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1. Introduction

In recent years, impulsive differential equations have become a very active area of research
and we refer the reader to the monographs [8] and the articles [6, 9, 10, 14, 15], where
properties of their solutions are studied and extensive bibliographies are given. In conse-
quence, it is very important to develop a complete basic theory of impulsive differential
equations. Also, infinite interval problems have been extensive studied, see [1–5, 11, 12].

In this paper we study the existence of positive solutions for the following boundary
value problem (BVP) with impulses:

y′′ + g(t, y, y′)= 0, 0 < t <∞, t �= tk,

Δy′
(
tk
)= bk y

′(tk
)
, Δy

(
tk
)= ak y

(
tk
)
, k = 1,2, . . . ,

y(0)= 0, y bounded on [0,∞),

(1.1)

where tk < tk+1, limk→∞ tk =∞, Δy′(tk)= y′(t+k )− y′(t−k ), Δy(tk)= y(t+k )− y(t−k ), and g is
continuous except {tk}×R×R; we assume that for k ∈N+ = {1,2, . . .} and x, y ∈R there
exist the limits

lim
t→t−k

g(t,x, y)= g
(
tk,x, y

)
, lim

t→t+k
g(t,x, y). (1.2)

The problems of the above type without impulses have been discussed by several au-
thors in the literature, we refer the reader to the pioneer works of Agarwal and O’Regan
[1, 2, 4] and Ma [12] and Constantin [11]. But as far as we know the publication on solv-
ability of infinity interval problems with impulses is fewer [15]. In this paper we want to
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2 Existence of positive solution for IBVP on infinity intervals

fill in this gap and extend the existence results on the case of infinity interval problems
with impulses.

Motivated by works of [2, 12], we use the well-known Leray-Schauder continuation
theorem [13] to establish new results on finite intervals [0,n] and use a diagonalization
argument to get positive solutions on infinity intervals.

Let J = [0,a], a is a constant or a= +∞, in order to define the concept of solution for
BVP (1.1), we introduce the following spaces of functions:

PC(J)= {u : J →R, u is continuous at t �= tk, u(t+k ), u(t
−
k ) exist, and u(t−k )= u(tk)};

PC1(J)= {u∈ PC(J) : u is continuously differentiable at t �= tk, u′(0+), u′(t+k ), u
′(t−k )

exist, and u′(t−k )= u′(tk)};
PC2(J)= {u∈ PC1(J) : u is twice continuously differentiable at t �= tk}.
Note that PC(J) and PC1(J) are Banach spaces with the norms

‖u‖∞ = sup
{∣∣u(t)

∣
∣ : t ∈ J

}
, ‖u‖1 =max

{‖u‖∞,‖u′‖∞
}
, (1.3)

respectively.

Definition 1.1. By a positive solution of BVP (1.1), one means a function y(t) satisfying
the following conditions:

(i) y ∈ PC1[0,∞);
(ii) y(t) > 0 for t ∈ (0,∞) and satisfies boundary condition y(0) = 0, y bounded on

[0,∞);
(iii) y(t) satisfies each equality of (1.1).

Definition 1.2. The set � is said to be quasi-equicontinuous in [0,c] if for any ε > 0, there
exists a δ > 0 such that if x ∈�, k ∈ Z, t∗, t∗∗ ∈ (tk−1, tk]∩ [0,c], and |t∗ − t∗∗| < δ, then
|x(t∗)− x(t∗∗)| < ε.

Lemma 1.3 (compactness criterion [8]). The set �⊂ PC([0,c],Rn) is relatively compact if
and only if

(1) � is bounded;
(2) � is quasi-equicontinuous in [0,c].

2. Main results

Theorem 2.1. Let g : [0,∞)× [0,∈ b = 0, L−1 exist and is continuous.
On the other hand, solving (8) is equivalent to finding a fixed point of

L−1Ni : PC(I)−→ PC(I) (2.1)

with i : PC1(I)→ PC(I) the compact inclusion of PC1(I) in PC(I). Now, Schauder’s fixed
point theorem guarantees the existence of at least a fixed point since L−1Ni is continuous and
compact.

