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It is shown that the nonhomogeneous Dirichlet and Neuman problems for the 2nd-order
Seiberg-Witten equation on a compact 4-manifold X admit a regular solution once the
nonhomogeneous Palais-Smale condition #€ is satisfied. The approach consists in apply-
ing the elliptic techniques to the variational setting of the Seiberg-Witten equation. The
gauge invariance of the functional allows to restrict the problem to the Coulomb subspace
%< of configuration space. The coercivity of the ¥W,-functional, when restricted into the
Coulomb subspace, imply the existence of a weak solution. The regularity then follows
from the boundedness of L -norms of spinor solutions and the gauge fixing lemma.

1. Introduction

Let X be a compact smooth 4-manifold with nonempty boundary. In our context, the
Seiberg-Witten equations are the 2nd-order Euler-Lagrange equation of the functional
defined in Definition 2.3. When the boundary is empty, their variational aspects were
first studied in [3] and the topological ones in [1]. Thus, the main aim here is to obtain
the existence of a solution to the nonhomogeneous equations whenever 0X # &. The
nonemptiness of the boundary inflicts boundary conditions on the problem. Classically,
this sort of problem is classified according to its boundary conditions in Dirichlet problem
(D) or Neumann problem (N').

Originally, the Seiberg-Witten equations were described in [8] as a pair of 1st-order
PDE. The solutions of these equations were known as SW ,-monopoles, and their main
achievement were to shed light on the understanding of the 4-dimensional differential
topology, since new smooth invariants were defined by the topology of their moduli space
of solutions (moduli gauge group). In the same article, Witten introduced a variational
formulation for the equations and showed that its stable critical points turn out to be
exactly the ¥Wy-monopoles. The variational aspects of the ¥W 4-equations were first
explored in [3], where they proved that the functional satisfies the Palais-Smale condi-
tion and the solutions of the Euler-Lagrange (2nd-order) equations share the same im-
portant analytical properties as the YW ,-monopoles. Therefore, it is natural to ask if the
equations fit into a Morse-Bott-Smale theory, where the lower number of critical points
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is the Betti number of the configuration space. The topology of the configuration space
was described in [1]. Besides, if the SW-theory is a Morse theory, another natural ques-
tion is to argue about the existence of a Morse-Smale-Witten complex, as in [6]. In the
last question, the ¥W ,-equations on manifolds endowed with tubular ends or boundary
also demand attention. The analogy of the W ,-equation’s variational formulation, with
the variational principle of the Ginzburg-Landau equation in superconductivity, further
motivates the present study.

1.1. Spin® structure. The space of Spin‘ structures on X is identified with
Spin‘(X) = {a+ B € H*(X,Z) ® H' (X, Z;) | w2(X) = a(mod2)}. (1.1)

For each a € Spin‘(X), there is a representation p, : SO4 — Cly, induced by a Spin® rep-
resentation, and a pair of vector bundles (¥}, %,) over X (see [4]). Let Pso, be the frame
bundle of X, so

(i) Fo = Pso, Xp, V=, @& F,. The bundle ¥, is the positive complex spinors
bundle (fibers are Spinj-modules isomorphic to C?),

(if) Lo = Pso, Xdet(w) C. It is called the determinant line bundle associated to the
Spin‘-structure a - (¢;(¥£,) = ).

Thus, for each « € Spin®(X), we associate a pair of bundles
« € Spin(X) ~ (Lo 1), (1.2)

From now on, we considered on X a Riemannian metric ¢ and on &, a Hermitian
structure h.

Let P, be the U, -principal bundle over X obtained as the frame bundle of £, (¢;(P,) =
«). Also, we consider the adjoint bundles

Ad(U1) = Py, Xaq Uy, ad(ul) = Py, Xad U1, (1.3)

where Ad(U,) is a fiber bundle with fiber Uj, and ad(u;) is a vector bundle with fiber
isomorphic to the Lie algebra u;.

