BOUNDARY VALUE PROBLEMS FOR THE 2ND-ORDER SEIBERG-WITTEN EQUATIONS

CELSO MELCHIADES DORIA

Received 8 June 2004

It is shown that the nonhomogeneous Dirichlet and Neuman problems for the 2nd-order Seiberg-Witten equation on a compact 4-manifold X admit a regular solution once the nonhomogeneous Palais-Smale condition \mathscr{H} is satisfied. The approach consists in applying the elliptic techniques to the variational setting of the Seiberg-Witten equation. The gauge invariance of the functional allows to restrict the problem to the Coulomb subspace $\mathscr{C}_{\alpha}^{\mathfrak{C}}$ of configuration space. The coercivity of the $\mathscr{S}^{\mathscr{Q}} \mathscr{W}_{\alpha}$-functional, when restricted into the Coulomb subspace, imply the existence of a weak solution. The regularity then follows from the boundedness of L^{∞}-norms of spinor solutions and the gauge fixing lemma.

1. Introduction

Let X be a compact smooth 4 -manifold with nonempty boundary. In our context, the Seiberg-Witten equations are the 2nd-order Euler-Lagrange equation of the functional defined in Definition 2.3. When the boundary is empty, their variational aspects were first studied in [3] and the topological ones in [1]. Thus, the main aim here is to obtain the existence of a solution to the nonhomogeneous equations whenever $\partial X \neq \varnothing$. The nonemptiness of the boundary inflicts boundary conditions on the problem. Classically, this sort of problem is classified according to its boundary conditions in Dirichlet problem (D) or Neumann problem (\mathcal{N}).

Originally, the Seiberg-Witten equations were described in [8] as a pair of 1st-order PDE. The solutions of these equations were known as $\mathscr{S}^{Q} W_{\alpha}$-monopoles, and their main achievement were to shed light on the understanding of the 4 -dimensional differential topology, since new smooth invariants were defined by the topology of their moduli space of solutions (moduli gauge group). In the same article, Witten introduced a variational formulation for the equations and showed that its stable critical points turn out to be exactly the $\mathscr{S}^{\mathscr{Q}} \mathbb{W}_{\alpha}$-monopoles. The variational aspects of the $\mathscr{S}^{\mathscr{Q}} \mathbb{W}_{\alpha}$-equations were first explored in [3], where they proved that the functional satisfies the Palais-Smale condition and the solutions of the Euler-Lagrange (2nd-order) equations share the same important analytical properties as the $\mathscr{S}^{9} W_{\alpha}$-monopoles. Therefore, it is natural to ask if the equations fit into a Morse-Bott-Smale theory, where the lower number of critical points
is the Betti number of the configuration space. The topology of the configuration space was described in [1]. Besides, if the SW-theory is a Morse theory, another natural question is to argue about the existence of a Morse-Smale-Witten complex, as in [6]. In the last question, the $\mathscr{S}^{9} W_{\alpha}$-equations on manifolds endowed with tubular ends or boundary also demand attention. The analogy of the $\mathscr{S}_{\mathscr{W}} W_{\alpha}$-equation's variational formulation, with the variational principle of the Ginzburg-Landau equation in superconductivity, further motivates the present study.
1.1. Spin c structure. The space of Spin^{c} structures on X is identified with

$$
\begin{equation*}
\operatorname{Spin}^{c}(X)=\left\{\alpha+\beta \in H^{2}(X, \mathbb{Z}) \oplus H^{1}\left(X, \mathbb{Z}_{2}\right) \mid w_{2}(X)=\alpha(\bmod 2)\right\} . \tag{1.1}
\end{equation*}
$$

For each $\alpha \in \operatorname{Spin}^{c}(X)$, there is a representation $\rho_{\alpha}: \mathrm{SO}_{4} \rightarrow \mathbb{C l}_{4}$, induced by a Spin ${ }^{c}$ representation, and a pair of vector bundles $\left(\mathscr{S}_{\alpha}^{+}, \mathscr{L}_{\alpha}\right)$ over X (see [4]). Let $P_{\mathrm{SO}_{4}}$ be the frame bundle of X, so
(i) $\mathscr{S}_{\alpha}=P_{\mathrm{SO}_{4}} \times_{\rho_{\alpha}} V=\mathscr{S}_{\alpha}^{+} \oplus \mathscr{S}_{\alpha}^{-}$. The bundle \mathscr{S}_{α}^{+}is the positive complex spinors bundle (fibers are Spin_{4}^{c}-modules isomorphic to \mathbb{C}^{2}),
(ii) $\mathscr{L}_{\alpha}=P_{\mathrm{SO}_{4}} \times \operatorname{det}(\alpha) \mathbb{C}$. It is called the determinant line bundle associated to the Spin ${ }^{c}$-structure $\alpha \cdot\left(c_{1}\left(\mathscr{L}_{\alpha}\right)=\alpha\right)$.
Thus, for each $\alpha \in \operatorname{Spin}^{c}(X)$, we associate a pair of bundles

$$
\begin{equation*}
\alpha \in \operatorname{Spin}^{c}(X) \rightsquigarrow\left(\mathscr{L}_{\alpha}, \mathscr{S}_{\alpha}^{+}\right) . \tag{1.2}
\end{equation*}
$$

From now on, we considered on X a Riemannian metric g and on \mathscr{S}_{α} a Hermitian structure h.

Let P_{α} be the U_{1}-principal bundle over X obtained as the frame bundle of $\mathscr{L}_{\alpha}\left(c_{1}\left(P_{\alpha}\right)=\right.$ α). Also, we consider the adjoint bundles

$$
\begin{equation*}
\operatorname{Ad}\left(U_{1}\right)=P_{U_{1}} \times_{\mathrm{Ad}} U_{1}, \quad \operatorname{ad}\left(\mathfrak{u}_{1}\right)=P_{U_{1}} \times_{\mathrm{ad}} \mathfrak{u}_{1} \tag{1.3}
\end{equation*}
$$

where $\operatorname{Ad}\left(U_{1}\right)$ is a fiber bundle with fiber U_{1}, and $\operatorname{ad}\left(\mathfrak{u}_{1}\right)$ is a vector bundle with fiber isomorphic to the Lie algebra \mathfrak{u}_{1}.
1.2. The main theorem. Let \mathscr{A}_{α} be (formally) the space of connections (covariant derivative) on $\mathscr{L}_{\alpha}, \Gamma\left(\mathscr{S}_{\alpha}^{+}\right)$the space of sections of \mathscr{S}_{α}^{+}, and $\mathscr{G}_{\alpha}=\Gamma\left(\operatorname{Ad}\left(U_{1}\right)\right)$ the gauge group acting on $\mathscr{A}_{\alpha} \times \Gamma\left(\mathscr{Y}_{\alpha}^{+}\right)$as follows:

$$
\begin{equation*}
g \cdot(A, \phi)=\left(A+g^{-1} d g, g^{-1} \phi\right) . \tag{1.4}
\end{equation*}
$$

\mathscr{A}_{α} is an affine space with vector space structure, after fixing an origin, isomorphic to the space $\Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)$ of $\operatorname{ad}\left(\mathfrak{u}_{1}\right)$-valued 1-forms. Once a connection $\nabla^{0} \in \mathscr{A}_{\alpha}$ is fixed, a bijection $\mathscr{A}_{\alpha} \leftrightarrow \Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)$ is exposed by $\nabla^{A} \leftrightarrow A$, where $\nabla^{A}=\nabla^{0}+A$. $\mathscr{G}_{\alpha}=\operatorname{Map}\left(X, U_{1}\right)$, since $\operatorname{Ad}\left(U_{1}\right) \simeq X \times U_{1}$. The curvature of a 1-connection form $A \in \Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)$ is the 2form $F_{A}=d A \in \Omega^{2}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)$.

Definition 1.1. (1) The configuration space of the \mathscr{D}-problem is

$$
\begin{equation*}
\mathscr{C}_{\alpha}^{\mathscr{D}}=\left\{(A, \phi) \in \mathscr{A}_{\alpha} \times \Gamma\left(\mathscr{S}_{\alpha}^{+}\right)|(A, \phi)| Y \stackrel{\text { gauge }}{\sim}\left(A_{0}, \phi_{0}\right)\right\}, \tag{1.5}
\end{equation*}
$$

(2) the configuration space of the \mathcal{N}-problem is

$$
\begin{equation*}
\mathscr{C}_{\alpha}^{\mathcal{N}}=\mathscr{A}_{\alpha} \times \Gamma\left(\mathscr{Y}_{\alpha}^{+}\right) . \tag{1.6}
\end{equation*}
$$

Although each boundary problem requires its own configuration space, the superscripts \mathscr{D} and \mathcal{N} will be used whenever the distinction is necessary, since most arguments work for both sort of problems. The gauge group $\mathscr{\varphi}_{\alpha}$ action on each of the configuration spaces is given by (1.4).

