V) \in T_{(A,\phi)}\mathcal{C}_{\alpha}$ and $g \in \mathcal{G}_{\alpha}$,

$$g \cdot (\Lambda, V) = (\Lambda, g^{-1}V) \in T_{g \cdot (A, \phi)} \mathscr{C}_{\alpha}. \tag{2.5}$$

Consequently, $d(\mathcal{GW}_{\alpha})_{g\cdot(A,\phi)}(g\cdot(\Lambda,V)) = d(\mathcal{GW}_{\alpha})_{(A,\phi)}(\Lambda,V)$.

The tangent bundle $T\mathscr{C}_{\alpha}$ decomposes as

$$T\mathcal{C}_{\alpha} = \Omega^{1}(\operatorname{ad}(\mathfrak{u}_{1})) \oplus \Gamma(\mathcal{C}_{\alpha}^{+}).$$
 (2.6)

In this way, the 1-form $d\mathcal{S}W_{\alpha} \in \Omega^{1}(\mathcal{C}_{\alpha})$ admits a decomposition $d\mathcal{S}W_{\alpha} = d_{1}\mathcal{S}W_{\alpha} + d_{2}\mathcal{S}W_{\alpha}$, where

$$d_{1}(\mathcal{S}W_{\alpha})_{(A,\phi)}: \Omega^{1}(\operatorname{ad}(\mathfrak{u}_{1})) \longrightarrow \mathbb{R}, \qquad d_{1}(\mathcal{S}W_{\alpha})_{(A,\phi)} \cdot \Lambda = d(\mathcal{S}W_{\alpha})_{(A,\phi)} \cdot (\Lambda,0),$$

$$d_{2}(\mathcal{S}W_{\alpha})_{(A,\phi)}: \Gamma(\mathcal{S}_{\alpha}^{+}) \longrightarrow \mathbb{R}, \qquad d_{2}(\mathcal{S}W_{\alpha})_{(A,\phi)} \cdot V = d(\mathcal{S}W_{\alpha})_{(A,\phi)} \cdot (0,V).$$

$$(2.7)$$

By performing the computations, we get

(1) for every $\Lambda \in \mathcal{A}_{\alpha}$,

$$d_1(\mathcal{SW}_{\alpha})_{(A,\phi)} \cdot \Lambda = \frac{1}{4} \int_X \operatorname{Re} \left\{ \langle F_A, d_A \Lambda \rangle + 4 \langle \nabla^A(\phi), \Phi(\Lambda) \rangle \right\} dx, \tag{2.8}$$

where $\Phi: \Omega^1(\mathfrak{u}_1) \to \Omega^1(\mathcal{G}^+_{\alpha})$ is the linear operator $\Phi(\Lambda) = \Lambda(\phi)$, with dual defined in (1.8),

(2) for every $V \in \Gamma(\mathcal{G}_{\alpha}^+)$,

$$d_{2}(\mathcal{G}^{N}W_{\alpha})_{(A,\phi)} \cdot V = \int_{X} \operatorname{Re}\left\{\left\langle \nabla^{A}\phi, \nabla^{A}V\right\rangle + \left\langle \frac{|\phi|^{2} + k_{g}}{4}\phi, V\right\rangle\right\} dx. \tag{2.9}$$

Therefore, by taking $\operatorname{supp}(\Lambda) \subset \operatorname{int}(X)$ and $\operatorname{supp}(V) \subset \operatorname{int}(X)$, we restrict to the interior of X, and so, the gradient of the \mathscr{SW}_{α} -functional at $(A, \phi) \in \mathscr{C}_{\alpha}$ is

$$\operatorname{grad}(\mathcal{S}W_{\alpha})(A,\phi) = \left(d_A^* F_A + 4\Phi^*(\nabla^A \phi), \triangle_A \phi + \frac{|\phi|^2 + k_g}{4}\phi\right). \tag{2.10}$$

It follows from the \mathcal{G}_{α} -action on $T\mathcal{C}_{\alpha}$ that

$$\operatorname{grad}(\mathscr{SW}_{\alpha})(g \cdot (A, \phi)) = \left(d_A^* F_A + 4\Phi^* (\nabla^A \phi), g^{-1} \cdot \left(\triangle_A \phi + \frac{|\phi|^2 + k_g}{4} \phi\right)\right). \tag{2.11}$$

An important analytical aspect of the \mathcal{GW}_{α} -functional is the coercivity lemma proved in [3].

LEMMA 2.5 (coercivity). For each $(A, \phi) \in \mathcal{C}_{\alpha}$, there exist $g \in \mathcal{G}_{\alpha}$ and a constant $K_C^{(A, \phi)} > 0$, where $K_C^{(A, \phi)}$ depends on (X, g) and $\mathcal{SW}_{\alpha}(A, \phi)$, such that

$$||g \cdot (A, \phi)||_{L^{1,2}} < K_C^{(A,\phi)}.$$
 (2.12)

Proof (see [3, Lemma 2.3]). The gauge transform is the Coulomb one given in the Lemma 2.1. \Box

Considering the gauge invariance of the \mathcal{SW}_{α} -theory, and the fact that the gauge group \mathcal{G}_{α} is an infinite-dimensional Lie group, we cannot hope to handle the problem in general. From now on, we need to restrict the problem to the space, named Coulomb subspace,

$$\mathscr{C}_{\alpha}^{\mathfrak{C}} = \left\{ (A, \phi) \in \mathscr{C}_{\alpha}; \ \left| \left| (A, \phi) \right| \right|_{L^{1,2}} < K_{\mathfrak{C}}^{(A, \phi)} \right\}. \tag{2.13}$$

The superscripts \mathfrak{D} and \mathcal{N} have been omitted here for simplicity, although each one should be taken in account according to the problem. These choices of spaces come from the nature of the \mathcal{G}_{α} action on \mathcal{C}_{α} , they are suggested by the gauge fixing lemma and the coercivity lemma (not shared by an actions in general).