Next, prove that every solution u of (8) satisfies

α(t)≤ u(t)≤ β(t) on I. (2.2)
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By the definition of p(t,x), ∞)× [0,∞)→ [0,∞). Assume that the following hypothesis
hold.
(A1) For any constant H > 0, there exists a function ψH continuous on [0,∞) and positive

on (0,∞), and a constant γ, 0≤ γ < 1, with g(t,u,v)≥ ψH(t)vγ on [0,∞)× [0,H]2.
(A2) There exist functions p,r : [0,∞)→ [0,∞) such that

g(t,u,v)≤ p(t)v+ r(t) on [0,∞)× [0,∞)2,

P1 =
∫∞

0
sp(s)ds <∞, R1 =

∫∞

0
sr(s)ds <∞,

P =
∫∞

0
p(s)ds < 1, R=

∫∞

0
r(s)ds <∞.

(2.3)

(A3) bk ≥ 0, ak ≥−1 and
∑∞

k=1 |ak| ≤ A < 1.
Then BVP (1.1) has at least one solution.

To prove Theorem 2.1, we need the following preliminary lemmas.

Lemma 2.2. Let e(t)∈ C[0,∞), e(t)≥ 0, bk ≥ 0, x ∈ PC1[0,∞)∩PC2[0,∞) be such that

x′′(t) + e(t)= 0, t ∈ (0,b), t �= tk,

Δx′
(
tk
)= bkx

′(tk
)
,

(2.4)

and x(0)= 0, x′(b)= 0. Then

‖x′‖∞ ≤
∫ b

0
e(s)ds. (2.5)

Proof. Since −x′′(t)= e(t), x′(b)= 0, then x′(t)≥ 0. Integrating from t to b we obtain

x′(t)=
∫ b

t
e(s)ds−

∑

t<tk<b

bkx
′(tk

)≤
∫ b

t
e(s)ds≤

∫ b

0
e(s)ds. (2.6)

�

Lemma 2.3. Let g : [0,∞)× [0,∞)× [0,∞)→ [0,∞) and conditions (A1)–(A3) hold. Let n
be a positive integer and consider the boundary value problem

y′′ + g(t, y, y′)= 0, 0 < t < n, t �= tk,

Δy′
(
tk
)= bk y

′(tk
)
, Δy

(
tk
)= ak y

(
tk
)
,

y(0)= 0, y′(n)= 0.

(2.2n)

Then (2.2n) has at least one positive solution yn ∈ PC1[0,n] and there is a constant M > 0
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independent of n such that

(

(1− γ)
∫ n

t

∏

t<tk<s

(
1+ bk

)γ−1
ψM(s)ds

)1/(1−γ)
≤ y′n(t)≤M, t ∈ [0,n], (2.7)

∫ t

0

∏

s<tk<t

(
1+ ak

)
(

(1− γ)
∫ n

s

∏

s<tk<τ

(
1+ bk

)γ−1
ψM(τ)dτ

)1/(1−γ)
ds≤ yn(t)≤M, t ∈ [0,n].

(2.8)

Proof. Let n∈N+ be fixed and Y = X = PC1[0,n]. We first show that

y′′ + g∗(t, y, y′)= 0, 0 < t < n, t �= tk,

Δy′
(
tk
)= bk y

′(tk
)
, Δy

(
tk
)= ak y

(
tk
)
,

y(0)= 0, y′(n)= 0

(2.9)

has at least one solution, here

g∗(t, y,v)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g(t, y,v), y ≥ 0, v ≥ 0,

g(t, y,0), y ≥ 0, v < 0,

g(t,0,v), y < 0, v ≥ 0,

g(t,0,0), y < 0, v < 0.

(2.10)

Define a linear operator Ln :D(Ln)⊂ X → Y by setting

D
(
Ln
)= {x ∈ PC2[0,n] : x(0)= x′(n)= 0

}
, (2.11)

and for y ∈ D(Ln) : Lny = (−y′′,Δy′(tk),Δy(tk)). We also define a nonlinear mapping
F : X → Y by setting

(Fy)(t)= (g∗(t, y(t), y′(t)),bk y′
(
tk
)
,ak y

(
tk
))
. (2.12)

From the assumption of g, we see that F is a bounded mapping from X to Y . Next, it is
easy to see that Ln :D(Ln)→ Y is one-to-one mapping. Moreover, it follows easily using
Lemma 1.3 that (Ln)−1F : X → X is a compact mapping.