The Dirichlet (\mathscr{D}) and Neumann (\mathcal{N}) boundary value problems associated to the $\mathscr{S}^{\mathscr{Q}} \mathscr{W}_{\alpha}$-equations are the following: we consider $(\Theta, \sigma) \in \Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right) \oplus \Gamma\left(\mathscr{Y}_{\alpha}^{+}\right)$and $\left(A_{0}, \phi_{0}\right)$ defined on the manifold $\partial X\left(A_{0}\right.$ is a connection on $\left.\mathscr{L}_{\alpha}\right|_{\partial X}, \phi_{0}$ is a section of $\left.\Gamma\left(\left.\mathscr{C}_{\alpha}^{+}\right|_{\partial X}\right)\right)$. In this way, find $(A, \phi) \in \mathscr{C}_{\alpha}^{\mathscr{D}}$ satisfying \mathscr{D} and $(A, \phi) \in \mathscr{C}_{\alpha}^{\mathcal{N}}$ satisfying \mathcal{N}, where

$$
\mathscr{D}=\left\{\begin{array}{l}
d^{*} F_{A}+4 \Phi^{*}\left(\nabla^{A} \phi\right)=\Theta, \tag{1}\\
\Delta_{A} \phi+\frac{\left(|\phi|^{2}+k_{g}\right)}{4} \phi=\sigma, \\
(A, \phi) \mid \partial X \stackrel{\text { gauge }}{\sim}\left(A_{0}, \phi_{0}\right),
\end{array} \quad \mathcal{N}=\left\{\begin{array}{l}
d^{*} F_{A}+4 \Phi^{*}\left(\nabla^{A} \phi\right)=\Theta \\
\Delta_{A} \phi+\frac{\left(|\phi|^{2}+k_{g}\right)}{4} \phi=\sigma \\
i^{*}\left(* F_{A}\right)=0, \quad \nabla_{\nu}^{A} \phi=0
\end{array}\right.\right.
$$

(2) the operator $\Phi^{*}: \Omega^{1}\left(Y_{\alpha}^{+}\right) \rightarrow \Omega^{1}\left(\mathfrak{u}_{1}\right)$ is locally given by

$$
\begin{equation*}
\Phi^{*}\left(\nabla^{A} \phi\right)=\frac{1}{2} \nabla^{A}\left(|\phi|^{2}\right)=\sum_{i}\left\langle\nabla_{i}^{A} \phi, \phi\right\rangle \eta_{i} \tag{1.8}
\end{equation*}
$$

and $\eta=\left\{\eta_{i}\right\}$ is an orthonormal frame in $\Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)$,
(3) $i^{*}\left(* F_{A}\right)=F_{4}$, where $F_{4}=\left(F_{14}, F_{24}, F_{34}, 0\right)$ is the local representation of the 4 th component (normal to ∂X) of the 2 -form of curvature in the local chart (x, U) of $X ; x(U)=\left\{x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} ;\|x\|<\epsilon, x_{4} \geq 0\right\}$, and $x(U \cap \partial X) \subset\{x \in$ $\left.x(U) \mid x_{4}=0\right\}$. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the canonical base of \mathbb{R}^{4}, so $\nu=-e_{4}$ is the normal vector field along ∂X.

Theorem 1.2 (main theorem). If the pair $(\Theta, \sigma) \in L^{k, 2} \oplus\left(L^{k, 2} \cap L^{\infty}\right)$ satisfies the \mathscr{H} Condition 3.1, then the problems \mathscr{D} and \mathcal{N} admit a C^{r}-regular solution (A, ϕ), whenever $2<k$ and $r<k$.

2. Basic set up

2.1. Sobolev spaces. As a vector bundle E over (X, g) is endowed with a metric and a covariant derivative ∇, we define the Sobolev norm of a section $\phi \in \Omega^{0}(E)$ as

$$
\begin{equation*}
\|\phi\|_{L^{k, p}}=\sum_{|i|=0}^{k}\left(\int_{X}\left|\nabla^{i} \phi\right|^{p}\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

In this way, the $L^{k, p-S o b o l e v}$ Spaces of sections of E is defined as

$$
\begin{equation*}
L^{k, p}(E)=\left\{\phi \in \Omega^{0}(E) \mid\|\phi\|_{L^{k, p}}<\infty\right\} . \tag{2.2}
\end{equation*}
$$

In our context, in which we fixed a connection ∇^{0} on \mathscr{L}_{α}, a metric g on X, and a Hermitian structure on \mathscr{S}_{α}, the Sobolev spaces on which the basic setting is made are the following:
(i) $\mathscr{A}_{\alpha}=L^{1,2}\left(\Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)\right)$;
(ii) $\Gamma\left(\mathscr{S}_{\alpha}^{+}\right)=L^{1,2}\left(\Omega^{0}\left(X, \mathscr{S}_{\alpha}^{+}\right)\right)$;
(iii) $\mathscr{C}_{\alpha}=\mathscr{A}_{\alpha} \times \Gamma\left(\mathscr{S}_{\alpha}^{+}\right)$;
(iv) $\mathscr{G}_{\alpha}=L^{2,2}\left(X, U_{1}\right)=L^{2,2}\left(\operatorname{Map}\left(X, U_{1}\right)\right)$. (\mathscr{G}_{α} is an ∞-dimensional Lie group with Lie algebra $\left.\mathfrak{g}=L^{1,2}\left(X, \mathfrak{u}_{1}\right)\right)$.

The above Sobolev spaces induce a Sobolev structure on $\mathscr{C}_{\alpha}^{\mathscr{D}}$ and on $\mathscr{C}_{\alpha}^{\mathcal{N}}$. From now on, the configuration spaces will be denoted by \mathscr{C}_{α} by ignoring the superscripts, unless needed.

The most basic analytical results needed to achieve the main result is the gauge fixing lemma (see [7]) and the estimate (2.3), both extended by Marini [5] to manifolds with boundary.
Lemma 2.1 (gauge fixing lemma). Every connection $\hat{A} \in \mathscr{A}_{\alpha}$ is gauge equivalent, by a gauge transformation $g \in \mathscr{G}_{\alpha}$ named Coulomb (\mathfrak{C}) gauge, to a connection $A \in \mathscr{A}_{\alpha}$ satisfying
(1) $d_{\tau}^{* f} A_{\tau}=0$ on ∂X,
(2) $d^{*} A=0$ on X,
(3) in the \mathcal{N}-problem, the connection A satisfies $A_{\nu}=0(\nu \perp \partial X)$.

Corollary 2.2. Under the hypothesis of Lemma 2.1, there exists a constant $K>0$ such that the connection A, gauge equivalent to \widehat{A} by the Coulomb gauge, satisfies the following estimates:

$$
\begin{equation*}
\|A\|_{L^{1, p}} \leq K \cdot\left\|F_{A}\right\|_{L^{p}} \tag{2.3}
\end{equation*}
$$

Notation. $*_{f}$ is the Hodge operator in the flat metric and the index τ denotes tangential components.
2.2. Variational formulation. A global formulation for problems \mathscr{D} and \mathcal{N} is made using the Seiberg-Witten functional.
Definition 2.3. Let $\alpha \in \operatorname{Spin}^{c}(X)$. The Seiberg-Witten functional $\mathscr{S}^{\mathscr{C}} W_{\alpha}: \mathscr{C}_{\alpha} \rightarrow \mathbb{R}$ is defined as

$$
\begin{equation*}
\mathscr{S} \mathscr{W}_{\alpha}(A, \phi)=\int_{X}\left\{\frac{1}{4}\left|F_{A}\right|^{2}+\left|\nabla^{A} \phi\right|^{2}+\frac{1}{8}|\phi|^{4}+\frac{k_{g}}{4}|\phi|^{2}\right\} d v_{g}+\pi^{2} \alpha^{2} \tag{2.4}
\end{equation*}
$$

where $k_{g}=$ scalar curvature of (X, g).

Remark 2.4. The \mathscr{G}_{α}-action on \mathscr{C}_{α} has the following properties:
(1) the $\mathscr{S}^{\mathscr{Q}} W_{\alpha}$-functional is \mathscr{G}_{α}-invariant,
(2) the \mathscr{G}_{α}-action on \mathscr{C}_{α} induces on $T \mathscr{C}_{\alpha}$ a \mathscr{G}_{α}-action as follows: let $(\Lambda, V) \in T_{(A, \phi)} \mathscr{C}_{\alpha}$ and $g \in \mathscr{G}_{\alpha}$,

$$
\begin{equation*}
g \cdot(\Lambda, V)=\left(\Lambda, g^{-1} V\right) \in T_{g \cdot(A, \phi)} \mathscr{C}_{\alpha} \tag{2.5}
\end{equation*}
$$

Consequently, $d\left(\mathscr{S}^{9} W_{\alpha}\right)_{g \cdot(A, \phi)}(g \cdot(\Lambda, V))=d\left(\mathscr{S}^{\mathscr{W}} W_{\alpha}\right)_{(A, \phi)}(\Lambda, V)$.
The tangent bundle $T \mathscr{C}_{\alpha}$ decomposes as

$$
\begin{equation*}
T \mathscr{C}_{\alpha}=\Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right) \oplus \Gamma\left(\mathscr{S}_{\alpha}^{+}\right) . \tag{2.6}
\end{equation*}
$$

In this way, the 1 -form $d \mathscr{S}^{Q} W_{\alpha} \in \Omega^{1}\left(\mathscr{C}_{\alpha}\right)$ admits a decomposition $d \mathscr{S}^{\mathscr{Q}} W_{\alpha}=d_{1} \mathscr{S}^{\mathscr{Q}} W_{\alpha}+$ $d_{2} \mathscr{S}^{9} W_{\alpha}$, where

$$
\begin{align*}
& d_{1}\left(\mathscr{S}^{Q} W_{\alpha}\right)_{(A, \phi)}: \Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right) \longrightarrow \mathbb{R}, \quad d_{1}\left(\mathscr{S}^{Q} W_{\alpha}\right)_{(A, \phi)} \cdot \Lambda=d\left(\mathscr{S}^{Q} W_{\alpha}\right)_{(A, \phi)} \cdot(\Lambda, 0), \\
& d_{2}\left(\mathscr{T} W_{\alpha}\right)_{(A, \phi)}: \Gamma\left(\mathscr{S}_{\alpha}^{+}\right) \longrightarrow \mathbb{R}, \quad d_{2}\left(\mathscr{S}^{\mathscr{W}} W_{\alpha}\right)_{(A, \phi)} \cdot V=d\left(\mathscr{S}^{\mathscr{W}} W_{\alpha}\right)_{(A, \phi)} \cdot(0, V) . \tag{2.7}
\end{align*}
$$