3. Existence of a solution

3.1. Nonhomogeneous Palais-Smale condition — \mathcal{H} . In the variational formulation, the problems \mathfrak{D} and \mathcal{N} (1.7) are written as

$$(\mathfrak{D}) = \begin{cases} \operatorname{grad}(\mathcal{S}W_{\alpha})(A,\phi) = (\Theta,\sigma), \\ (A,\phi)|_{\partial X} \stackrel{\operatorname{gauge}}{\sim} (A_{0},\phi_{0}), \end{cases}$$

$$(\mathcal{N}) = \begin{cases} \operatorname{grad}(\mathcal{S}W_{\alpha})(A,\phi) = (\Theta,\sigma), \\ i^{*}(*F_{A}) = 0, \quad \nabla_{n}^{A}\phi = 0. \end{cases}$$

$$(3.1)$$

The equations in (1.7) may not admit a solution for any pair $(\Theta, \sigma) \in \Omega^1(\operatorname{ad}(\mathfrak{u}_1)) \oplus \Gamma(\mathcal{G}^+_{\alpha})$. In finite dimension, if we consider a function $f: X \to \mathbb{R}$, the analogous question would be to find a point $p \in X$ such that, for a fixed vector u, $\operatorname{grad}(f)(p) = u$. This question is more subtle if f is invariant under a Lie group action on X. Therefore, we need a hypothesis about the pair $(\Theta, \sigma) \in \Omega^1(\operatorname{ad}(\mathfrak{u}_1)) \oplus \Gamma(\mathcal{G}^+_{\alpha})$.

Condition 3.1 (\mathcal{H}). Let $(\Theta, \sigma) \in L^{1,2}(\Omega^1(\operatorname{ad}(\mathfrak{u}_1))) \oplus (L^{1,2}(\Gamma(\mathcal{G}_{\alpha}^+)) \cap L^{\infty}(\Gamma(\mathcal{G}_{\alpha}^+)))$ be a pair such that there exists a sequence $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}} \subset \mathscr{C}_{\alpha}^{\mathfrak{C}}$ (2.13) with the following properties:

- (1) $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}} \subset L^{1,2}(\mathcal{A}_\alpha) \times (L^{1,2}(\Gamma(\mathcal{G}_\alpha^+)) \cup L^\infty(\Gamma(\mathcal{G}_\alpha^+)))$ and there exists a constant $c_\infty > 0$ such that, for all $n \in \mathbb{Z}$, $\|\phi_n\|_\infty < c_\infty$,
- (2) there exists $c \in \mathbb{R}$ such that, for all $n \in \mathbb{Z}$, $\mathcal{GW}_{\alpha}(A_n, \phi_n) < c$,
- (3) the sequence $\{d(\mathcal{SW}_{\alpha})_{(A_n,\phi_n)}\}_{n\in\mathbb{Z}}\subset (L^{1,2}(\Omega^1(\operatorname{ad}(\mathfrak{u}_1)))\oplus L^{1,2}(\Gamma(\mathcal{G}_{\alpha}^+)))^*$, of linear functionals, converges weakly to

$$L_{\Theta} + L_{\sigma} : T \mathscr{C}_{\alpha} \longrightarrow \mathbb{R},$$
 (3.2)

where

$$L_{\Theta}(\Lambda) = \int_{X} \langle \Theta, \Lambda \rangle, \qquad L_{\sigma}(V) = \int_{X} \langle \sigma, V \rangle.$$
 (3.3)

- **3.2. Strong convergence of** $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$ in $L^{1,2}$. As a consequence of Lemma 2.5, the sequence $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$ given by the \mathcal{H} -condition converges to a pair (A, ϕ) ;
 - (1) weakly in \mathcal{C}_{α} ,
 - (2) weakly in $L^4(\mathcal{A}_{\alpha} \times \Gamma(\mathcal{G}_{\alpha}^+))$,
 - (3) strongly in $L^p(\mathcal{A}_{\alpha} \times \Gamma(\mathcal{G}_{\alpha}^+))$, for every p < 4.

Remark 3.2. Let $\{A_n\}_{n\in\mathbb{N}}\subset L^2$ be a converging sequence in L^2 satisfying $d^*A_n=0$, for all $n\in\mathbb{N}$, and let $A=\lim_{n\to\infty}A_n\in L^2$. So, $d^*A=0$, once

$$\left| \left\langle d^* A, \rho \right\rangle \right| \le \left| A - A_n \right|_{I^2} \cdot \left| d\rho \right|_{I^2}, \tag{3.4}$$

for all $\rho \in \Omega^0(ad(\mathfrak{u}_1))$.

THEOREM 3.3. The limit $(A, \phi) \in L^2(\mathcal{A}_{\alpha} \times \Gamma(\mathcal{G}_{\alpha}^+))$, obtained as a limit of the sequence $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$, is a weak solution of (1.7).

Proof. The proof goes along the same lines as in the 2nd step in the proof of the compactness theorem in [3].

(1) For every $\Lambda \in \mathcal{A}_{\alpha}$,

$$d_{1}(\mathcal{S}W_{\alpha})_{(A_{n},\phi_{n})} \cdot \Lambda = \frac{1}{4} \int_{X} \operatorname{Re} \left\{ \langle F_{A_{n}}, d_{A_{n}} \Lambda \rangle + 4 \langle \nabla^{A_{n}}(\phi_{n}), \Phi(\Lambda) \rangle \right\} dx + \int_{\partial X} \operatorname{Re} \left\{ \Lambda \wedge *F_{A_{n}} \right\},$$
(3.5)

where

(a) $\Phi: \Omega^1(\mathfrak{u}_1) \to \Omega^1(\mathcal{G}^+_\alpha)$ is the linear operator $\Phi(\Lambda) = \Lambda(\phi)$; its dual is defined in (1.8). Assuming $\phi \in L^\infty$ (Lemma 3.4), it follows that

$$\lim_{n \to \infty} d_1 (\mathcal{S}W_{\alpha})_{(A_n, \phi_n)} \cdot \Lambda = d_1 (\mathcal{S}W_{\alpha})_{(A, \phi)} \cdot \Lambda. \tag{3.6}$$

Therefore, $d_1(\mathcal{G}W_{\alpha})_{(A,\phi)} \cdot \Lambda = \int_X \langle \Theta, \Lambda \rangle$,

- (b) $\Lambda \wedge *F_A = -\langle \Lambda, F_4 \rangle dx_1 \wedge dx_2 \wedge dx_3$. Since the above equation is true for all Λ , let supp $(\Lambda) \subset \partial X$, so $F_4 = 0 \ (\Rightarrow i^*(*F_A) = 0)$.
- (2) For every $V \in \Gamma(\mathcal{G}_{\alpha}^+)$,

$$d_{2}(\mathscr{S}W_{\alpha})_{(A_{n},\phi_{n})} \cdot V = \int_{X} \operatorname{Re}\left\{\left\langle \nabla^{A_{n}}\phi_{n}, \nabla^{A_{n}}V\right\rangle + \left\langle \frac{\left|\phi_{n}\right|^{2} + k_{g}}{4}\phi_{n}, V\right\rangle\right\} dx + \int_{\partial Y} \operatorname{Re}\left\{\left\langle \nabla^{A_{n}}_{\nu}\phi_{n}, V\right\rangle\right\}.$$

$$(3.7)$$

Analogously, it follows that (A, ϕ) is a weak solution of the equation

$$d_2(\mathcal{SW}_{\alpha})_{(A,\phi)} \cdot V = \int_X \langle \sigma, V \rangle. \tag{3.8}$$

So, in the \mathcal{N} -problem, $\nabla_{\nu}^{A} \phi = 0$.