1.2. The main theorem. Let 54, be (formally) the space of connections (covariant deriv-
ative) on £, I'(#}) the space of sections of ¥}, and 9, = ['(Ad(U;)) the gauge group
acting on A, X I'(F}) as follows:

g-(A¢)=(A+g 'dg.g7'¢). (1.4)

A is an affine space with vector space structure, after fixing an origin, isomorphic to
the space Q'(ad(u;)) of ad(u;)-valued 1-forms. Once a connection V° € o, is fixed, a
bijection o, — Q'(ad(u)) is exposed by V4 — A, where V4 = v° + A. %, = Map(X, U;),
since Ad(U;) = X x U;. The curvature of a 1-connection form A € Q'(ad(u,)) is the 2-
form Fy = dA € Q*(ad(uy)).
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Definition 1.1. (1) The configuration space of the %-problem is
62 ={(4,9) € o xT(F) [ (A,9) |y *~ (A0, 00) }, (15)
(2) the configuration space of the N-problem is
GN =y xIT'(S1). (1.6)

Although each boundary problem requires its own configuration space, the super-
scripts 9 and N will be used whenever the distinction is necessary, since most arguments
work for both sort of problems. The gauge group 9, action on each of the configuration
spaces is given by (1.4).

The Dirichlet (%) and Neumann (N') boundary value problems associated to the
SW y-equations are the following: we consider (©,0) € Q'(ad(u;)) ® I'(¥}) and (Ao, ¢o)
defined on the manifold 0X (A is a connection on £, |ax, ¢ is a section of I'(F¥ |ax)).
In this way, find (A, ¢) € €7 satisfying @ and (A,$) € 6. satisfying .\, where

(1)

d*F, +4CD*(VA¢) =0, d*FA+4(D*(VA¢) =
D=qAs¢+ (|¢|2 )¢_ N=1040+ (|¢|2+k)¢— (1.7)
<A,¢>|axg*‘3ge(Ao,¢o), i* (% Fa) =0, Vi¢=0,

(2) the operator ®* : Q' (¥}) — Q'(u;) is locally given by
O*(vAg) = S vA(Igl) Z<VA¢ )i (1.8)

and 7 = {#;} is an orthonormal frame in Q' (ad(u,)),

(3) i*(*Fa) = F4, where Fy = (F14,F24,F54,0) is the local representation of the 4th
component (normal to 0X) of the 2-form of curvature in the local chart (x,U)
of X; x(U) = {x = (x1,x2,%3,%4) € R% ||x]| <€, x4 =0}, and x(UnNoX) C {x €
x(U) | x4 = 0}. Let {ej,es,e3,e4} be the canonical base of R%, so v = —¢, is the
normal vector field along 0X.

TaeOREM 1.2 (main theorem). If the pair (®,0) € L*? @ (LF> N L*) satisfies the ¥ -
Condition 3.1, then the problems % and N admit a C"-regular solution (A,¢), whenever
2<kandr<k.

2. Basic set up

2.1. Sobolev spaces. As a vector bundle E over (X,g) is endowed with a metric and a
covariant derivative V, we define the Sobolev norm of a section ¢ € Q°(E) as

Igllgr = S (j |vig| )l/. (2.1)

[i|=0
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In this way, the LkP-Sobolev Spaces of sections of E is defined as
LFP(E) = {¢ € Q°(E) | lI$ll 1 < oo}, (2.2)

In our context, in which we fixed a connection V° on &¥,, a metric g on X, and a Her-
mitian structure on ¥4, the Sobolev spaces on which the basic setting is made are the
following:

(i) oo = LM2(Q (ad(u1)));
(ii) F(9+) LY(Q°(X,%3));
(iii) B4 = Aq X T(5P+)
(iv) G, =L>*(X,U;) = L>*(Map(X, Uy)). (9, is an co-dimensional Lie group with Lie
algebra g=L"(X,u)).

The above Sobolev spaces induce a Sobolev structure on 62 and on 6. From now
on, the configuration spaces will be denoted by €, by ignoring the superscripts, unless
needed.

The most basic analytical results needed to achieve the main result is the gauge fixing
lemma (see [7]) and the estimate (2.3), both extended by Marini [5] to manifolds with
boundary.

LemMA 2.1 (gauge fixing lemma). Every connection A € sl is gauge equivalent, by a
gauge transformation g € G, named Coulomb (€) gauge, to a connection A € A, satisfying

(1) di’ A, = 0 0n 3%,
2) d*A=0o0nX,
(3) in the N-problem, the connection A satisfies A, = 0 (v L 0X).