We note that y ∈ PC1[0,n] is a solution of (2.9) if and only if y is a fixed point of the
equation

y = (Ln
)−1

Fy. (2.13)

We apply the Leray-Schauder continuation theorem to obtain the existence of a solution
for y = (Ln)−1Fy.
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To do this, it suffices to verify that the set of all possible solutions of the family of
equations

y′′ + λg∗(t, y, y′)= 0, 0 < t < n, t �= tk,

Δy′
(
tk
)= λbk y

′(tk
)
, Δy

(
tk
)= λak y

(
tk
)
,

y(0)= y′(n)= 0

(2.5λ)

is a prior bounded in PC1[0,n] by a constant independent of 0 < λ < 1.
Let y ∈ PC1[0,n] be any solutions of (2.5λ), then y′ ≥ 0 and y ≥ 0 on [0,n]. Applying

Lemma 2.2 and using (2.5λ), we can get that

y′(t)≤
∫ n

0
g∗
(
s, y(s), y′(s)

)
ds≤

∫ n

0
p(s)y′(s)ds+

∫ n

0
r(s)ds≤ P‖y′‖∞ +R, (2.14)

so

‖y′‖∞ ≤ R

1−P
:=M1. (2.15)

From (2.5λ) and bk ≥ 0, we have

y′(t)= λ
∫ n

t
g∗
(
s, y(s), y′(s)

)
ds− λ

∑

t<tn<n

bk y
′(tk

)≤
∫ n

t
g∗
(
s, y(s), y′(s)

)
ds. (2.16)

Integrate (2.16) from 0 to t to obtain

y(t)≤ t
∫ n

t
g∗
(
s, y(s), y′(s)

)
ds+

∫ t

0
sg∗
(
s, y(s), y′(s)

)
ds+ λ

∑

0<tk<t

Δy
(
tk
)

≤
∫ n

t
sg∗
(
s, y(s), y′(s)

)
ds+

∫ t

0
sg∗
(
s, y(s), y′(s)

)
ds+ λ

∑

0<tk<t

ak y
(
tk
)

≤ ‖y′‖∞
∫ n

0
sp(s)ds+

∫ n

0
sr(s)ds+‖y‖∞

∑

0<tk<t

∣
∣ak
∣
∣

≤ P1M1 +R1 +A‖y‖∞.

(2.17)

Hence we have

‖y‖∞ ≤ PM1 +R1

1−A
:=M2. (2.18)

Let

M =max
{
M1,M2

}
, (2.19)
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it follows that

‖y‖1 ≤M. (2.20)

Note thatM is independent of λ.
Therefore (2.20) implies that (2.5λ) has a solution yn with ‖yn‖1 ≤M. In fact,

0≤ yn(t)≤M, 0≤ y′n(t)≤M for t ∈ [0,n], (2.21)

and yn satisfies (2.2n).
Finally, it is easy to see from (2.19) thatM is independent of n∈N+. Now (A1) guar-

antees the existence of a function ψM(t) continuous on [0,∞) and positive on (0,∞),
a constant γ ∈ [0,1), with g(t, yn(t), y′n(t)) ≥ ψM(t)(y′n(t))γ for (t, yn(t), y′n(t)) ∈ [0,n]×
[0,M]2.