In order to pursue the strong $L^{1,2}$ -convergence for the sequence $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$, we obtain in the following an upper bound for $\|\phi\|_{L^{\infty}}$, whenever (A, ϕ) is a weak solution.

Lemma 3.4. Let (A, ϕ) be a solution of either $\mathfrak D$ or $\mathcal N$ in (1.7), so the following hold.

(1) If $\sigma = 0$, then there exists a constant $k_{X,g}$, depending on the Riemannian metric on X, such that

$$\|\phi\|_{\infty} < k_{X,g} \operatorname{vol}(X). \tag{3.9}$$

(2) If $\sigma \neq 0$, then there exist constant $c_1 = c_1(X,g)$ and $c_2 = c_2(X,g)$ such that

$$\|\phi\|_{L^p} < c_1 + c_2 \|\sigma\|_{L^{3p}}^3. \tag{3.10}$$

In particular, if $\sigma \in L^{\infty}$, then $\phi \in L^{\infty}$.

Proof. Fix $r \in \mathbb{R}$ and suppose that there is a ball $B_{r^{-1}}(x_0)$, around the point $x_0 \in X$, such that

$$|\phi(x)| > r, \quad \forall x \in B_{r^{-1}}(x_0).$$
 (3.11)

Define

$$\eta = \begin{cases} \left(1 - \frac{r}{|\phi|}\right) \phi & \text{if } x \in B_{r^{-1}}(x_0), \\ 0 & \text{if } x \in X - B_{r^{-1}}(x_0). \end{cases}$$
(3.12)

So,

$$|\eta| \leq |\phi|,$$

$$\nabla \eta = r \frac{\langle \phi, \nabla \phi \rangle}{|\phi|^3} \phi + \left(1 - \frac{r}{|\phi|}\right) \nabla \phi$$

$$\implies |\nabla \eta|^2 = r^2 \frac{\langle \phi, \nabla \phi \rangle^2}{|\phi|^4} + 2r \left(1 - \frac{r}{|\phi|}\right) \frac{\langle \phi, \nabla \phi \rangle^2}{|\phi|^3} + \left(1 - \frac{r}{|\phi|}\right)^2 |\nabla \phi|^2$$

$$\implies |\nabla \eta|^2 < r^2 \frac{|\nabla \phi|^2}{|\phi|^2} + 2r \left(1 - \frac{r}{|\phi|}\right) \frac{|\nabla \phi|^2}{|\phi|} + \left(1 - \frac{r}{|\phi|}\right)^2 |\nabla \phi|^2.$$
(3.13)

Since $r < |\phi|$,

$$|\nabla \eta|^2 < 4|\nabla \phi|^2. \tag{3.14}$$

Hence, by (3.13) and (3.14), $\eta \in L^{1,2}$. The directional derivative of \mathcal{SW}_{α} in direction η is given by

$$d(\mathcal{S}W_{\alpha})_{(A,\phi)}(0,\eta) = \int_{X} \left[\langle \nabla^{A}\phi, \nabla^{A}\eta \rangle + \frac{|\phi|^{2} + k_{g}}{4} |\phi| (|\phi| - r) \right]. \tag{3.15}$$

By (2.9),

$$\int_{X} \left[\langle \nabla^{A} \phi, \nabla^{A} \eta \rangle + \frac{|\phi|^{2} + k_{g}}{4} |\phi| (|\phi| - r) \right] = \int_{X} \left\langle \sigma, \left(1 - \frac{r}{|\phi|} \right) \phi \right\rangle. \tag{3.16}$$

However,

$$\int_{X} \langle \nabla^{A} \phi, \nabla^{A} \eta \rangle = \int_{X} \left[r \frac{\langle \phi, \nabla^{A} \phi \rangle^{2}}{|\phi|^{3}} + \left(1 - \frac{r}{|\phi|} \right) |\nabla \phi|^{2} \right] > 0.$$
 (3.17)

So,

$$\int_{X} \frac{|\phi|^{2} + k_{g}}{4} |\phi| (|\phi| - r) < \int_{X} \left\langle \sigma, \left(1 - \frac{r}{|\phi|} \right) \phi \right\rangle < \int_{X} |\sigma| (|\phi| - r). \tag{3.18}$$

Hence,

$$\int_{X} (|\phi| - r) \left(\frac{|\phi|^2 + k_g}{4} |\phi| - |\sigma| \right) < 0.$$

$$(3.19)$$

Since $r < |\phi(x)|$, whenever $x \in B_{r^{-1}}(x_0)$, it follows that

$$(|\phi|^2 + k_g)|\phi| < 4|\sigma|, \quad \text{a.e. in } B_{r-1}(x_0).$$
 (3.20)

There are two cases to be analysed independently.

(1) $\sigma = 0$. In this case, we get

$$(|\phi|^2 + k_g)|\phi| < 0$$
, a.e. (3.21)

The scalar curvature plays a central role here: if $k_g \ge 0$, then $\phi = 0$; otherwise,

$$|\phi| \le \max\{0, (-k_g)^{1/2}\}.$$
 (3.22)

Since *X* is compact, we let $k_{X,g} = \max_{x \in X} \{0, [-k_g(x)]^{1/2}\}$, and so,

$$\|\phi\|_{\infty} < k_{X,g} \operatorname{vol}(X). \tag{3.23}$$

(2) Let $\sigma \neq 0$. The inequality (3.20) implies that

$$|\phi|^3 + k_{\sigma}|\phi| - 4|\sigma| < 0$$
, a.e. (3.24)

Consider the polynomial

$$Q_{\sigma(x)}(w) = w^3 + k_g w - 4 |\sigma(x)|. \tag{3.25}$$

An estimate for $|\phi|$ is obtained by estimating the largest real number w satisfying $Q_{\sigma(x)}(w)$ < 0. $Q_{\sigma(x)}$ being monic implies that $\lim_{w\to\infty} Q_{\sigma(x)}(w) = +\infty$. So, either $Q_{\sigma(x)} > 0$, whenever w > 0, or there exists a root $\rho \in (0, \infty)$. The first case would imply that

$$Q_{\sigma(x)}(|\phi(x)|) > 0, \quad \text{a.e.}, \tag{3.26}$$

contradicting (3.20). By the same argument, there exists a root $\rho \in (0, \infty)$ such that $Q_{\sigma(x)}(w)$ changes its sign in a neighborhood of ρ . Let ρ be the largest root in $(0, \infty)$ with this property. By the Corollary A.2, there exist constants $c_1 = c_1(X, g)$ and c_2 such that

$$|\rho| < c_1 + c_2 |\sigma(x)|^3$$
. (3.27)