CoROLLARY 2.2. Under the hypothesis of Lemma 2.1, there exists a constant K >0 such
that the connection A, gauge equivalent to A by the Coulomb gauge, satisfies the following
estimates:

I Allpe < K - ||Fallp- (2.3)

Notation. * f is the Hodge operator in the flat metric and the index 7 denotes tangential
components.

2.2. Variational formulation. A global formulation for problems % and N is made using
the Seiberg-Witten functional.

Definition 2.3. Let a € Spin‘(X). The Seiberg-Witten functional ¥W, : €, — R is defined
as

k
Wo(A, ) = JX {i IFal®+ | 46| + é|¢|4+ Zg|¢|2}dvg+n2a2, (2.4)

where k; = scalar curvature of (X,g).
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Remark 2.4. The 9,-action on €, has the following properties:

(1) the ¥W ,-functional is §,-invariant,
(2) the 9,-action on 6, induces on T€, a Y,-action as follows: let (A, V') € T(a,4)6a
and g € 4,

g (A V) = (A,g71V) S Tg.(A,¢)(6a. (2.5)

Consequently, d(FWy)g.(a,¢)(g - (A, V) = d(FWa)(ag) (A, V).

The tangent bundle T€, decomposes as
T, = Q' (ad () ® I'(F). (2.6)

In this way, the 1-form d¥W, € Q'(%6,) admits a decomposition dFW, = d\FW, +
dy W ., where

B (FW) gy @ (ad () — R, dy(FWa) gy A= d(IWa) ) - (A,0),
B(IW) gy T(FD) — R, da(FWa) gy V = d(FWa) 4 g) - (0,V).

(2.7)
By performing the computations, we get
(1) for every A € A,
1
(I g A= JX Re {(Fa,daA) +4(74(¢), D(A)) }dx, (2.8)

where @ : Q' (1) — Q1(F7) is the linear operator ®(A) = A(¢), with dual de-
fined in (1.8),
(2) for every V e I'(¥),

A (FWa) (ag) - V = L Re{(VAqS, VAV) + <|¢|2T+kg¢,v> }dx. (2.9)

Therefore, by taking supp(A) C int(X) and supp(V) C int(X), we restrict to the interior
of X, and so, the gradient of the W ,-functional at (A, ¢$) € €, is

2
grad (FWo) (A, ) = (dj;FA 1 40* (TA), A + wqﬁ) (2.10)

It follows from the %,-action on TG, that

1612+,

grad (SW.) (g - (4,9)) = (diEa+40% (7¢),g 71+ (Aap+ ¢)). @

An important analytical aspect of the ¥ W'y -functional is the coercivity lemma proved
in [3].
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LeMMA 2.5 (coercivity). Foreach (A,¢) € 6, there exist g € G, and a constant KéA’¢) >0,
where KéA’¢) depends on (X,g) and FW (A, §), such that

g - (A,)||e <K& (2.12)

Proof (see [3, Lemma 2.3]). The gauge transform is the Coulomb one given in the Lemma
2.1 O

Considering the gauge invariance of the YW ,-theory, and the fact that the gauge group
9, is an infinite-dimensional Lie group, we cannot hope to handle the problem in general.
From now on, we need to restrict the problem to the space, named Coulomb subspace,

€ = {(4.9) € € 14,9 < K. (213)

The superscripts & and N have been omitted here for simplicity, although each one
should be taken in account according to the problem. These choices of spaces come from
the nature of the %, action on €, they are suggested by the gauge fixing lemma and the
coercivity lemma (not shared by an actions in general).

3. Existence of a solution

3.1.Nonhomogeneous Palais-Smale condition —%. In the variational formulation, the
problems % and N (1.7) are written as

{grad(ﬂ’%)m,@ - (®,0),

(A, ¢)lax 5= (Ao, o),
(3.1)

N grad (YW,)(A,¢) = (0,0),
(%) =0, vAg=0.