By performing the computations, we get
(1) for every $\Lambda \in \mathscr{A}_{\alpha}$,

$$
\begin{equation*}
d_{1}\left(\mathscr{P}^{\mathscr{W}} W_{\alpha}\right)_{(A, \phi)} \cdot \Lambda=\frac{1}{4} \int_{X} \operatorname{Re}\left\{\left\langle F_{A}, d_{A} \Lambda\right\rangle+4\left\langle\nabla^{A}(\phi), \Phi(\Lambda)\right\rangle\right\} d x, \tag{2.8}
\end{equation*}
$$

where $\Phi: \Omega^{1}\left(\mathfrak{u}_{1}\right) \rightarrow \Omega^{1}\left(\mathcal{S}_{\alpha}^{+}\right)$is the linear operator $\Phi(\Lambda)=\Lambda(\phi)$, with dual defined in (1.8),
(2) for every $V \in \Gamma\left(\mathscr{S}_{\alpha}^{+}\right)$,

$$
\begin{equation*}
d_{2}\left(\mathscr{S}^{\circ} W_{\alpha}\right)_{(A, \phi)} \cdot V=\int_{X} \operatorname{Re}\left\{\left\langle\nabla^{A} \phi, \nabla^{A} V\right\rangle+\left\langle\frac{|\phi|^{2}+k_{g}}{4} \phi, V\right\rangle\right\} d x \tag{2.9}
\end{equation*}
$$

Therefore, by taking $\operatorname{supp}(\Lambda) \subset \operatorname{int}(X)$ and $\operatorname{supp}(V) \subset \operatorname{int}(X)$, we restrict to the interior of X, and so, the gradient of the $\mathscr{S}^{\mathscr{Q}} W_{\alpha}$-functional at $(A, \phi) \in \mathscr{C}_{\alpha}$ is

$$
\begin{equation*}
\operatorname{grad}\left(\mathscr{S}^{\mathscr{W}} W_{\alpha}\right)(A, \phi)=\left(d_{A}^{*} F_{A}+4 \Phi^{*}\left(\nabla^{A} \phi\right), \triangle_{A} \phi+\frac{|\phi|^{2}+k_{g}}{4} \phi\right) \tag{2.10}
\end{equation*}
$$

It follows from the \mathscr{G}_{α}-action on $T \mathscr{C}_{\alpha}$ that

$$
\begin{equation*}
\operatorname{grad}\left(\mathscr{C}^{\mathscr{W}} W_{\alpha}\right)(g \cdot(A, \phi))=\left(d_{A}^{*} F_{A}+4 \Phi^{*}\left(\nabla^{A} \phi\right), g^{-1} \cdot\left(\triangle_{A} \phi+\frac{|\phi|^{2}+k_{g}}{4} \phi\right)\right) \tag{2.11}
\end{equation*}
$$

An important analytical aspect of the $\mathscr{S}^{\mathscr{C}} \mathscr{W}_{\alpha}$-functional is the coercivity lemma proved in [3].

Lemma 2.5 (coercivity). For each $(A, \phi) \in \mathscr{C}_{\alpha}$, there exist $g \in \mathscr{G}_{\alpha}$ and a constant $K_{C}^{(A, \phi)}>0$, where $K_{C}^{(A, \phi)}$ depends on (X, g) and $\mathscr{S}^{Q} W_{\alpha}(A, \phi)$, such that

$$
\begin{equation*}
\|g \cdot(A, \phi)\|_{L^{1,2}}<K_{C}^{(A, \phi)} \tag{2.12}
\end{equation*}
$$

Proof (see [3, Lemma 2.3]). The gauge transform is the Coulomb one given in the Lemma 2.1.

Considering the gauge invariance of the $\mathscr{S}^{\mathscr{W}} \mathbb{W}_{\alpha}$-theory, and the fact that the gauge group \mathscr{G}_{α} is an infinite-dimensional Lie group, we cannot hope to handle the problem in general. From now on, we need to restrict the problem to the space, named Coulomb subspace,

$$
\begin{equation*}
\mathscr{C}_{\alpha}^{\mathfrak{C}}=\left\{(A, \phi) \in \mathscr{C}_{\alpha} ;\|(A, \phi)\|_{L^{1,2}}<K_{\mathbb{C}}^{(A, \phi)}\right\} . \tag{2.13}
\end{equation*}
$$

The superscripts \mathscr{D} and \mathcal{N} have been omitted here for simplicity, although each one should be taken in account according to the problem. These choices of spaces come from the nature of the \mathscr{G}_{α} action on \mathscr{C}_{α}, they are suggested by the gauge fixing lemma and the coercivity lemma (not shared by an actions in general).

3. Existence of a solution

3.1. Nonhomogeneous Palais-Smale condition - H. In the variational formulation, the problems \mathscr{D} and $\mathcal{N}(1.7)$ are written as

$$
\begin{align*}
& (\mathscr{D})=\left\{\begin{array}{l}
\operatorname{grad}\left(\mathscr{S}^{\mathscr{W}} \mathcal{W}_{\alpha}\right)(A, \phi)=(\Theta, \sigma), \\
\left.(A, \phi)\right|_{\partial X} \stackrel{\text { gauge }}{\sim}\left(A_{0}, \phi_{0}\right),
\end{array}\right. \tag{3.1}\\
& (\mathcal{N})=\left\{\begin{array}{l}
\operatorname{grad}\left(\mathscr{S}^{\top} W_{\alpha}\right)(A, \phi)=(\Theta, \sigma), \\
i^{*}\left(* F_{A}\right)=0, \quad \nabla_{n}^{A} \phi=0 .
\end{array}\right.
\end{align*}
$$

The equations in (1.7) may not admit a solution for any pair $(\Theta, \sigma) \in \Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right) \oplus$ $\Gamma\left(\mathscr{S}_{\alpha}^{+}\right)$. In finite dimension, if we consider a function $f: X \rightarrow \mathbb{R}$, the analogous question would be to find a point $p \in X$ such that, for a fixed vector $u, \operatorname{grad}(f)(p)=u$. This question is more subtle if f is invariant under a Lie group action on X. Therefore, we need a hypothesis about the pair $(\Theta, \sigma) \in \Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right) \oplus \Gamma\left(\mathscr{O}_{\alpha}^{+}\right)$.

Condition $3.1(\mathcal{H})$. Let $(\Theta, \sigma) \in L^{1,2}\left(\Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)\right) \oplus\left(L^{1,2}\left(\Gamma\left(\mathscr{S}_{\alpha}^{+}\right)\right) \cap L^{\infty}\left(\Gamma\left(\mathscr{S}_{\alpha}^{+}\right)\right)\right)$be a pair such that there exists a sequence $\left\{\left(A_{n}, \phi_{n}\right)\right\}_{n \in \mathbb{Z}} \subset \mathscr{C}_{\alpha}^{\mathfrak{C}}(2.13)$ with the following properties:
(1) $\left\{\left(A_{n}, \phi_{n}\right)\right\}_{n \in \mathbb{Z}} \subset L^{1,2}\left(\mathscr{A}_{\alpha}\right) \times\left(L^{1,2}\left(\Gamma\left(\mathscr{S}_{\alpha}^{+}\right)\right) \cup L^{\infty}\left(\Gamma\left(\mathscr{S}_{\alpha}^{+}\right)\right)\right)$and there exists a constant $c_{\infty}>0$ such that, for all $n \in \mathbb{Z},\left\|\phi_{n}\right\|_{\infty}<c_{\infty}$,
(2) there exists $c \in \mathbb{R}$ such that, for all $n \in \mathbb{Z}, \mathscr{S}^{\mathscr{W}} W_{\alpha}\left(A_{n}, \phi_{n}\right)<c$,
(3) the sequence $\left\{d\left(\mathscr{S}^{\mathscr{Q}} \mathscr{W}_{\alpha}\right)_{\left(A_{n}, \phi_{n}\right)}\right\}_{n \in \mathbb{Z}} \subset\left(L^{1,2}\left(\Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)\right) \oplus L^{1,2}\left(\Gamma\left(\mathscr{S}_{\alpha}^{+}\right)\right)\right)^{*}$, of linear functionals, converges weakly to

$$
\begin{equation*}
L_{\Theta}+L_{\sigma}: T \mathscr{C}_{\alpha} \longrightarrow \mathbb{R} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{\Theta}(\Lambda)=\int_{X}\langle\Theta, \Lambda\rangle, \quad L_{\sigma}(V)=\int_{X}\langle\sigma, V\rangle \tag{3.3}
\end{equation*}
$$

3.2. Strong convergence of $\left\{\left(A_{n}, \phi_{n}\right)\right\}_{n \in \mathbb{Z}}$ in $L^{1,2}$. As a consequence of Lemma 2.5, the sequence $\left\{\left(A_{n}, \phi_{n}\right)\right\}_{n \in \mathbb{Z}}$ given by the \mathscr{H}-condition converges to a pair (A, ϕ);
(1) weakly in \mathscr{C}_{α},
(2) weakly in $L^{4}\left(\mathscr{A}_{\alpha} \times \Gamma\left(\mathscr{S}_{\alpha}^{+}\right)\right)$,
(3) strongly in $L^{p}\left(\mathscr{A}_{\alpha} \times \Gamma\left(\mathscr{S}_{\alpha}^{+}\right)\right)$, for every $p<4$.

Remark 3.2. Let $\left\{A_{n}\right\}_{n \in \mathbb{N}} \subset L^{2}$ be a converging sequence in L^{2} satisfying $d^{*} A_{n}=0$, for all $n \in \mathbb{N}$, and let $A=\lim _{n \rightarrow \infty} A_{n} \in L^{2}$. So, $d^{*} A=0$, once

$$
\begin{equation*}
\left|\left\langle d^{*} A, \rho\right\rangle\right| \leq\left|A-A_{n}\right|_{L^{2}} \cdot|d \rho|_{L^{2}}, \tag{3.4}
\end{equation*}
$$

for all $\rho \in \Omega^{0}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)$.
Theorem 3.3. The limit $(A, \phi) \in L^{2}\left(\mathscr{A}_{\alpha} \times \Gamma\left(\mathscr{Y}_{\alpha}^{+}\right)\right)$, obtained as a limit of the sequence $\left\{\left(A_{n}, \phi_{n}\right)\right\}_{n \in \mathbb{Z}}$, is a weak solution of (1.7).