Consequently,

$$|\phi(x)| < c_1 + c_2 |\sigma(x)|^3$$
, a.e. in $B_{r-1}(x_0)$ (3.28)

and

$$\|\phi\|_{L^p} < C_1 + C_2 \|\sigma\|_{L^{3p}}^3$$
 restricted to $B_{r^{-1}}(x_0)$, (3.29)

where C_1 , C_2 are constants depending on $\operatorname{vol}(B_{r^{-1}}(x_0))$. The inequality (3.29) can be extended over X by using a C^{∞} partition of unity. Moreover, if $\sigma \in L^{\infty}$, then

$$\|\phi\|_{\infty} < C_1 + C_2 \|\sigma\|_{\infty}^3, \tag{3.30}$$

where C_1 , C_2 are constants depending on vol(X).

A sort of concentration lemma, proved in [3], can be extended as follows.

LEMMA 3.5. Let $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$ be the sequence given by the \mathcal{H} -Condition 3.1. Then,

$$\lim_{n\to\infty} \int_X \langle \Phi^*(\nabla^{A_n}\phi_n), A_n - A \rangle = 0.$$
 (3.31)

Proof. By (1.8),

$$\lim_{n \to \infty} \int_{X} \langle \Phi^{*}(\nabla^{A_{n}} \phi_{n}), A_{n} - A \rangle = \lim_{n \to \infty} \int_{X} \langle \nabla_{i}^{A_{n}} \phi_{n}, \phi_{n} \rangle \cdot \langle \eta_{i}, A_{n} - A \rangle,$$

$$\lim_{n \to \infty} \int_{X} \langle \nabla_{i}^{A_{n}} \phi_{n}, \phi_{n} \rangle \cdot \langle \eta_{i}, A_{n} - A \rangle$$

$$\leq \lim_{n \to \infty} \int_{X} |\langle \nabla_{i}^{A_{n}} \phi_{n}, \phi_{n} \rangle|^{2} \cdot \int_{X} |\langle \eta_{i}, A_{n} - A \rangle|^{2}$$

$$\leq \lim_{n \to \infty} \left[\int_{X} |\nabla_{i}^{A_{n}} \phi_{n}|^{2} \cdot |\phi_{n}|^{2} \right] \cdot \int_{X} |A_{n} - A|^{2}$$

$$\leq \lim_{n \to \infty} c_{\infty} \cdot \left[\int_{X} |\nabla_{i}^{A_{n}} \phi_{n}|^{2} \right] \cdot ||A_{n} - A||_{L^{2}}^{2}$$

$$\leq \lim_{n \to \infty} c_{\infty} \cdot ||\phi_{n}||_{L^{1,2}}^{2} \cdot ||A_{n} - A||_{L^{2}}^{2}$$

$$\leq \lim_{n \to \infty} c_{\infty} \cdot ||\phi_{n}||_{L^{1,2}}^{2} \cdot ||A_{n} - A||_{L^{2}}^{2}$$

THEOREM 3.6. Let (Θ, σ) be a pair satisfying the \mathcal{H} -Condition 3.1. Then, the sequence $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$, given by Condition 3.1, converges strongly to $(A, \phi) \in \mathcal{C}_{\alpha}$.

Proof. From Theorem 3.3, $\{(A_n,\phi_n)\}_{n\in\mathbb{Z}}$ converges weakly in $L^{1,2}$ to $(A,\phi)\in\mathscr{C}_\alpha$. The proof is splitted into 2 parts.

(1) $\lim_{n\to\infty} ||A_n - A||_{L^{1,2}} = 0$. Let $d^*: \Omega^1(\operatorname{ad}(\mathfrak{u}_1)) \to \Omega^0(\operatorname{ad}(\mathfrak{u}_1))$. The operator $d: \ker(d^*) \to \Omega^2(\operatorname{ad}(\mathfrak{u}_1))$ being elliptic implies, by the fundamental elliptic estimate, that

$$||A_n - A||_{L^{1,2}} \le c||d(A_n - A)||_{L^2} + ||A_n - A||_{L^2}.$$
(3.33)

The first term in the right-hand side is controlled as follows:

$$||dA_{n} - dA||_{L^{2}}^{2} = \int_{X} \langle d(A_{n} - A), d(A_{n} - A) \rangle$$

$$= \int_{X} \langle dA_{n}, d(A_{n} - A) \rangle - \int_{X} \langle dA, d(A_{n} - A) \rangle$$

$$= \int_{X} \langle d^{*}F_{A_{n}}, A_{n} - A \rangle - \int_{X} \langle d^{*}F_{A}, A_{n} - A \rangle$$

$$= d(\mathcal{S}W_{\alpha})_{(A_{n},\phi_{n})} (A_{n} - A) - 4 \int_{X} \langle \Phi^{*}(\nabla^{A_{n}}\phi_{n}), A_{n} - A \rangle$$

$$- d(\mathcal{S}W_{\alpha})_{(A,\phi)} (A_{n} - A) - 4 \int_{X} \langle \Phi^{*}(\nabla^{A}\phi), A_{n} - A \rangle + o(1)$$

$$= -4 \left\{ \int_{X} \langle \Phi^{*}(\nabla^{A_{n}}\phi_{n}), A_{n} - A \rangle + \int_{X} \langle \Phi^{*}(\nabla^{A}\phi), A_{n} - A \rangle \right\}$$

$$+ o(1), \quad \lim_{n \to \infty} o(1) = 0.$$
(3.34)

Thus, it follows from Lemma 3.5 that $\lim_{n\to\infty} \|A_n - A\|_{L^{1,2}} = 0$, and consequently, $A_n \to A$ strongly in L^4 .