The equations in (1.7) may not admit a solution for any pair (©,0) € Q'(ad(u)) @
I'($L). In finite dimension, if we consider a function f : X — R, the analogous question
would be to find a point p € X such that, for a fixed vector u, grad(f)(p) = u. This ques-
tion is more subtle if f is invariant under a Lie group action on X. Therefore, we need a
hypothesis about the pair (®,0) € Q'(ad(u)) ® T'(¥F).

Condition 3.1 (¥). Let (®,0) € LY"?(Q'(ad(1))) @ (LY*(I'(FE)) N L (I'(FY))) be a pair
such that there exists a sequence {(A,,$,)} ez C €S (2.13) with the following properties:

(1) {(An,pn)tnez C LY2(sdg) X (LY2(L(FE)) U L*(I'(FE))) and there exists a constant

Cw >0 such that, forall n € Z, [|¢, o < Coo,

(2) there exists ¢ € R such that, for all n € Z, FW o (As, du) < ¢,

(3) the sequence {d(SWa) 4,4, }nez C (LY*(Q'(ad(wy))) ® LY*(I'(F)))*, of linear

functionals, converges weakly to

Lo+Ly: TGy — R, (3.2)
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where
Lo(A) = L<®,A>, Ly (V) = L‘"’W (3.3)

3.2. Strong convergence of {(A,,$,)}nez in L>2. As a consequence of Lemma 2.5, the
sequence {(An, ¢n)}nez given by the #-condition converges to a pair (A, ¢);

(1) weakly in 6,,
(2) weakly in L*(A, x [(F)),
(3) strongly in LP(sdy X I'(FY)), for every p < 4.

Remark 3.2. Let {A,}nen C L? be a converging sequence in L? satisfying d* A, = 0, for all
neN,andlet A = lim,_. A, € L%. So, d*A = 0, once
[(d*A,p)| < [A= Ayl - |dp] L2 (3.4)

forall p € Q%ad(uy)).

Tueorem 3.3. The limit (A,¢) € L2(Ay X [(F7)), obtained as a limit of the sequence
{(An, dn)} nez, is a weak solution of (1.7).

Proof. The proof goes along the same lines as in the 2nd step in the proof of the compact-
ness theorem in [3].

(1) For every A € o,

A (SWe) 4,9, " A= H Re {(Fy,,da,A) +4(V*" ($,),D(A)) }dx

X (3.5)

+J Re {A A %Fy,},
X

where
(a) ®: QY (uy) — QY(FY) is the linear operator ®(A) = A(¢); its dual is defined
in (1.8). Assuming ¢ € L* (Lemma 3.4), it follows that

lim dl (EfOWa)(Am%) A= d1 (Efowa)(A,gb) - A (36)

n—oo

Therefore, di (FWo)(ap) - A= [x(O,A),
(b) A A *xF4 = —(A,F4)dx; A dx; A dxs. Since the above equation is true for all
A, let supp(A) C 90X, s0 F4 =0 (= i*(*F4) =0).
(2) Forevery V e I'(¥7),

B (FWa) 49V = JXReSL(vAn(pvanV < |¢n| +kg 2., >}

(3.7)
v Rel(vg, 7)),
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Analogously, it follows that (A, ¢) is a weak solution of the equation
(W) gy V = Lw, V), (3.8)

So, in the N'-problem, V4¢ = 0. 0

In order to pursue the strong L'?-convergence for the sequence {(A,,¢n)} ez, we ob-
tain in the following an upper bound for ||¢|l;~, whenever (A, ¢) is a weak solution.

LEmMA 3.4. Let (A, ) be a solution of either 9 or N in (1.7), so the following hold.

1) If o = 0, then there exists a constant kx 4, depending on the Riemannian metric on X,
such that

Pl < kx,gvol(X). (3.9)
2) If 0 # 0, then there exist constant ¢, = ¢1(X,g) and ¢; = ¢2(X,g) such that
pllre < c1+callolls,. (3.10)

In particular, if o € L™, then ¢ € L.