Proof. The proof goes along the same lines as in the 2nd step in the proof of the compactness theorem in [3].
(1) For every $\Lambda \in \mathscr{A}_{\alpha}$,

$$
\begin{align*}
d_{1}\left(\mathscr{S}^{2} W_{\alpha}\right)_{\left(A_{n}, \phi_{n}\right)} \cdot \Lambda= & \frac{1}{4} \int_{X} \operatorname{Re}\left\{\left\langle F_{A_{n}}, d_{A_{n}} \Lambda\right\rangle+4\left\langle\nabla^{A_{n}}\left(\phi_{n}\right), \Phi(\Lambda)\right\rangle\right\} d x \tag{3.5}\\
& +\int_{\partial X} \operatorname{Re}\left\{\Lambda \Lambda * F_{A_{n}}\right\},
\end{align*}
$$

where
(a) $\Phi: \Omega^{1}\left(\mathfrak{u}_{1}\right) \rightarrow \Omega^{1}\left(\mathscr{S}_{\alpha}^{+}\right)$is the linear operator $\Phi(\Lambda)=\Lambda(\phi)$; its dual is defined in (1.8). Assuming $\phi \in L^{\infty}$ (Lemma 3.4), it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{1}\left(\mathscr{S}^{\mathscr{W}} W_{\alpha}\right)_{\left(A_{n}, \phi_{n}\right)} \cdot \Lambda=d_{1}\left(\mathscr{S}^{Q} W_{\alpha}\right)_{(A, \phi)} \cdot \Lambda . \tag{3.6}
\end{equation*}
$$

Therefore, $d_{1}\left(\mathscr{S}^{Q} W_{\alpha}\right)_{(A, \phi)} \cdot \Lambda=\int_{X}\langle\Theta, \Lambda\rangle$,
(b) $\Lambda \wedge * F_{A}=-\left\langle\Lambda, F_{4}\right\rangle d x_{1} \wedge d x_{2} \wedge d x_{3}$. Since the above equation is true for all Λ, let $\operatorname{supp}(\Lambda) \subset \partial X$, so $F_{4}=0\left(\Rightarrow i^{*}\left(* F_{A}\right)=0\right)$.
(2) For every $V \in \Gamma\left(\mathscr{S}_{\alpha}^{+}\right)$,

$$
\begin{align*}
d_{2}\left(\mathscr{C}^{Q} W_{\alpha}\right)_{\left(A_{n}, \phi_{n}\right)} \cdot V= & \int_{X} \operatorname{Re}\left\{\left\langle\nabla^{A_{n}} \phi_{n}, \nabla^{A_{n}} V\right\rangle+\left\langle\frac{\left|\phi_{n}\right|^{2}+k_{g}}{4} \phi_{n}, V\right\rangle\right\} d x \tag{3.7}\\
& +\int_{\partial X} \operatorname{Re}\left\{\left\langle\nabla_{\nu}^{A_{n}} \phi_{n}, V\right\rangle\right\} .
\end{align*}
$$

Analogously, it follows that (A, ϕ) is a weak solution of the equation

$$
\begin{equation*}
d_{2}\left(\mathscr{S}^{\mathscr{W}} W_{\alpha}\right)_{(A, \phi)} \cdot V=\int_{X}\langle\sigma, V\rangle \tag{3.8}
\end{equation*}
$$

So, in the \mathcal{N}-problem, $\nabla_{\nu}^{A} \phi=0$.
In order to pursue the strong $L^{1,2}$-convergence for the sequence $\left\{\left(A_{n}, \phi_{n}\right)\right\}_{n \in \mathbb{Z}}$, we obtain in the following an upper bound for $\|\phi\|_{L^{\infty}}$, whenever (A, ϕ) is a weak solution.
Lemma 3.4. Let (A, ϕ) be a solution of either \mathscr{D} or \mathcal{N} in (1.7), so the following hold.
(1) If $\sigma=0$, then there exists a constant $k_{X, g}$, depending on the Riemannian metric on X, such that

$$
\begin{equation*}
\|\phi\|_{\infty}<k_{X, g} \operatorname{vol}(X) \tag{3.9}
\end{equation*}
$$

(2) If $\sigma \neq 0$, then there exist constant $c_{1}=c_{1}(X, g)$ and $c_{2}=c_{2}(X, g)$ such that

$$
\begin{equation*}
\|\phi\|_{L^{p}}<c_{1}+c_{2}\|\sigma\|_{L^{3 p}}^{3} . \tag{3.10}
\end{equation*}
$$

In particular, if $\sigma \in L^{\infty}$, then $\phi \in L^{\infty}$.
Proof. Fix $r \in \mathbb{R}$ and suppose that there is a ball $B_{r^{-1}}\left(x_{0}\right)$, around the point $x_{0} \in X$, such that

$$
\begin{equation*}
|\phi(x)|>r, \quad \forall x \in B_{r^{-1}}\left(x_{0}\right) . \tag{3.11}
\end{equation*}
$$

Define

$$
\eta= \begin{cases}\left(1-\frac{r}{|\phi|}\right) \phi & \text { if } x \in B_{r^{-1}}\left(x_{0}\right) \tag{3.12}\\ 0 & \text { if } x \in X-B_{r^{-1}}\left(x_{0}\right)\end{cases}
$$

So,

$$
\begin{gather*}
|\eta| \leq|\phi|, \\
\nabla \eta=r \frac{\langle\phi, \nabla \phi\rangle}{|\phi|^{3}} \phi+\left(1-\frac{r}{|\phi|}\right) \nabla \phi \\
\Longrightarrow|\nabla \eta|^{2}=r^{2} \frac{\langle\phi, \nabla \phi\rangle^{2}}{|\phi|^{4}}+2 r\left(1-\frac{r}{|\phi|}\right) \frac{\langle\phi, \nabla \phi\rangle^{2}}{|\phi|^{3}}+\left(1-\frac{r}{|\phi|}\right)^{2}|\nabla \phi|^{2} \tag{3.13}\\
\Longrightarrow|\nabla \eta|^{2}<r^{2} \frac{|\nabla \phi|^{2}}{|\phi|^{2}}+2 r\left(1-\frac{r}{|\phi|}\right) \frac{|\nabla \phi|^{2}}{|\phi|}+\left(1-\frac{r}{|\phi|}\right)^{2}|\nabla \phi|^{2} .
\end{gather*}
$$

Since $r<|\phi|$,

$$
\begin{equation*}
|\nabla \eta|^{2}<4|\nabla \phi|^{2} . \tag{3.14}
\end{equation*}
$$

Hence, by (3.13) and (3.14), $\eta \in L^{1,2}$. The directional derivative of $\mathscr{S}^{\alpha} W_{\alpha}$ in direction η is given by

$$
\begin{equation*}
d\left(\mathscr{P}^{\alpha} W_{\alpha}\right)_{(A, \phi)}(0, \eta)=\int_{X}\left[\left\langle\nabla^{A} \phi, \nabla^{A} \eta\right\rangle+\frac{|\phi|^{2}+k_{g}}{4}|\phi|(|\phi|-r)\right] . \tag{3.15}
\end{equation*}
$$

By (2.9),

$$
\begin{equation*}
\int_{X}\left[\left\langle\nabla^{A} \phi, \nabla^{A} \eta\right\rangle+\frac{|\phi|^{2}+k_{g}}{4}|\phi|(|\phi|-r)\right]=\int_{X}\left\langle\sigma,\left(1-\frac{r}{|\phi|}\right) \phi\right\rangle . \tag{3.16}
\end{equation*}
$$

However,

$$
\begin{equation*}
\int_{X}\left\langle\nabla^{A} \phi, \nabla^{A} \eta\right\rangle=\int_{X}\left[r \frac{\left\langle\phi, \nabla^{A} \phi\right\rangle^{2}}{|\phi|^{3}}+\left(1-\frac{r}{|\phi|}\right)|\nabla \phi|^{2}\right]>0 . \tag{3.17}
\end{equation*}
$$

So,

$$
\begin{equation*}
\int_{X} \frac{|\phi|^{2}+k_{g}}{4}|\phi|(|\phi|-r)<\int_{X}\left\langle\sigma,\left(1-\frac{r}{|\phi|}\right) \phi\right\rangle<\int_{X}|\sigma|(|\phi|-r) . \tag{3.18}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\int_{X}(|\phi|-r)\left(\frac{|\phi|^{2}+k_{g}}{4}|\phi|-|\sigma|\right)<0 \tag{3.19}
\end{equation*}
$$

Since $r<|\phi(x)|$, whenever $x \in B_{r^{-1}}\left(x_{0}\right)$, it follows that

$$
\begin{equation*}
\left(|\phi|^{2}+k_{g}\right)|\phi|<4|\sigma|, \quad \text { a.e. in } B_{r^{-1}}\left(x_{0}\right) . \tag{3.20}
\end{equation*}
$$

There are two cases to be analysed independently.
(1) $\sigma=0$. In this case, we get

$$
\begin{equation*}
\left(|\phi|^{2}+k_{g}\right)|\phi|<0, \quad \text { a.e. } \tag{3.21}
\end{equation*}
$$

The scalar curvature plays a central role here: if $k_{g} \geq 0$, then $\phi=0$; otherwise,

$$
\begin{equation*}
|\phi| \leq \max \left\{0,\left(-k_{g}\right)^{1 / 2}\right\} . \tag{3.22}
\end{equation*}
$$

Since X is compact, we let $k_{X, g}=\max _{x \in X}\left\{0,\left[-k_{g}(x)\right]^{1 / 2}\right\}$, and so,

$$
\begin{equation*}
\|\phi\|_{\infty}<k_{X, g} \operatorname{vol}(X) \tag{3.23}
\end{equation*}
$$