84 Boundary value problems for the \mathcal{GW}_{α} -equations

(2)
$$\lim_{n\to\infty} \|\phi_n - \phi\|_{L^{1,2}} = 0.$$

$$\left|\left|\nabla^{0}\phi_{n}-\nabla^{0}\phi\right|\right|_{L^{2}}^{2}=\overbrace{\int_{X}\left\langle \nabla^{0}\phi_{n},\nabla^{0}\left(\phi_{n}-\phi\right)\right\rangle }^{(1)}-\overbrace{\int_{X}\left\langle \nabla^{0}\phi,\nabla^{0}\left(\phi_{n}-\phi\right)\right\rangle }^{(2)}.\tag{3.35}$$

The term (1) leads to

$$\int_{X} \langle \nabla^{0} \phi_{n}, \nabla^{0} (\phi_{n} - \phi) \rangle
= \int_{X} \langle (\nabla^{A_{n}} - A_{n}) \phi_{n}, (\nabla^{A_{n}} - A_{n}) (\phi_{n} - \phi) \rangle
= \int_{X} \langle \nabla^{A_{n}} \phi_{n}, \nabla^{A_{n}} (\phi_{n} - \phi) \rangle - \int_{X} \langle \nabla^{A_{n}} \phi_{n}, A_{n} (\phi_{n} - \phi) \rangle
- \int_{X} \langle A_{n} \phi_{n}, \nabla^{A_{n}} (\phi_{n} - \phi) \rangle + \int_{X} \langle A_{n} \phi_{n}, A_{n} (\phi_{n} - \phi) \rangle
= d(\mathcal{S}W_{\alpha})_{(A_{n},\phi_{n})} (\phi_{n} - \phi) - \int_{X} \frac{|\phi_{n}|^{2} + k_{g}}{4} \langle \phi_{n}, \phi_{n} - \phi \rangle
- \int_{X} \langle \nabla^{A_{n}} \phi_{n}, A_{n} (\phi_{n} - \phi) \rangle - \int_{X} \langle A_{n} \phi_{n}, \nabla^{A_{n}} (\phi_{n} - \phi) \rangle
+ \int_{X} \langle A_{n} \phi_{n}, A_{n} (\phi_{n} - \phi) \rangle.$$
(3.36)

The term (2) in (3.35) leads to similar terms named (21), (22), (23), and (24). We analyze each one of the above-obtained overbraced terms.

(a) Terms (11) and (21):

$$d(\mathcal{S}W_{\alpha})_{(A_{n},\phi_{n})}(\phi_{n}-\phi) - \int_{X} \frac{|\phi_{n}|^{2} + k_{g}}{4} \langle \phi_{n},\phi_{n}-\phi \rangle + o(1)$$

$$= \langle \sigma,\phi_{n}-\phi \rangle - \int_{X} \frac{|\phi_{n}|^{2} + k_{g}}{4} |\phi_{n}-\phi|^{2} - \int_{X} \frac{|\phi_{n}|^{2} + k_{g}}{4} \langle \phi,\phi_{n}-\phi \rangle + o(1)$$

$$\leq \langle \sigma,\phi_{n}-\phi \rangle - \int_{X} \frac{|\phi_{n}|^{2} + k_{g}}{4} \langle \phi,\phi_{n}-\phi \rangle + o(1)$$

$$\leq ||\sigma||_{L^{2}}^{2} \cdot ||\phi_{n}-\phi||_{L^{2}}^{2} + ||\frac{|\phi_{n}|^{2} + k_{g}}{4}||_{L^{2}}^{2} \cdot ||\phi||_{\infty} \cdot ||\phi_{n}-\phi||_{L^{2}}^{2} + o(1),$$

$$(3.37)$$

where $\lim_{n\to\infty} o(1) = 0$. By the similarity between (11) and (21), we conclude the boundedness of term (22).

- (b) Terms (12) and (22):
 - (i) term (12):

$$\int_{X} \langle \nabla^{A_{n}} \phi_{n}, A_{n} (\phi_{n} - \phi) \rangle$$

$$= \int_{X} \langle \nabla^{A_{n}} \phi_{n}, (A_{n} - A) (\phi_{n} - \phi) \rangle + \int_{X} \langle \nabla^{A_{n}} \phi_{n}, A(\phi_{n} - \phi) \rangle$$

$$\leq \int_{X} |\nabla^{A_{n}} \phi_{n}|^{2} \cdot \int_{X} |A_{n} - A|^{4} \cdot \int_{X} |\phi_{n} - \phi|^{4}$$

$$+ \int |\nabla^{A_{n}} \phi_{n}|^{2} \cdot \int_{X} |A(\phi_{n} - \phi)|^{2}, \tag{3.38}$$

(ii) term (22)

$$\int_{X} \langle \nabla^{A} \phi, A(\phi_{n} - \phi) \rangle \leq \int_{X} |\nabla^{A} \phi|^{2} \cdot \int_{X} |A(\phi_{n} - \phi)|^{2}. \tag{3.39}$$

The term $\int_X |\nabla^A \phi|^2$ is bounded by Proposition 4.1 and $A \in C^0$ by Theorem 4.4

(c) Term {(13)-(23)}:

$$\int_{X} \langle A_{n}\phi_{n}, \nabla^{A_{n}}(\phi_{n} - \phi) \rangle - \int_{X} \langle A\phi, \nabla^{A}(\phi_{n} - \phi) \rangle$$

$$= \int_{X} \langle (A_{n} - A)\phi_{n}, \nabla^{A_{n}}(\phi_{n} - \phi) \rangle + \int_{X} \langle A\phi_{n}, \nabla^{A_{n}}(\phi_{n} - \phi) \rangle$$

$$- \int_{X} \langle (A_{n} - A)\phi, \nabla^{A}(\phi_{n} - \phi) \rangle - \int_{X} \langle A_{n}\phi, \nabla^{A}(\phi_{n} - \phi) \rangle.$$
(3.40)

In each of the last two lines above, the first terms are bounded by $||A_n - A||_{L^4}$, while the term $\{(i)$ - $(ii)\}$ can be written as

$$\int_{X} \langle (A - A_{n}) \phi_{n}, \nabla^{A_{n}} (\phi_{n} - \phi) \rangle + \int_{X} \langle A_{n} (\phi_{n} - \phi), \nabla^{A_{n}} (\phi_{n} - \phi) \rangle
+ \int_{X} \langle A_{n} \phi, (\nabla^{A_{n}} - \nabla^{A}) (\phi_{n} - \phi) \rangle.$$
(3.41)

So, it is also bounded by $||A_n - A||_{L^4}$.

(d) Term {(14)-(24)}:

$$\int_{X} \langle A_{n}\phi_{n}, A_{n}(\phi_{n} - \phi) \rangle - \int_{X} \langle A\phi, A(\phi_{n} - \phi) \rangle
= \int_{X} \langle A_{n}\phi_{n}, (A_{n} - A)(\phi_{n} - \phi) \rangle + \int_{X} \langle (A_{n} - A)\phi_{n}, A(\phi_{n} - \phi) \rangle
+ \int |A(\phi_{n} - \phi)|^{2}.$$
(3.42)

Since $A \in C^0$, it follows that $\lim_{n\to\infty} ||A(\phi_n - \phi)||^2 = 0$.