Proof. Fix r € R and suppose that there is a ball B,-1(xp), around the point x5 € X,
such that

|¢p(x)| >r, Vx€EByi(x). (3.11)
Define
. (1—|—¢|)¢ ifx € Bt (x0), )
0 if x € X — By-1 (x0).
So,
Inl < 1¢l,
T BTV g (1 oy
= |vn|2=r2<¢|’$‘f>2+2r<1—|;l) ‘p[;‘f)er( |¢|) |ve? (3.13)

vl V12
= Vil < var(1- |¢|> ¢ +(1- |¢>|) Vol
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Since r < |¢],

|vy|* < 4|Vl

(3.14)

Hence, by (3.13) and (3.14), n € L"2. The directional derivative of W, in direction 7 is

given by

AWy O = [ [(729,90 + 9

By (2.9),

[ [rgomm + 2 ke 1191 )] - J (o (1= 157)4)-

However,

JX<VA¢’VA”>:JX[<¢|ZTS¢> #(1- |¢|>'V‘/"2]

So,

[ 2 gi001-n1 < [ (o (1= 57 )9) < o191 =)

Hence,

L(w—r)("b'z 2141 lo1) <0.

Since r < |¢(x)], whenever x € B,-1(xy), it follows that
(191> + k) 19l <4lol, a.e. inB.1(xp).

There are two cases to be analysed independently.
(1) o = 0. In this case, we get

(191> +kg) 9l <0, aee.

The scalar curvature plays a central role here: if k; > 0, then ¢ = 0; otherwise,

|¢| < max {0, (—kg) "’}

g\¢|(|¢| "]

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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Since X is compact, we let ky ¢ = maxyex {0, [—ky(x)]"?}, and so,
1@l < kx,g VOI(X). (3.23)
(2) Let 0 # 0. The inequality (3.20) implies that
|1 +kglp| —4lo| <0, ae. (3.24)
Consider the polynomial
Qo) (W) =W’ +kew —4|0(x)]. (3.25)
An estimate for |¢| is obtained by estimating the largest real number w satisfying Qg (x) (W)

< 0. Qq(x) being monic implies that lim,,—. . Qg (x) (W) = +00. So, either Qy(x) >0, whenever
w >0, or there exists a root p € (0, ). The first case would imply that

Qotn (|9(x)]) >0, ae, (3.26)

contradicting (3.20). By the same argument, there exists a root p € (0,00) such that
Qo(x)(w) changes its sign in a neighborhood of p. Let p be the largest root in (0, ) with
this property. By the Corollary A.2, there exist constants ¢; = ¢;(X,g) and ¢, such that

lpl<ci+c|a(x)] . (3.27)
Consequently,
|p(x)| <cr+ea]o(x)] 7 ae.inBo (x0) (3.28)
and
lpllze < Cr+ Callall3s, restricted to B,-1 (xo), (3.29)

where C;, C; are constants depending on vol(B,-1(xp)). The inequality (3.29) can be ex-
tended over X by using a C* partition of unity. Moreover, if 0 € L%, then

¢l < C1+ Callalld, (3.30)

where C;, C, are constants depending on vol(X). O
A sort of concentration lemma, proved in [3], can be extended as follows.
LemMa 3.5. Let {(Ay, §n)}nez be the sequence given by the ¥-Condition 3.1. Then,

lim | (®*(vA¢,),A,—A) =0. (3.31)

n—o Jx
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Proof. By (1.8),

lim | (®*(v4¢,),A, —A) = ,1152, JX <v?n¢m¢n> (i, A — A),

n—oo X

lim <V?ﬂ¢n>¢n> ) <77i’An _A>

n—oo X

<tim [ 172 0nga) I*- [ Gmaan—a) |

(3.32)
<tim[ [ 1901 gul?] [ 140-al
n— oo X X
<timeo [ [ 1926,12] - lau - Al
n—oo X
. 2
< im0l 14~ Al =0
O

THEOREM 3.6. Let (©,0) be a pair satisfying the ¥-Condition 3.1. Then, the sequence
{(An, 1)} nez, given by Condition 3.1, converges strongly to (A, ¢) € €.

Proof. From Theorem 3.3, {(Ay,¢n)}nez converges weakly in LY to (A,¢) € €,. The
proof is splitted into 2 parts.