(2) Let $\sigma \neq 0$. The inequality (3.20) implies that

$$
\begin{equation*}
|\phi|^{3}+k_{g}|\phi|-4|\sigma|<0, \quad \text { a.e. } \tag{3.24}
\end{equation*}
$$

Consider the polynomial

$$
\begin{equation*}
Q_{\sigma(x)}(w)=w^{3}+k_{g} w-4|\sigma(x)| \tag{3.25}
\end{equation*}
$$

An estimate for $|\phi|$ is obtained by estimating the largest real number w satisfying $Q_{\sigma(x)}(w)$ <0. $Q_{\sigma(x)}$ being monic implies that $\lim _{w \rightarrow \infty} Q_{\sigma(x)}(w)=+\infty$. So, either $Q_{\sigma(x)}>0$, whenever $w>0$, or there exists a root $\rho \in(0, \infty)$. The first case would imply that

$$
\begin{equation*}
Q_{\sigma(x)}(|\phi(x)|)>0, \quad \text { a.e., } \tag{3.26}
\end{equation*}
$$

contradicting (3.20). By the same argument, there exists a root $\rho \in(0, \infty)$ such that $Q_{\sigma(x)}(w)$ changes its sign in a neighborhood of ρ. Let ρ be the largest root in $(0, \infty)$ with this property. By the Corollary A.2, there exist constants $c_{1}=c_{1}(X, g)$ and c_{2} such that

$$
\begin{equation*}
|\rho|<c_{1}+c_{2}|\sigma(x)|^{3} \tag{3.27}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
|\phi(x)|<c_{1}+c_{2}|\sigma(x)|^{3}, \quad \text { a.e. in } B_{r^{-1}}\left(x_{0}\right) \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\phi\|_{L^{p}}<C_{1}+C_{2}\|\sigma\|_{L^{3 p}}^{3} \quad \text { restricted to } B_{r^{-1}}\left(x_{0}\right), \tag{3.29}
\end{equation*}
$$

where C_{1}, C_{2} are constants depending on $\operatorname{vol}\left(B_{r^{-1}}\left(x_{0}\right)\right)$. The inequality (3.29) can be extended over X by using a C^{∞} partition of unity. Moreover, if $\sigma \in L^{\infty}$, then

$$
\begin{equation*}
\|\phi\|_{\infty}<C_{1}+C_{2}\|\sigma\|_{\infty}^{3}, \tag{3.30}
\end{equation*}
$$

where C_{1}, C_{2} are constants depending on $\operatorname{vol}(X)$.
A sort of concentration lemma, proved in [3], can be extended as follows.
Lemma 3.5. Let $\left\{\left(A_{n}, \phi_{n}\right)\right\}_{n \in \mathbb{Z}}$ be the sequence given by the \mathscr{H}-Condition 3.1. Then,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}\left\langle\Phi^{*}\left(\nabla^{A_{n}} \phi_{n}\right), A_{n}-A\right\rangle=0 \tag{3.31}
\end{equation*}
$$

Proof. By (1.8),

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \int_{X}\left\langle\Phi^{*}\left(\nabla^{A_{n}} \phi_{n}\right), A_{n}-A\right\rangle=\lim _{n \rightarrow \infty} \int_{X}\left\langle\nabla_{i}^{A_{n}} \phi_{n}, \phi_{n}\right\rangle \cdot\left\langle\eta_{i}, A_{n}-A\right\rangle \\
\lim _{n \rightarrow \infty} \int_{X}\left\langle\nabla_{i}^{A_{n}} \phi_{n}, \phi_{n}\right\rangle \cdot\left\langle\eta_{i}, A_{n}-A\right\rangle \\
\quad \leq \lim _{n \rightarrow \infty} \int_{X}\left|\left\langle\nabla_{i}^{A_{n}} \phi_{n}, \phi_{n}\right\rangle\right|^{2} \cdot \int_{X}\left|\left\langle\eta_{i}, A_{n}-A\right\rangle\right|^{2} \tag{3.32}\\
\quad \leq \lim _{n \rightarrow \infty}\left[\int_{X}\left|\nabla_{i}^{A_{n}} \phi_{n}\right|^{2} \cdot\left|\phi_{n}\right|^{2}\right] \cdot \int_{X}\left|A_{n}-A\right|^{2} \\
\quad \leq \lim _{n \rightarrow \infty} c_{\infty} \cdot\left[\int_{X}\left|\nabla_{i}^{A_{n}} \phi_{n}\right|^{2}\right] \cdot\left\|A_{n}-A\right\|_{L^{2}}^{2} \\
\quad \leq \lim _{n \rightarrow \infty} c_{\infty} \cdot\left\|\phi_{n}\right\|_{L^{1,2}}^{2} \cdot\left\|A_{n}-A\right\|_{L^{2}}^{2}=0 .
\end{gather*}
$$

Theorem 3.6. Let (Θ, σ) be a pair satisfying the \mathscr{H}-Condition 3.1. Then, the sequence $\left\{\left(A_{n}, \phi_{n}\right)\right\}_{n \in \mathbb{Z}}$, given by Condition 3.1, converges strongly to $(A, \phi) \in \mathscr{C}_{\alpha}$.

Proof. From Theorem 3.3, $\left\{\left(A_{n}, \phi_{n}\right)\right\}_{n \in \mathbb{Z}}$ converges weakly in $L^{1,2}$ to $(A, \phi) \in \mathscr{C}_{\alpha}$. The proof is splitted into 2 parts.
(1) $\lim _{n \rightarrow \infty}\left\|A_{n}-A\right\|_{L^{1,2}}=0$. Let $d^{*}: \Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right) \rightarrow \Omega^{0}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)$. The operator $d:$ $\operatorname{ker}\left(d^{*}\right) \rightarrow \Omega^{2}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)$ being elliptic implies, by the fundamental elliptic estimate, that

$$
\begin{equation*}
\left\|A_{n}-A\right\|_{L^{1,2}} \leq c\left\|d\left(A_{n}-A\right)\right\|_{L^{2}}+\left\|A_{n}-A\right\|_{L^{2}} \tag{3.33}
\end{equation*}
$$

The first term in the right-hand side is controlled as follows:

$$
\begin{align*}
\left\|d A_{n}-d A\right\|_{L^{2}}^{2}= & \int_{X}\left\langle d\left(A_{n}-A\right), d\left(A_{n}-A\right)\right\rangle \\
= & \int_{X}\left\langle d A_{n}, d\left(A_{n}-A\right)\right\rangle-\int_{X}\left\langle d A, d\left(A_{n}-A\right)\right\rangle \\
= & \int_{X}\left\langle d^{*} F_{A_{n}}, A_{n}-A\right\rangle-\int_{X}\left\langle d^{*} F_{A}, A_{n}-A\right\rangle \\
= & d\left(\mathscr{S}^{2} W_{\alpha}\right)_{\left(A_{n}, \phi_{n}\right)}\left(A_{n}-A\right)-4 \int_{X}\left\langle\Phi^{*}\left(\nabla^{A_{n}} \phi_{n}\right), A_{n}-A\right\rangle \tag{3.34}\\
& -d\left(\mathscr{C}^{*} W_{\alpha}\right)_{(A, \phi)}\left(A_{n}-A\right)-4 \int_{X}\left\langle\Phi^{*}\left(\nabla^{A} \phi\right), A_{n}-A\right\rangle+o(1) \\
= & -4\left\{\int_{X}\left\langle\Phi^{*}\left(\nabla^{A_{n}} \phi_{n}\right), A_{n}-A\right\rangle+\int_{X}\left\langle\Phi^{*}\left(\nabla^{A} \phi\right), A_{n}-A\right\rangle\right\} \\
& +o(1), \quad \lim _{n \rightarrow \infty} o(1)=0 .
\end{align*}
$$

Thus, it follows from Lemma 3.5 that $\lim _{n \rightarrow \infty}\left\|A_{n}-A\right\|_{L^{1,2}}=0$, and consequently, $A_{n} \rightarrow A$ strongly in L^{4}.
(2) $\lim _{n \rightarrow \infty}\left\|\phi_{n}-\phi\right\|_{L^{1,2}}=0$.

$$
\left\|\nabla^{0} \phi_{n}-\nabla^{0} \phi\right\|_{L^{2}}^{2}=\overbrace{\int_{X}\left\langle\nabla^{0} \phi_{n}, \nabla^{0}\left(\phi_{n}-\phi\right)\right\rangle}^{(1)}-\overbrace{\int_{X}\left\langle\nabla^{0} \phi, \nabla^{0}\left(\phi_{n}-\phi\right)\right\rangle}^{(2)} .
$$

The term (1) leads to

$$
\begin{align*}
& \int_{X}\left\langle\nabla^{0} \phi_{n}, \nabla^{0}\left(\phi_{n}-\phi\right)\right\rangle \\
&= \int_{X}\left\langle\left(\nabla^{A_{n}}-A_{n}\right) \phi_{n},\left(\nabla^{A_{n}}-A_{n}\right)\left(\phi_{n}-\phi\right)\right\rangle \\
&= \int_{X}\left\langle\nabla^{A_{n}} \phi_{n}, \nabla^{A_{n}}\left(\phi_{n}-\phi\right)\right\rangle-\int_{X}\left\langle\nabla^{A_{n}} \phi_{n}, A_{n}\left(\phi_{n}-\phi\right)\right\rangle \\
&-\int_{X}\left\langle A_{n} \phi_{n}, \nabla^{A_{n}}\left(\phi_{n}-\phi\right)\right\rangle+\int_{X}\left\langle A_{n} \phi_{n}, A_{n}\left(\phi_{n}-\phi\right)\right\rangle \\
&= \overbrace{d\left(\mathscr{S}^{\alpha} W_{\alpha}\right)_{\left(A_{n}, \phi_{n}\right)}\left(\phi_{n}-\phi\right)-\int_{X} \frac{\left|\phi_{n}\right|^{2}+k_{g}}{4}\left\langle\phi_{n}, \phi_{n}-\phi\right\rangle}^{(12)} \\
&-\overbrace{\int_{X}\left\langle\nabla^{A_{n}} \phi_{n}, A_{n}\left(\phi_{n}-\phi\right)\right\rangle}^{(13)}-\overbrace{\int_{X}\left\langle A_{n} \phi_{n}, \nabla^{A_{n}}\left(\phi_{n}-\phi\right)\right\rangle}^{(14)} \\
&+\overbrace{\int_{X}\left\langle A_{n} \phi_{n}, A_{n}\left(\phi_{n}-\phi\right)\right\rangle}
\end{align*}
$$