4. Regularity of the solution (A, ϕ)

Let $\beta = \{e_i; 1 \le i \le 4\}$ be an orthonormal frame fixed on TX with the following properties; for all $i, j \in \{1, 2, 3, 4\}$:

- (1) $[e_i, e_j] = 0$,
- (2) $\nabla_{e_i} e_j = 0$ (∇ = Levi-Civita connection on X).

Let $\beta^* = \{dx_1, ..., dx_n\}$ be the dual frame induced on \mathcal{G}_{α}^* . From the 2nd property of the frame β , it follows that $\nabla_{e_i} dx^j = 0$ for all $i, j \in \{1, 2, 3, 4\}$. For the sake of simplicity, let $\nabla_{e_i}^A = \nabla_i^A$. Therefore, $\nabla^A : \Omega^0(\operatorname{ad}(\mathfrak{u}_1)) \to \Omega^1(\operatorname{ad}(\mathfrak{u}_1))$ is given by

$$\nabla^{A}\phi = \sum_{l} (\nabla_{l}^{A}\phi) dx_{l} \Longrightarrow |\nabla^{A}\phi|^{2} = \sum_{l} |\nabla_{l}^{A}\phi|^{2},$$

$$(\nabla^{A})^{2} = \sum_{k,l} (\nabla_{k}^{A}\nabla_{l}^{A}\phi) dx_{l} \wedge dx_{k} \Longrightarrow |(\nabla^{A})^{2}|^{2} = \sum_{k,l} |\nabla_{k}^{A}\nabla_{l}^{A}\phi|^{2}.$$

$$(4.1)$$

In this setting, the 2 form of curvature of the connection A is given by

$$(F_A)_{kl} = F_{kl} = \nabla_l^A \nabla_k^A - \nabla_k^A \nabla_l^A. \tag{4.2}$$

In order to compute the operator $\Delta_A = (\nabla^A)^* \nabla^A : \Omega^0(\mathcal{G}_{\alpha}^+) \to \Omega^0(\mathcal{G}_{\alpha}^+)$, let $*: \Omega^i(\mathcal{G}_{\alpha}) \to \Omega^{4-i}(\mathcal{G}_{\alpha})$ be the Hodge operator and consider the identity

$$\left(\nabla^{A}\right)^{*} = - * \nabla^{A} * : \Omega^{1}(\mathcal{G}_{\alpha}^{+}) \longrightarrow \Omega^{0}(\mathcal{G}_{\alpha}^{+}). \tag{4.3}$$

Hence,

$$\Delta_A \phi = -\sum_k \nabla_k^A \nabla_k^A \phi. \tag{4.4}$$

In this way,

$$\begin{split} \left| \Delta_{A} \phi \right|^{2} &= \sum_{k,l} \left\langle \nabla_{k}^{A} \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \right\rangle \\ &= \sum_{k,l} \left[\nabla_{k}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \right\rangle \right) - \left\langle \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \nabla_{l}^{A} \phi \right\rangle \right] \\ &= \sum_{k,l} \left[\nabla_{k}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \right\rangle \right) - \left\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{k}^{A} \nabla_{l}^{A} \phi \right\rangle - \left\langle \nabla_{k}^{A} \phi, F_{lk} \nabla_{l}^{A} \phi \right\rangle \right] \\ &= \sum_{k,l} \left[\nabla_{k}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \right\rangle \right) - \nabla_{l}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \right\rangle \right) \right] \\ &+ \sum_{k,l} \left[\left\langle \nabla_{l}^{A} \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \right\rangle + \left\langle \nabla_{k}^{A} \phi, F_{lk} \nabla_{l}^{A} \phi \right\rangle \right] \\ &= \sum_{k,l} \left[\nabla_{k}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \right\rangle \right) - \nabla_{l}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \right\rangle \right) \right] + \sum_{k,l} \left| \nabla_{k}^{A} \nabla_{l}^{A} \phi \right|^{2} \\ &+ \sum_{k,l} \left[\left\langle F_{kl} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \right\rangle + \left\langle \nabla_{k}^{A} \phi, F_{kl} \nabla_{l}^{A} \phi \right\rangle \right] \end{split} \tag{4.5}$$

and so,

$$\left| \left(\nabla^{A} \right)^{2} \phi \right|^{2} \leq \left| \Delta_{A} \phi \right|^{2} + \sum_{k,l} \left\{ \left| \nabla_{k}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \right\rangle \right) \right| \right\} + \sum_{k,l} \left\{ \left| \left\langle \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \right\rangle \right| \right\} + \sum_{k,l} \left\{ \left| \left\langle F_{kl} \phi, \nabla_{k}^{A} \phi \nabla_{l}^{A} \phi \right\rangle \right| \right\} + \sum_{k,l} \left\{ \left| \left\langle \nabla_{k}^{A} \phi, F_{kl} \nabla_{l}^{A} \phi \right\rangle \right| \right\}.$$

$$(4.6)$$

Now, by applying the inequalities

$$\left(\sum_{i} a_{i}\right)^{r} \leq K_{r} \cdot \sum_{i} \left|a_{i}\right|^{r}, \qquad \sqrt{\sum_{i=1}^{n} a_{i}} \leq \sum_{i=1}^{n} \sqrt{a_{i}}$$

$$(4.7)$$

to (4.6), we get

$$\left| \left(\nabla^{A} \right)^{2} \phi \right|^{p} \leq K_{p} \cdot \left| \Delta_{A} \phi \right|^{p} + K_{p} \cdot \sum_{k,l} \left\{ \left| \nabla_{k}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \right\rangle \right) \right|^{p/2} \right\}$$

$$+ K_{p} \sum_{k,l} \left\{ \left| \nabla_{l}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \right\rangle \right) \right|^{p/2} \right\}$$

$$+ \sum_{k,l} \left\{ \left| \left\langle F_{kl} \phi, \nabla_{k}^{A} \phi \nabla_{l}^{A} \phi \right\rangle \right|^{p/2} \right\} + \sum_{k,l} \left\{ \left| \left\langle \nabla_{k}^{A} \phi, F_{kl} \nabla_{l}^{A} \phi \right\rangle \right|^{p/2} \right\}.$$

$$(4.8)$$

After integrating, it follows that

$$k_{1} \cdot ||(\nabla^{A})^{2} \phi||_{L^{p}}^{p} \leq ||\Delta_{A} \phi||_{L^{p}}^{p} + k_{2} \cdot ||\nabla^{A} \phi||_{L^{p}}^{p} + k_{3} \cdot ||F_{A}(\phi)||_{L^{p}}^{p} + k_{4} \cdot ||F_{A}(\nabla^{A} \phi)||_{L^{p}}^{p} + k_{5} \cdot \sum_{k,l} \int_{X} \{ |\nabla_{k}^{A} (\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \rangle) |^{p/2} \} + k_{6} \sum_{k,l} \int_{X} \{ |\nabla_{l}^{A} (\langle \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \rangle) |^{p/2} \}.$$

$$(4.9)$$

The boundedness of the right-hand side of (4.9) results from the analysis of each term.