(1) limy—w [A; — Allpi2e = 0. Let d* : Q'(ad(u;)) — Q°(ad(u;)). The operator d :
ker(d*) — Q?(ad(u;)) being elliptic implies, by the fundamental elliptic estimate, that

140 = Al = clld(An = A) 1 + 14, — Al (333)

The first term in the right-hand side is controlled as follows:

ldA, ~dallf: = [ (d(4, - 4).d(4, - 4))
- | (dAnd(a, - 2) - | (dad(a,-4))
X X
- JX (d*Fa,,An—A) - L (d*Fa, Ay — A)
= d(IWa) a9, (An = A) = 4JX (@ (VA ¢,), A, — A) (3.34)
— (W) (A= A) 4 (©%(749),4, - 4) +0(1)
- —4HX (D (V46,), Ay — A) +JX (®* (749), A, —A>}

+0o(1), %i}gloo(l) =0.

Thus, it follows from Lemma 3.5 that lim,,_. ||A, — All112 = 0, and consequently, A,, — A
strongly in L*.
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(2) limy— o ”(/)n - ¢HLL2 =0.
(1) (2)

170, — 70| = f (V00 V° (¢ — 9)) —J (VO9, V" (¢ —¢)). (3.35)
X X

The term (1) leads to

[ RERISRCE)
= [ (= A (74 = 40) 0 - 9))
= [ (T (0= 90) = | (s (90— 9))
X X
= [ AT G- 9+ | (Aunda (0= 9))

11)
, - ‘
= d(SWa) (4, ., j |¢| T3 (b= 9)
(1}) (13)
= [T A= 9 = [ (Au T (80 - )
X X
(14)

+ [ (Aginn(gn - )
X

(3.36)

The term (2) in (3.35) leads to similar terms named (21), (22), (23), and (24). We analyze
each one of the above-obtained overbraced terms.

(a) Terms (11) and (21):

d(FWe) (4,9, (9 I W)n 19l 4,6, - 9)+o01)
|2+ itk
(o J el tke g, g7 1L g, g ot

< (o= 9)~ |, |¢" 125 (4,9, - 9) o)
|¢n |
4

18l -l = 91l + oD,

<1101 110 — 911 +|
(3.37)

where lim,,—.. 0(1) = 0. By the similarity between (11) and (21), we conclude the
boundedness of term (22).
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(b) Terms (12) and (22):
(1) term (12):

R
— [ (T (A=) (9= 8D + | (704 (80 - 9))

(3.38)
2 4 4
<[ 19l [ Tan-al | 1gn-l
[ 1vhgul? | 146,
(ii) term (22)
J (VA Ay J |v4¢ | J |A(¢—¢) |°. (3.39)
The term [y |V4¢|? is bounded by Proposition 4.1 and A € C° by Theorem
4.4.
(¢) Term {(13)-(23)}:
| (407 (6= 90) - | (46,94 (60— )
X b
)
[ - 09T G0+ [ (AT -9 G0

(ii)
- [ (=087 9= 9) - | (4994 (60— 9))

In each of the last two lines above, the first terms are bounded by [|A, — All1s,
while the term {(i)-(ii)} can be written as

N

J <(A_An)¢n,vA"(¢n_¢)>+J <An(¢n_¢))vAn(¢n_¢)>
X X
(Ay—A) (3.41)

+ | (4. (=) (.- 9)).

So, it is also bounded by [|A, — All 4.
(d) Term {(14)-(24)}:

[ (npna J (49,4 (9~ 9))
j<An¢n (4, - 4)(¢ j<A ~A)nAg—9)  (42)

+[ 146 ¢

Since A € CY, it follows that lim,,—.« [[A(¢n — ¢) 11> = O
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4. Regularity of the solution (A, ¢)
Let B = {e;; 1 <i <4} be an orthonormal frame fixed on TX with the following proper-
ties; for all i, j € {1,2,3,4}:

(1) [eiej] =0,

(2) Veej =0 (V = Levi-Civita connection on X).