The term (2) in (3.35) leads to similar terms named (21), (22), (23), and (24). We analyze each one of the above-obtained overbraced terms.
(a) Terms (11) and (21):

$$
\begin{align*}
& d\left(\mathscr{S}^{9} W_{\alpha}\right)_{\left(A_{n}, \phi_{n}\right)}\left(\phi_{n}-\phi\right)-\int_{X} \frac{\left|\phi_{n}\right|^{2}+k_{g}}{4}\left\langle\phi_{n}, \phi_{n}-\phi\right\rangle+o(1) \\
& \quad=\left\langle\sigma, \phi_{n}-\phi\right\rangle-\int_{X} \frac{\left|\phi_{n}\right|^{2}+k_{g}}{4}\left|\phi_{n}-\phi\right|^{2}-\int_{X} \frac{\left|\phi_{n}\right|^{2}+k_{g}}{4}\left\langle\phi, \phi_{n}-\phi\right\rangle+o(1) \\
& \quad \leq\left\langle\sigma, \phi_{n}-\phi\right\rangle-\int_{X} \frac{\left|\phi_{n}\right|^{2}+k_{g}}{4}\left\langle\phi, \phi_{n}-\phi\right\rangle+o(1) \\
& \quad \leq\|\sigma\|_{L^{2}}^{2} \cdot\left\|\phi_{n}-\phi\right\|_{L^{2}}^{2}+\left\|\frac{\left|\phi_{n}\right|^{2}+k_{g}}{4}\right\|_{L^{2}}^{2} \cdot\|\phi\|_{\infty} \cdot\left\|\phi_{n}-\phi\right\|_{L^{2}}^{2}+o(1), \tag{3.37}
\end{align*}
$$

where $\lim _{n \rightarrow \infty} o(1)=0$. By the similarity between (11) and (21), we conclude the boundedness of term (22).
(b) Terms (12) and (22):
(i) term (12):

$$
\begin{align*}
& \int_{X}\left\langle\nabla^{A_{n}} \phi_{n}, A_{n}\left(\phi_{n}-\phi\right)\right\rangle \\
&=\int_{X}\left\langle\nabla^{A_{n}} \phi_{n},\left(A_{n}-A\right)\left(\phi_{n}-\phi\right)\right\rangle+\int_{X}\left\langle\nabla^{A_{n}} \phi_{n}, A\left(\phi_{n}-\phi\right)\right\rangle \\
& \leq \int_{X}\left|\nabla^{A_{n}} \phi_{n}\right|^{2} \cdot \int_{X}\left|A_{n}-A\right|^{4} \cdot \int_{X}\left|\phi_{n}-\phi\right|^{4} \tag{3.38}\\
&+\int\left|\nabla^{A_{n}} \phi_{n}\right|^{2} \cdot \int_{X}\left|A\left(\phi_{n}-\phi\right)\right|^{2}
\end{align*}
$$

(ii) term (22)

$$
\begin{equation*}
\int_{X}\left\langle\nabla^{A} \phi, A\left(\phi_{n}-\phi\right)\right\rangle \leq \int_{X}\left|\nabla^{A} \phi\right|^{2} \cdot \int_{X}\left|A\left(\phi_{n}-\phi\right)\right|^{2} \tag{3.39}
\end{equation*}
$$

The term $\int_{X}\left|\nabla^{A} \phi\right|^{2}$ is bounded by Proposition 4.1 and $A \in C^{0}$ by Theorem 4.4.
(c) $\operatorname{Term}\{(13)-(23)\}:$

$$
\begin{align*}
& \int_{X}\left\langle A_{n} \phi_{n}, \nabla^{A_{n}}\left(\phi_{n}-\phi\right)\right\rangle-\int_{X}\left\langle A \phi, \nabla^{A}\left(\phi_{n}-\phi\right)\right\rangle \\
&= \int_{X}\left\langle\left(A_{n}-A\right) \phi_{n}, \nabla^{A_{n}}\left(\phi_{n}-\phi\right)\right\rangle+\overbrace{\int_{X}\left\langle A \phi_{n}, \nabla^{A_{n}}\left(\phi_{n}-\phi\right)\right\rangle}^{\text {(i) }} \tag{3.40}\\
&-\int_{X}\left\langle\left(A_{n}-A\right) \phi, \nabla^{A}\left(\phi_{n}-\phi\right)\right\rangle-\overbrace{\int_{X}\left\langle A_{n} \phi, \nabla^{A}\left(\phi_{n}-\phi\right)\right\rangle}^{(\text {(ii) }} .
\end{align*}
$$

In each of the last two lines above, the first terms are bounded by $\left\|A_{n}-A\right\|_{L^{4}}$, while the term $\{(\mathrm{i})$-(ii) $\}$ can be written as

$$
\begin{align*}
& \int_{X}\left\langle\left(A-A_{n}\right) \phi_{n}, \nabla^{A_{n}}\left(\phi_{n}-\phi\right)\right\rangle+\int_{X}\left\langle A_{n}\left(\phi_{n}-\phi\right), \nabla^{A_{n}}\left(\phi_{n}-\phi\right)\right\rangle \\
&+\int_{X}\langle A_{n} \phi,(\overbrace{\nabla^{A_{n}}-\nabla^{A}}^{\left(A_{n}-A\right)})\left(\phi_{n}-\phi\right)\rangle . \tag{3.41}
\end{align*}
$$

So, it is also bounded by $\left\|A_{n}-A\right\|_{L^{4}}$.
(d) $\operatorname{Term}\{(14)-(24)\}$:

$$
\begin{align*}
& \int_{X}\left\langle A_{n} \phi_{n}, A_{n}\left(\phi_{n}-\phi\right)\right\rangle-\int_{X}\left\langle A \phi, A\left(\phi_{n}-\phi\right)\right\rangle \\
&= \int_{X}\left\langle A_{n} \phi_{n},\left(A_{n}-A\right)\left(\phi_{n}-\phi\right)\right\rangle+\int_{X}\left\langle\left(A_{n}-A\right) \phi_{n}, A\left(\phi_{n}-\phi\right)\right\rangle \tag{3.42}\\
&+\int\left|A\left(\phi_{n}-\phi\right)\right|^{2} .
\end{align*}
$$

Since $A \in C^{0}$, it follows that $\lim _{n \rightarrow \infty}\left\|A\left(\phi_{n}-\phi\right)\right\|^{2}=0$.

4. Regularity of the solution (A, ϕ)

Let $\beta=\left\{e_{i} ; 1 \leq i \leq 4\right\}$ be an orthonormal frame fixed on $T X$ with the following properties; for all $i, j \in\{1,2,3,4\}$:
(1) $\left[e_{i}, e_{j}\right]=0$,
(2) $\nabla_{e_{i}} e_{j}=0(\nabla=$ Levi-Civita connection on $X)$.

Let $\beta^{*}=\left\{d x_{1}, \ldots, d x_{n}\right\}$ be the dual frame induced on \mathscr{S}_{α}^{*}. From the 2nd property of the frame β, it follows that $\nabla_{e_{i}} d x^{j}=0$ for all $i, j \in\{1,2,3,4\}$. For the sake of simplicity, let $\nabla_{e_{i}}^{A}=\nabla_{i}^{A}$. Therefore, $\nabla^{A}: \Omega^{0}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right) \rightarrow \Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)$ is given by

$$
\begin{gather*}
\nabla^{A} \phi=\sum_{l}\left(\nabla_{l}^{A} \phi\right) d x_{l} \Longrightarrow\left|\nabla^{A} \phi\right|^{2}=\sum_{l}\left|\nabla_{l}^{A} \phi\right|^{2}, \\
\left(\nabla^{A}\right)^{2}=\sum_{k, l}\left(\nabla_{k}^{A} \nabla_{l}^{A} \phi\right) d x_{l} \wedge d x_{k} \Longrightarrow\left|\left(\nabla^{A}\right)^{2}\right|^{2}=\sum_{k, l}\left|\nabla_{k}^{A} \nabla_{l}^{A} \phi\right|^{2} . \tag{4.1}
\end{gather*}
$$

In this setting, the 2 form of curvature of the connection A is given by

$$
\begin{equation*}
\left(F_{A}\right)_{k l}=F_{k l}=\nabla_{l}^{A} \nabla_{k}^{A}-\nabla_{k}^{A} \nabla_{l}^{A} . \tag{4.2}
\end{equation*}
$$

In order to compute the operator $\Delta_{A}=\left(\nabla^{A}\right)^{*} \nabla^{A}: \Omega^{0}\left(\mathscr{S}_{\alpha}^{+}\right) \rightarrow \Omega^{0}\left(\mathscr{S}_{\alpha}^{+}\right)$, let $*: \Omega^{i}\left(\mathscr{S}_{\alpha}\right) \rightarrow$ $\Omega^{4-i}\left(\mathscr{Y}_{\alpha}\right)$ be the Hodge operator and consider the identity

$$
\begin{equation*}
\left(\nabla^{A}\right)^{*}=-* \nabla^{A} *: \Omega^{1}\left(\mathscr{S}_{\alpha}^{+}\right) \longrightarrow \Omega^{0}\left(\mathscr{Y}_{\alpha}^{+}\right) \tag{4.3}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\Delta_{A} \phi=-\sum_{k} \nabla_{k}^{A} \nabla_{k}^{A} \phi \tag{4.4}
\end{equation*}
$$