PROPOSITION 4.1. Let $(A, \phi) \in \mathscr{C}_{\alpha}$ be a solution of equations in (1.7). If $\sigma \in L^{\infty}$, then

- (1) $\nabla^A \phi \in L^2$,
- (2) $\Delta_A \phi \in L^2$.

Proof. (1) $\nabla^A \phi \in L^2$:

$$\langle \Delta_A \phi, \phi \rangle + \left(\frac{|\phi|^2 + k_g}{4} \right) |\phi|^2 = \langle \sigma, \phi \rangle$$

$$\implies |\nabla^A \phi|^2 + \left(\frac{|\phi|^2 + k_g}{4} \right) |\phi|^2 = \langle \sigma, \phi \rangle \le \frac{1}{\epsilon^2} |\sigma|^2 + \epsilon^2 |\phi|^2.$$
(4.10)

Therefore,

$$\left| \nabla^{A} \phi \right|^{2} < \frac{1}{\epsilon^{2}} |\sigma|^{2} + \left(\epsilon^{2} - \frac{k_{g}}{4} \right) |\phi|^{2} - \frac{|\phi|^{4}}{4}. \tag{4.11}$$

From Lemma 3.4, there exists a polynomial p, with coefficients depending on (X,g) and ϵ , such that

$$\left\| \left| \nabla^{A} \phi \right| \right\|_{L^{2}}^{2} < p(\left\| \sigma \right\|_{\infty}). \tag{4.12}$$

So, $\nabla^A \phi \in L^2$.

(2) $\Delta_A \phi \in L^2$:

$$\langle \Delta_A \phi, \Delta_A \phi \rangle + \frac{|\phi|^2 + k_g}{4} \langle \phi, \Delta_A \phi \rangle = \langle \sigma, \Delta_A \phi \rangle; \tag{4.13}$$

let $0 < \epsilon < 1$,

$$\left| \Delta_{A} \phi \right|^{2} + \frac{|\phi|^{2} + k_{g}}{4} \left| \nabla^{A} \phi \right|^{2} = \left\langle \sigma, \Delta_{A} \phi \right\rangle < \frac{1}{\epsilon^{2}} |\sigma|^{2} + \epsilon^{2} \left| \Delta_{A} \phi \right|^{2},$$

$$(1 - \epsilon^{2}) \left| \Delta_{A} \phi \right|^{2} + \frac{|\phi|^{2} + k_{g}}{4} \left| \nabla^{A} \phi \right|^{2} < \frac{1}{\epsilon^{2}} |\sigma|^{2}.$$

$$(4.14)$$

By the boundedness of the term

$$\int_{Y} |\phi|^{2} \cdot |\nabla^{A}\phi|^{2} < \|\phi\|_{\infty}^{2} \cdot ||\nabla^{A}\phi||_{L^{2}}^{2}, \tag{4.15}$$

one deduces the existence of a polynomial q, with coefficients depending on ϵ and (X,g), such that

$$||\Delta_A \phi||_{L^2} < q(\|\sigma\|_{\infty}). \tag{4.16}$$

PROPOSITION 4.2. Let (A, ϕ) be solutions of the \mathcal{GW}_{α} -equations, where $(\Theta, \sigma) \in L^{1,2} \times (L^{1,2} \cap \mathbb{C})$ L^{∞}), then $F_A \in L^q$, for all $q < \infty$.

Proof. By (1.8), $\Phi^*(\nabla^A \phi) = (1/2) \nabla^A (|\phi|^2)$, and so,

$$d^*F_A + 4\Phi^*(\nabla^A \phi) = \Theta \Longrightarrow ||d^*F_A||_{L^2}^2 \le ||\phi||_{L^{1,2}}^2 + ||\Theta||_{L^2}. \tag{4.17}$$

There are two cases to be analysed.

(1) F_A is harmonic. Since the Laplacian defined on \mathfrak{u}_1 -forms is an elliptic operator, the fundamental inequality for elliptic operators asserts that there exists a constant C_k such that

$$||F_A||_{L^{k+2,2}} \le ||\Delta F_A||_{L^{k,2}} + C_k ||F_A||_{L^2}.$$
 (4.18)

Consequently, F_A being harmonic implies, for all $k \in \mathbb{N}$, that

$$||F_A||_{L^{k,2}} \le C_k ||F_A||_{L^2} \Longrightarrow F_A \in C^{\infty}.$$
 (4.19)

(2) F_A is not harmonic. In this case, since $\Theta \in L^{1,2}$, $\phi \in L^{\infty}$ and

$$\Delta_A F_A = d(\langle \phi, \nabla^A \phi \rangle) + d\Theta = \langle \phi, F_A(\phi) \rangle + d\Theta, \tag{4.20}$$

it follows that $F_A \in L^{2,2}$. Therefore, by the Sobolev embedding theorem, $F_A \in L^q$, for all $q < \infty$.

Proposition 4.3. Let (A, ϕ) be solutions of the \mathcal{GW}_{α} -equations, where $(\Theta, \sigma) \in L^{1,2} \times (L^{1,2} \cap L^{\infty})$, then $(\nabla^A)^2 \phi \in L^p$, for all 1 .

Proof. In (4.9), we must take care of the last terms.

(1) $F(\nabla^A \phi) \in L^p$, for all 1 . By Young's inequality,

$$||F(\nabla^A \phi)||_{L^p} \le ||F_A||_{L^{2p/(2-p)}} \cdot ||\nabla^A \phi||_{L^2}.$$
 (4.21)

(2) There is no contribution from the divergent terms, since

$$\int_{x} \left\{ \left| \nabla_{k}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \right\rangle \right) \right|^{p/2} \right\} \leq \left[\operatorname{vol}(X) \right]^{(2-p)/p} \int_{x} \left\{ \left| \nabla_{k}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \right\rangle \right) \right| \right\}. \quad (4.22)$$

In the same way,

$$\sum_{k,l} \int_{X} \left\{ \left| \nabla_{k}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \right\rangle \right) \right|^{p/2} \right\} = 0,$$

$$\sum_{k,l} \int_{X} \left\{ \left| \nabla_{l}^{A} \left(\left\langle \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \right\rangle \right) \right|^{p/2} \right\} = 0.$$
(4.23)

The estimates above applied to (4.9) implies that

$$||(\nabla^{A})^{2}\phi||_{L^{p}} \leq k_{1}||\Delta_{A}\phi||_{L^{p}}^{p} + k_{2}||\nabla^{A}\phi||_{L^{p}}^{p} + k_{3}||\nabla^{A}\phi||_{L^{p}}^{p} + k_{4}||F_{A}(\phi)||_{L^{p}}^{p} + k_{5}||F_{A}||_{L^{p/(2-p)}} \cdot ||\nabla^{A}\phi||_{L^{p}}^{p}.$$

$$(4.24)$$

Thus, $\phi \in L^{2,p}$, for all $1 . Considering that <math>\sigma \in L^{1,2}$, the bootstrap argument applied on (1.7) implies that $\phi \in L^{3,p}$, for every $k \ge 2$ and $1 . Hence, by Sobolev embedding theorem, <math>\phi \in C^0$.