Let f* = {dxy,...,dx,} be the dual frame induced on . From the 2nd property of the
frame f, it follows that V.dx/ = 0 for all i, j € {1,2,3,4}. For the sake of simplicity, let
V4 = v{. Therefore, V4 : Q%(ad(u)) — Q'(ad(uy)) is given by

vAg = 2 vig)dn = |vAg|* = |vi¢ |’
1

(4.1)
22 2
(v4) = X (Vivig)da ndu = | (74 = 3 | v vig .
k] kI
In this setting, the 2 form of curvature of the connection A is given by
(Fa)y; = Fu = Viv{ — vV, (4.2)

In order to compute the operator Ay = (VA)*VA : QO(FL) — QUF]), let x : QI(F,) —
Q* (¥ ,) be the Hodge operator and consider the identity

(74" = =% A% QN(S)) — QU(FL). (4.3)
Hence,
A= — % viavie. (4.4)
In this way,
|AA¢|“Z vivie, vivig)
—Z [V (Vi Vi vig)) = (Viig, ViV vie)]
—Z [Vi (Vi Vi Vi'0)) = (Vi VEVEVES) — (Vg Fi Vi) ]
=% VE((Vig.Vivie)) - v ((Vig vivie))] (45)
+% (Vi VAVEG) + (Vi Frvite) ]
—Z [vi (veg,vitvt ¢>>—v?<<v£¢,v£vf¢>>]+%|v£v?¢|2
+Z (Fug, Vi vie) +(Vig, Fuvi'¢)] |

k1
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and so,

()61 = [Aag|”+ 3 {| VR (T, V1 91'9)) |}+Z (Vi (i, e vie)) |}

ol
+ > [ (Fud, vidvie) [} + D1 <Vk¢’Flef‘¢>|}-
ol ol
(4.6)

Now, by applying the inequalities
r
(Zai) <K > |ail’, >ai<> Jai (4.7)
i i i=1 i=1
to (4.6), we get

/2
[(vA)’ 17 <Ky - [Aag|” + K, - D {|VE((VAg, vEVEe)) |77}
k,l

+Kp > A VE (R0, vEvie)) |77} (4.8)
k,l

+> {1 (Fug, Vipvie) |72+ {1 (Vi Fuvite) |7,
k,l k,l

After integrating, it follows that
k- 19 811Es < 18agllEs + Kz - [[949] o ths - IEA (1],

R AT RIE G AR T I

S [ ot ot oot 7.

The boundedness of the right-hand side of (4.9) results from the analysis of each term.

ProprosITION 4.1. Let (A,¢) € €, be a solution of equations in (1.7). If 0 € L%, then
(1) vAp e L2,
(2) AA¢ el

Proof. (1) VA¢$ € L%

(86,9 + (225 192 = (0,9)
(4.10)

= |VA‘/’|2 (|¢| )|</>|2 (o ,¢)<—|0|2+e |p12.

Therefore,

|VA¢|2<é|0|2 ( )|¢|2 L (4.11)
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From Lemma 3.4, there exists a polynomial p, with coefficients depending on (X, g) and €,
such that

194117 < p(lloll). (4.12)
So, VA¢ € L2.
(Z)AA(pELZ:
|</>|2
(Aag,Aag) + £($,A40) = (0,A40); (4.13)
let0<e<1,
k
agl+ B 0012 (6,00) < L1at 4 mag?
; (4.14)
(1-e) [ang )+ 2 gy 2
By the boundedness of the term
L|¢|Z-|vA¢|2<||¢||§o-||vA¢||iz, (4.15)

one deduces the existence of a polynomial g, with coefficients depending on € and (X, g),
such that

|Aa¢]12 < g(llolle). (4.16)
0

PrROPOSITION 4.2. Let (A, ¢) be solutions of the FW o-equations, where (©,0) € L2 X (L2 n
L*®), then F4 € L1, for all g < oo.

Proof. By (1.8), ®*(v4¢) = (1/2)VA(I¢|?), and so,
d*Fy +40* (v49) = © = ||d*Fal’s < 412, + 1Oz (4.17)

There are two cases to be analysed.