In this way,

$$
\begin{align*}
\left|\Delta_{A} \phi\right|^{2}= & \sum_{k, l}\left\langle\nabla_{k}^{A} \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle \\
= & \sum_{k, l}\left[\nabla_{k}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle\right)-\left\langle\nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle\right] \\
= & \sum_{k, l}\left[\nabla_{k}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle\right)-\left\langle\nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{k}^{A} \nabla_{l}^{A} \phi\right\rangle-\left\langle\nabla_{k}^{A} \phi, F_{l k} \nabla_{l}^{A} \phi\right\rangle\right] \\
= & \sum_{k, l}\left[\nabla_{k}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle\right)-\nabla_{l}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right] \tag{4.5}\\
& +\sum_{k, l}\left[\left\langle\nabla_{l}^{A} \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi\right\rangle+\left\langle\nabla_{k}^{A} \phi, F_{l k} \nabla_{l}^{A} \phi\right\rangle\right] \\
= & \sum_{k, l}\left[\nabla_{k}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle\right)-\nabla_{l}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right]+\sum_{k, l}\left|\nabla_{k}^{A} \nabla_{l}^{A} \phi\right|^{2} \\
& +\sum_{k, l}\left[\left\langle F_{k l} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi\right\rangle+\left\langle\nabla_{k}^{A} \phi, F_{k l} \nabla_{l}^{A} \phi\right\rangle\right]
\end{align*}
$$

and so,

$$
\begin{align*}
\left|\left(\nabla^{A}\right)^{2} \phi\right|^{2} \leq & \left|\Delta_{A} \phi\right|^{2}+\sum_{k, l}\left\{\left|\nabla_{k}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right|\right\}+\sum_{k, l}\left\{\left|\nabla_{l}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right|\right\} \\
& +\sum_{k, l}\left\{\left|\left\langle F_{k l} \phi, \nabla_{k}^{A} \phi \nabla_{l}^{A} \phi\right\rangle\right|\right\}+\sum_{k, l}\left\{\left|\left\langle\nabla_{k}^{A} \phi, F_{k l} \nabla_{l}^{A} \phi\right\rangle\right|\right\} . \tag{4.6}
\end{align*}
$$

Now, by applying the inequalities

$$
\begin{equation*}
\left(\sum_{i} a_{i}\right)^{r} \leq K_{r} \cdot \sum_{i}\left|a_{i}\right|^{r}, \quad \sqrt{\sum_{i=1}^{n} a_{i}} \leq \sum_{i=1}^{n} \sqrt{a_{i}} \tag{4.7}
\end{equation*}
$$

to (4.6), we get

$$
\begin{align*}
\left|\left(\nabla^{A}\right)^{2} \phi\right|^{p} \leq & K_{p} \cdot\left|\Delta_{A} \phi\right|^{p}+K_{p} \cdot \sum_{k, l}\left\{\left|\nabla_{k}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right|^{p / 2}\right\} \\
& +K_{p} \sum_{k, l}\left\{\left|\nabla_{l}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right|^{p / 2}\right\} \tag{4.8}\\
& +\sum_{k, l}\left\{\left|\left\langle F_{k l} \phi, \nabla_{k}^{A} \phi \nabla_{l}^{A} \phi\right\rangle\right|^{p / 2}\right\}+\sum_{k, l}\left\{\left|\left\langle\nabla_{k}^{A} \phi, F_{k l} \nabla_{l}^{A} \phi\right\rangle\right|^{p / 2}\right\} .
\end{align*}
$$

After integrating, it follows that

$$
\begin{align*}
k_{1} \cdot\left\|\left(\nabla^{A}\right)^{2} \phi\right\|_{L^{p}}^{p} \leq & \left\|\Delta_{A} \phi\right\|_{L^{p}}^{p}+k_{2} \cdot\left\|\nabla^{A} \phi\right\|_{L^{p}}^{p}+k_{3} \cdot\left\|F_{A}(\phi)\right\|_{L^{p}}^{p} \\
& +k_{4} \cdot\left\|F_{A}\left(\nabla^{A} \phi\right)\right\|_{L^{p}}^{p}+k_{5} \cdot \sum_{k, l} \int_{x}\left\{\left|\nabla_{k}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right|^{p / 2}\right\} \tag{4.9}\\
& +k_{6} \sum_{k, l} \int_{X}\left\{\left|\nabla_{l}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right|^{p / 2}\right\} .
\end{align*}
$$

The boundedness of the right-hand side of (4.9) results from the analysis of each term.
Proposition 4.1. Let $(A, \phi) \in \mathscr{C}_{\alpha}$ be a solution of equations in (1.7). If $\sigma \in L^{\infty}$, then
(1) $\nabla^{A} \phi \in L^{2}$,
(2) $\Delta_{A} \phi \in L^{2}$.

Proof. (1) $\nabla^{A} \phi \in L^{2}$:

$$
\begin{align*}
& \left\langle\Delta_{A} \phi, \phi\right\rangle+\left(\frac{|\phi|^{2}+k_{g}}{4}\right)|\phi|^{2}=\langle\sigma, \phi\rangle \\
& \Longrightarrow\left|\nabla^{A} \phi\right|^{2}+\left(\frac{|\phi|^{2}+k_{g}}{4}\right)|\phi|^{2}=\langle\sigma, \phi\rangle \leq \frac{1}{\epsilon^{2}}|\sigma|^{2}+\epsilon^{2}|\phi|^{2} \tag{4.10}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\left|\nabla^{A} \phi\right|^{2}<\frac{1}{\epsilon^{2}}|\sigma|^{2}+\left(\epsilon^{2}-\frac{k_{g}}{4}\right)|\phi|^{2}-\frac{|\phi|^{4}}{4} . \tag{4.11}
\end{equation*}
$$

From Lemma 3.4, there exists a polynomial p, with coefficients depending on (X, g) and ϵ, such that

$$
\begin{equation*}
\left\|\nabla^{A} \phi\right\|_{L^{2}}^{2}<p\left(\|\sigma\|_{\infty}\right) \tag{4.12}
\end{equation*}
$$

So, $\nabla^{A} \phi \in L^{2}$.
(2) $\Delta_{A} \phi \in L^{2}$:

$$
\begin{equation*}
\left\langle\Delta_{A} \phi, \Delta_{A} \phi\right\rangle+\frac{|\phi|^{2}+k_{g}}{4}\left\langle\phi, \Delta_{A} \phi\right\rangle=\left\langle\sigma, \Delta_{A} \phi\right\rangle ; \tag{4.13}
\end{equation*}
$$

let $0<\epsilon<1$,

$$
\begin{gather*}
\left|\Delta_{A} \phi\right|^{2}+\frac{|\phi|^{2}+k_{g}}{4}\left|\nabla^{A} \phi\right|^{2}=\left\langle\sigma, \Delta_{A} \phi\right\rangle<\frac{1}{\epsilon^{2}}|\sigma|^{2}+\epsilon^{2}\left|\Delta_{A} \phi\right|^{2}, \tag{4.14}\\
\left(1-\epsilon^{2}\right)\left|\Delta_{A} \phi\right|^{2}+\frac{|\phi|^{2}+k_{g}}{4}\left|\nabla^{A} \phi\right|^{2}<\frac{1}{\epsilon^{2}}|\sigma|^{2} .
\end{gather*}
$$

By the boundedness of the term

$$
\begin{equation*}
\int_{X}|\phi|^{2} \cdot\left|\nabla^{A} \phi\right|^{2}<\|\phi\|_{\infty}^{2} \cdot\left\|\nabla^{A} \phi\right\|_{L^{2}}^{2}, \tag{4.15}
\end{equation*}
$$

one deduces the existence of a polynomial q, with coefficients depending on ϵ and (X, g), such that

$$
\begin{equation*}
\left\|\Delta_{A} \phi\right\|_{L^{2}}<q\left(\|\sigma\|_{\infty}\right) \tag{4.16}
\end{equation*}
$$

Proposition 4.2. Let (A, ϕ) be solutions of the $\mathscr{S}^{\mathscr{W}} W_{\alpha}$-equations, where $(\Theta, \sigma) \in L^{1,2} \times\left(L^{1,2} \cap\right.$ $\left.L^{\infty}\right)$, then $F_{A} \in L^{q}$, for all $q<\infty$.

Proof. By (1.8), $\Phi^{*}\left(\nabla^{A} \phi\right)=(1 / 2) \nabla^{A}\left(|\phi|^{2}\right)$, and so,

$$
\begin{equation*}
d^{*} F_{A}+4 \Phi^{*}\left(\nabla^{A} \phi\right)=\Theta \Longrightarrow\left\|d^{*} F_{A}\right\|_{L^{2}}^{2} \leq\|\phi\|_{L^{1,2}}^{2}+\|\Theta\|_{L^{2}} \tag{4.17}
\end{equation*}
$$

There are two cases to be analysed.
(1) F_{A} is harmonic. Since the Laplacian defined on \mathfrak{u}_{1}-forms is an elliptic operator, the fundamental inequality for elliptic operators asserts that there exists a constant C_{k} such that

$$
\begin{equation*}
\left\|F_{A}\right\|_{L^{k+2,2}} \leq\left\|\Delta F_{A}\right\|_{L^{k, 2}}+C_{k}\left\|F_{A}\right\|_{L^{2}} \tag{4.18}
\end{equation*}
$$

Consequently, F_{A} being harmonic implies, for all $k \in \mathbb{N}$, that

$$
\begin{equation*}
\left\|F_{A}\right\|_{L^{k, 2}} \leq C_{k}\left\|F_{A}\right\|_{L^{2}} \Longrightarrow F_{A} \in C^{\infty} . \tag{4.19}
\end{equation*}
$$

(2) F_{A} is not harmonic. In this case, since $\Theta \in L^{1,2}, \phi \in L^{\infty}$ and

$$
\begin{equation*}
\Delta_{A} F_{A}=d\left(\left\langle\phi, \nabla^{A} \phi\right\rangle\right)+d \Theta=\left\langle\phi, F_{A}(\phi)\right\rangle+d \Theta \tag{4.20}
\end{equation*}
$$

it follows that $F_{A} \in L^{2,2}$. Therefore, by the Sobolev embedding theorem, $F_{A} \in L^{q}$, for all $q<\infty$.