Theorem 4.4. Let (A,ϕ) be a solution of the \mathcal{SW}_{α} -equations, where $(\Theta,\sigma) \in L^{k,2}(\Omega^1(\operatorname{ad}(\mathfrak{u}_1))) \oplus (L^{k,2}(\Gamma(\mathcal{G}^+_{\alpha})) \cap L^{\infty}(\Gamma(\mathcal{G}^+_{\alpha})))$, then $(A,\phi) \in L^{k+2,p} \times (L^{k+2,2} \cap L^{\infty})$, for all 1 . Moreover, if <math>k > 2, then $(A,\phi) \in C^r \times C^r$, for all r < k.

Proof. (1) If $\Theta \in L^{k,2}$, then by Proposition 4.2 $F_A \in L^{k+1,2}$. Consequently, by Corollary 2.2, $A \in L^{k+2,2}$.

(2) The Sobolev class of
$$\phi$$
 is obtained by the bootstrap argument.

Appendix

Estimates for solutions of 3rd-degree equation

Let $p, q \in \mathbb{R}$ and consider the equation

$$x^3 + px + q = 0. (A.1)$$

Proposition A.1. The solutions of (A.1) are given in [2] by

$$x_1 = z_1 + z_2,$$
 $x_2 = z_1 + \lambda z_2,$ $y_3 = z_1 + \lambda^2 z_2,$ (A.2)

where

$$z_1 = \sqrt[3]{-\frac{q}{2} + \sqrt[2]{D}}, \quad z_2 = \sqrt[3]{-\frac{q}{2} - \sqrt[2]{D}}, \quad D = \frac{p^3}{27} + \frac{q^2}{4},$$
 (A.3)

and $\lambda \in \mathbb{C}$ satisfies $\lambda^3 = 1$.

COROLLARY A.2. Let p and q be negative real numbers. So, the solutions of (A.1) are estimated according to the following cases:

(1) $D \ge 0$:

$$|x_i| \le \frac{8}{3} + \frac{1}{3}|q| + \frac{1}{12}q^2 + \frac{1}{81}p^3,$$
 (A.4)

(2) D < 0:

$$|x_i| \le 3 + \frac{1}{6}q^2 + \frac{1}{81}|p|^3.$$
 (A.5)

Proof. Since

$$\left|x_{i}\right| \leq \left|z_{1}\right| + \left|z_{2}\right|,\tag{A.6}$$

it is enough to estimate $|z_1|$ and $|z_2|$. The basics identities needed are the following: suppose $x \ge 0$, whence

$$\sqrt[3]{x} \le 1 + \frac{1}{2}x, \qquad \sqrt[3]{x} \le 1 + \frac{1}{3}x.$$
 (A.7)

(1) $D \ge 0$. In this case, $z_1, z_2 \in \mathbb{R}$ and

$$|z_1| = \sqrt[3]{\left|-\frac{q}{2} + \sqrt[2]{D}\right|} \le 1 + \frac{1}{3}\left|-\frac{q}{2} + \sqrt[2]{D}\right| \le \frac{4}{3} + \frac{1}{6}|q| + \frac{1}{6}D.$$
 (A.8)

Thus,

$$|z_1| \le \frac{4}{3} + \frac{1}{6}|q| + \frac{1}{24}q^2 + \frac{1}{162}p^3.$$
 (A.9)

The same estimate can be obtained for $|z_2|$. Hence,

$$\left|x_{i}\right| \leq \frac{8}{3} + \frac{1}{3}\left|q\right| + \frac{1}{12}q^{2} + \frac{1}{81}p^{3}.$$
 (A.10)

(2) $D \le 0$. In this case, $z_1, z_2 \in \mathbb{C} - \mathbb{R}$. Since $D \in \mathbb{R}$, we can write $\sqrt[2]{D} = i\sqrt[2]{|D|}$ and

$$z_1 = \sqrt[3]{-\frac{1}{2}q + i\sqrt[2]{D}}, \qquad z_2 = \sqrt[3]{-\frac{1}{2}q - i\sqrt[2]{D}}.$$
 (A.11)

Therefore,

$$|z_{i}|^{2} = \sqrt[3]{\frac{q^{2}}{4} + |D|} < 1 + \frac{1}{12}q^{2} + \frac{1}{3}|D| \le 1 + \frac{1}{6}q^{2} + \frac{1}{81}|p|^{3},$$

$$|z_{i}| < \frac{3}{2} + \frac{1}{12}q^{2} + \frac{1}{162}|p|^{3}.$$
(A.12)

Hence,

$$|x_i| < 3 + \frac{1}{6}q^2 + \frac{1}{81}|p|^3.$$
 (A.13)

References

- [1] C. M. Doria, *The homotopy type of Seiberg-Witten configuration space*, to appear in Bol. Soc. Parana. Mat. (2).
- [2] A. Gonçalves, *Introdução à Álgebra* [*Introduction to Algebra*], Projeto Euclides, vol. 7, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1979.
- [3] J. Jost, X. Peng, and G. Wang, Variational aspects of the Seiberg-Witten functional, Calc. Var. Partial Differential Equations 4 (1996), no. 3, 205–218.
- [4] H. B. Lawson Jr. and M.-L. Michelsohn, Spin Geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, New Jersey, 1989.
- [5] A. Marini, Dirichlet and Neumann boundary value problems for Yang-Mills connections, Comm. Pure Appl. Math. 45 (1992), no. 8, 1015–1050.
- [6] D. Salamon, Morse theory, the Conley index and Floer homology, Bull. London Math. Soc. 22 (1990), no. 2, 113–140.
- [7] K. K. Uhlenbeck, Connections with L^p bounds on curvature, Comm. Math. Phys. 83 (1982), no. 1, 31–42.
- [8] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769–796.

Celso Melchiades Doria: Departamento de Matemática, Universidade Federal de Santa Catarina, Campus Universitario, Trindade, 88040900 Florianópolis - SC, Brazil

E-mail address: cmdoria@mtm.ufsc.br