(1) Fa is harmonic. Since the Laplacian defined on u;-forms is an elliptic operator,
the fundamental inequality for elliptic operators asserts that there exists a constant Cy
such that

||Fallpea < [|AFAl|ca + Cil|Fall-. (4.18)
Consequently, F4 being harmonic implies, for all kK € N, that

[IFalliso < Cil[Fall,» = Fa € C™. (4.19)
(2) F4 is not harmonic. In this case, since ® € L2, ¢ € L* and

ApFy = d(($,V*¢)) +dO = (¢,Fa(¢)) +dO, (4.20)
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it follows that F4 € L*2. Therefore, by the Sobolev embedding theorem, F4 € L4, for all
q < oo. O

PrOPOSITION 4.3. Let (A, ¢) be solutions of the SW y-equations, where (@,0) € L2 x (L2 n
L>), then (V4)2¢ € LP, forall 1 < p < 2.

Proof. In (4.9), we must take care of the last terms.
(1) F(vA¢) € L?, for all 1 < p < 2. By Young’s inequality,

(VA1 < [1Eallzpe-n - 1Vl (4.21)

(2) There is no contribution from the divergent terms, since

[ U980 19400 172) < vl [ (192 (2,94 506) ). (422)

In the same way,

S [ vt cote.vivien | =0,
kol ¥

. (4.23)
> [ AIvt (i ivion |” -0
k]
The estimates above applied to (4.9) implies that
1Tl < kllAagllfs + Kl VAL + ksl [ g1, (4.24)
+ k4||FA(¢)||€P + k5||FA||LP/(2-P) ' ||VA¢||€1’- O

Thus, ¢ € L*?, for all 1 < p < 2. Considering that ¢ € L2, the bootstrap argument
applied on (1.7) implies that ¢ € L3?, for every k > 2 and 1 < p < 2. Hence, by Sobolev
embedding theorem, ¢ € C°.

Tueorem 4.4. Let (A,¢) be a solution of the SW,-equations, where (®,0) €
LF2(Q(ad(w)))) ® (LF*(T(FE)) N L= (T(FE))), then (A,¢) € L2 x (K22 N L*), for
all 1 < p < 2. Moreover, ifk > 2, then (A,¢) € C" X C', for all r < k.

Proof. (1)If@® € L*?2, then by Proposition 4.2 F4 € L¥*2. Consequently, by Corollary 2.2,
A € [F22,

(2) The Sobolev class of ¢ is obtained by the bootstrap argument. O
Appendix

Estimates for solutions of 3rd-degree equation

Let p,q € R and consider the equation

X+ px+q=0. (A.1)



90 Boundary value problems for the ¥W',-equations

ProrosiTioN A.1. The solutions of (A.1) are given in [2] by

X1 =21 +2, X =21+, y3 =21+ M2, (A.2)
where
[ 4, _if _r.e
zZ1 = 2+\/5, z = 5 VD, D—27+4, (A.3)

and A € C satisfies A*> = 1.

CorOLLARY A.2. Let p and q be negative real numbers. So, the solutions of (A.1) are esti-
mated according to the following cases:

(1) D= 0:
g8 L a1,

|x,|s3+3|q|+12q TP (A.4)

(2) D<O0:
3] =3+ 2+ 5l (A3)

6 81

Proof. Since

lxi| < |z1] + 2|, (A.6)

it is enough to estimate |z; | and |z, |. The basics identities needed are the following: sup-
pose x > 0, whence

1 1
\Z/J_CSI‘FEX, \3/}§1+§x. (A.7)

(1) D = 0. In this case, 21,2, € R and

T B G l’_QZ‘él 1
|21 | 2+\/5‘51+3 2+\/5 53+6|q|+6D. (A.8)

Thus,
4 1 1, 1
<—+-lgl+=—=q*+—p’. A9
The same estimate can be obtained for |z;|. Hence,

.81 15,1 5
|x,|s3+3|q|+12q +81p. (A.10)



Celso Melchiades Doria 91

(2) D < 0. In this case, z;,z, € C — R. Since D € R, we can write /D = iJ/|D| and

z =,3/—%q+i\2/5, 22:,3/—%11—1\2/13. (A.11)

Therefore,
y sl 1, 1 1, 1, ,
| =y +IDI<1+—=g*+5IDI <1+ =¢*+—Ipl’,
|z =g +IDI<1+ 3 + 51D LTl (A12)
|Z‘|<§+iq2+_1 |p|3
T2 12 162
Hence,
L, 1,53
|xi| <3+=g*+—Ipl°. (A.13)
6 81
O
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