Proposition 4.3. Let (A, ϕ) be solutions of the $\mathscr{S}^{9} W_{\alpha}$-equations, where $(\Theta, \sigma) \in L^{1,2} \times\left(L^{1,2} \cap\right.$ $\left.L^{\infty}\right)$, then $\left(\nabla^{A}\right)^{2} \phi \in L^{p}$, for all $1<p<2$.

Proof. In (4.9), we must take care of the last terms.
(1) $F\left(\nabla^{A} \phi\right) \in L^{p}$, for all $1<p<2$. By Young's inequality,

$$
\begin{equation*}
\left\|F\left(\nabla^{A} \phi\right)\right\|_{L^{p}} \leq\left\|F_{A}\right\|_{L^{2 p /(2-p)}} \cdot\left\|\nabla^{A} \phi\right\|_{L^{2}} \tag{4.21}
\end{equation*}
$$

(2) There is no contribution from the divergent terms, since

$$
\begin{equation*}
\int_{x}\left\{\left|\nabla_{k}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right|^{p / 2}\right\} \leq[\operatorname{vol}(X)]^{(2-p) / p} \int_{x}\left\{\left|\nabla_{k}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right|\right\} . \tag{4.22}
\end{equation*}
$$

In the same way,

$$
\begin{align*}
& \sum_{k, l} \int_{x}\left\{\left|\nabla_{k}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right|^{p / 2}\right\}=0, \\
& \sum_{k, l} \int_{X}\left\{\left|\nabla_{l}^{A}\left(\left\langle\nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi\right\rangle\right)\right|^{p / 2}\right\}=0 . \tag{4.23}
\end{align*}
$$

The estimates above applied to (4.9) implies that

$$
\begin{align*}
\left\|\left(\nabla^{A}\right)^{2} \phi\right\|_{L^{p}} \leq & k_{1}\left\|\Delta_{A} \phi\right\|_{L^{p}}^{p}+k_{2}\left\|\nabla^{A} \phi\right\|_{L^{p}}^{p}+k_{3}\left\|\nabla^{A} \phi\right\|_{L^{p}}^{p} \tag{4.24}\\
& +k_{4}\left\|F_{A}(\phi)\right\|_{L^{p}}^{p}+k_{5}\left\|F_{A}\right\|_{L^{p /(2-p)}} \cdot\left\|\nabla^{A} \phi\right\|_{L^{p}}^{p} .
\end{align*}
$$

Thus, $\phi \in L^{2, p}$, for all $1<p<2$. Considering that $\sigma \in L^{1,2}$, the bootstrap argument applied on (1.7) implies that $\phi \in L^{3, p}$, for every $k \geq 2$ and $1<p<2$. Hence, by Sobolev embedding theorem, $\phi \in C^{0}$.

Theorem 4.4. Let (A, ϕ) be a solution of the $\mathscr{S}^{\alpha} W_{\alpha}$-equations, where $(\Theta, \sigma) \in$ $L^{k, 2}\left(\Omega^{1}\left(\operatorname{ad}\left(\mathfrak{u}_{1}\right)\right)\right) \oplus\left(L^{k, 2}\left(\Gamma\left(\mathscr{Y}_{\alpha}^{+}\right)\right) \cap L^{\infty}\left(\Gamma\left(\mathscr{C}_{\alpha}^{+}\right)\right)\right)$, then $(A, \phi) \in L^{k+2, p} \times\left(L^{k+2,2} \cap L^{\infty}\right)$, for all $1<p<2$. Moreover, if $k>2$, then $(A, \phi) \in C^{r} \times C^{r}$, for all $r<k$.

Proof. (1) If $\Theta \in L^{k, 2}$, then by Proposition $4.2 F_{A} \in L^{k+1,2}$. Consequently, by Corollary 2.2, $A \in L^{k+2,2}$.
(2) The Sobolev class of ϕ is obtained by the bootstrap argument.

Appendix

Estimates for solutions of 3rd-degree equation

Let $p, q \in \mathbb{R}$ and consider the equation

$$
\begin{equation*}
x^{3}+p x+q=0 . \tag{A.1}
\end{equation*}
$$

Proposition A.1. The solutions of (A.1) are given in [2] by

$$
\begin{equation*}
x_{1}=z_{1}+z_{2}, \quad x_{2}=z_{1}+\lambda z_{2}, \quad y_{3}=z_{1}+\lambda^{2} z_{2} \tag{A.2}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{1}=\sqrt[3]{-\frac{q}{2}+\sqrt[2]{D}}, \quad z_{2}=\sqrt[3]{-\frac{q}{2}-\sqrt[2]{D}}, \quad D=\frac{p^{3}}{27}+\frac{q^{2}}{4} \tag{A.3}
\end{equation*}
$$

and $\lambda \in \mathbb{C}$ satisfies $\lambda^{3}=1$.
Corollary A.2. Let p and q be negative real numbers. So, the solutions of (A.1) are estimated according to the following cases:
(1) $D \geq 0$:

$$
\begin{equation*}
\left|x_{i}\right| \leq \frac{8}{3}+\frac{1}{3}|q|+\frac{1}{12} q^{2}+\frac{1}{81} p^{3} \tag{A.4}
\end{equation*}
$$

(2) $D<0$:

$$
\begin{equation*}
\left|x_{i}\right| \leq 3+\frac{1}{6} q^{2}+\frac{1}{81}|p|^{3} . \tag{A.5}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
\left|x_{i}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \tag{A.6}
\end{equation*}
$$

it is enough to estimate $\left|z_{1}\right|$ and $\left|z_{2}\right|$. The basics identities needed are the following: suppose $x \geq 0$, whence

$$
\begin{equation*}
\sqrt[2]{x} \leq 1+\frac{1}{2} x, \quad \sqrt[3]{x} \leq 1+\frac{1}{3} x \tag{A.7}
\end{equation*}
$$

(1) $D \geq 0$. In this case, $z_{1}, z_{2} \in \mathbb{R}$ and

$$
\begin{equation*}
\left|z_{1}\right|=\sqrt[3]{\left|-\frac{q}{2}+\sqrt[2]{D}\right|} \leq 1+\frac{1}{3}\left|-\frac{q}{2}+\sqrt[2]{D}\right| \leq \frac{4}{3}+\frac{1}{6}|q|+\frac{1}{6} D \tag{A.8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left|z_{1}\right| \leq \frac{4}{3}+\frac{1}{6}|q|+\frac{1}{24} q^{2}+\frac{1}{162} p^{3} . \tag{A.9}
\end{equation*}
$$

The same estimate can be obtained for $\left|z_{2}\right|$. Hence,

$$
\begin{equation*}
\left|x_{i}\right| \leq \frac{8}{3}+\frac{1}{3}|q|+\frac{1}{12} q^{2}+\frac{1}{81} p^{3} . \tag{A.10}
\end{equation*}
$$

(2) $D \leq 0$. In this case, $z_{1}, z_{2} \in \mathbb{C}-\mathbb{R}$. Since $D \in \mathbb{R}$, we can write $\sqrt[2]{D}=i \sqrt[2]{|D|}$ and

$$
\begin{equation*}
z_{1}=\sqrt[3]{-\frac{1}{2} q+i \sqrt[2]{D}}, \quad z_{2}=\sqrt[3]{-\frac{1}{2} q-i \sqrt[2]{D}} \tag{A.11}
\end{equation*}
$$

Therefore,

$$
\begin{gather*}
\left|z_{i}\right|^{2}=\sqrt[3]{\frac{q^{2}}{4}+|D|}<1+\frac{1}{12} q^{2}+\frac{1}{3}|D| \leq 1+\frac{1}{6} q^{2}+\frac{1}{81}|p|^{3} \tag{A.12}\\
\left|z_{i}\right|<\frac{3}{2}+\frac{1}{12} q^{2}+\frac{1}{162}|p|^{3} .
\end{gather*}
$$

Hence,

$$
\begin{equation*}
\left|x_{i}\right|<3+\frac{1}{6} q^{2}+\frac{1}{81}|p|^{3} . \tag{A.13}
\end{equation*}
$$

References

[1] C. M. Doria, The homotopy type of Seiberg-Witten configuration space, to appear in Bol. Soc. Parana. Mat. (2).
[2] A. Gonçalves, Introdução à Álgebra [Introduction to Algebra], Projeto Euclides, vol. 7, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1979.
[3] J. Jost, X. Peng, and G. Wang, Variational aspects of the Seiberg-Witten functional, Calc. Var. Partial Differential Equations 4 (1996), no. 3, 205-218.
[4] H. B. Lawson Jr. and M.-L. Michelsohn, Spin Geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, New Jersey, 1989.
[5] A. Marini, Dirichlet and Neumann boundary value problems for Yang-Mills connections, Comm. Pure Appl. Math. 45 (1992), no. 8, 1015-1050.
[6] D. Salamon, Morse theory, the Conley index and Floer homology, Bull. London Math. Soc. 22 (1990), no. 2, 113-140.
[7] K. K. Uhlenbeck, Connections with L^{p} bounds on curvature, Comm. Math. Phys. 83 (1982), no. 1, 31-42.
[8] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769-796.
Celso Melchiades Doria: Departamento de Matemática, Universidade Federal de Santa Catarina, Campus Universitario, Trindade, 88040900 Florianópolis - SC, Brazil

E-mail address: cmdoria@mtm.ufsc.br