From (2.2n) we have

−y′′n (t)≥ ψM(t)
(
y′n(t)

)γ
, (2.22)

integrate the above inequality from t to n to obtain

y′n(t)≥
(

(1− γ)
∫ n

t

∏

t<tk<s

(
1+ bk

)γ−1
ψM(s)ds

)1/(1−γ)
, t ∈ [0,n], (2.23)

and so

yn(t)≥
∫ t

0

∏

s<tk<t

(
1+ ak

)
(

(1− γ)
∫ n

s

∏

s<tk<τ

(
1+ bk

)γ−1
ψM(τ)dτ

)1/(1−γ)
ds, t ∈ [0,n],

(2.24)

which completes the proof. �

Proof of Theorem 2.1. From (2.2n) and (2.21), we know that

0≤−y′′n ≤ φ(t), t ∈ [0,n], (2.25)

where φ(t) := p(t)M + r(t), andM is given by (2.19). In addition, we have by bk ≥ 0 that

y′n(t)≤
∫ n

t
φ(s)ds≤

∫∞

t
φ(s)ds for t ∈ [0,n]. (2.26)

To show that BVP (1.1) has a solution, we will apply the diagonalization argument. Let

un(t)=
⎧
⎨

⎩
yn(t), t ∈ [0,n],

yn(n), t ∈ [n,∞).
(2.27)
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Notice that un ∈ PC1[0,∞) with

0≤ un(t)≤M, 0≤ u′n(t)≤M for t ∈ [0,∞). (2.28)

From the definition of un, we get for s1,s2 ∈ (tk, tk+1] that

∣
∣u′n

(
s1
)−u′n

(
s2
)∣∣≤

∣
∣
∣
∣

∫ s2

s1
φ(s)ds

∣
∣
∣
∣. (2.29)

In addition

u′n(t)≤
∫∞

t
φ(s)ds for t ∈ [0,∞), (2.30)

un(t)≥
∫ t

0

∏

s<tk<t

(
1+ ak

)
(

(1− γ)
∫ n

s

∏

s<tk<τ

(
1+ bk

)γ−1
ψM(τ)dτ

)1/(1−γ)
ds, t ∈ [0,n].

(2.31)

In particular

un(t)≥
∫ t

0

∏

s<tk<t

(
1+ ak

)
(

(1− γ)
∫ 1

s

∏

s<tk<τ

(
1+ bk

)γ−1
ψM(τ)dτ

)1/(1−γ)
ds

≡ a1(t), t ∈ [0,1].

(2.32)

Lemma 1.3 guarantees the existence of a subsequence N1 of N+ and a function z1 ∈
PC1[0,1] with u

( j)
n converging uniformly on [0,1] to z

( j)
1 as n→∞ through N1, here

j = 0,1. Also from (2.32), z1(t)≥ a1(t) for t ∈ [0,1] (in particular, z1 > 0 on (0, 1]).
Let N+

1 =N1\{1}, notice from (2.31) that

un(t)≥
∫ t

0

∏

s<tk<t

(
1+ ak

)
(

(1− γ)
∫ 2

s

∏

s<tk<τ

(
1+ bk

)γ−1
ψM(τ)dτ

)1/(1−γ)
ds

≡ a2(t), t ∈ [0,2].

(2.33)

Lemma 1.3 guarantees the existence of a subsequence N2 of N+
1 and a function z2 ∈

PC1[0,2] with u
( j)
n converging uniformly on [0,2] to z

( j)
2 as n→∞ through N2, here

j = 0,1. Also from (2.41), z2(t)≥ a2(t) for t ∈ [0,2] (in particular, z2 > 0 on (0,2]). Note
that z2 = z1 on [0, 1], since N2 ⊂N+

1 . Let N
+
2 =N2\{2}, proceed inductively to obtain for

k = 1,2, . . . , a subsequence Nk of N+
k−1 and a function zk ∈ PC1[0,k] with u

( j)
n converging

uniformly on [0,k] to z
( j)
k as n→∞ through Nk, here j = 0,1. Also

zk(t)≥ ak(t)

≡
∫ t

0

∏

s<tk<t

(
1+ ak

)
(

(1− γ)
∫ k

s

∏

s<tk<τ

(
1+ bk

)γ−1
ψM(τ)dτ

)1/(1−γ)
ds, t ∈ [0,k]

(2.34)

(so in particular, zk > 0 on (0,k]). Note that zk = zk−1 on [0,k− 1].
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Define a function y as follows: fix t ∈ (0,∞) and let k ∈N+ with t < k. Define y(t)=
zk(t). Note that y is well defined and y(t)= zk(t) > 0, we can do this for each t ∈ (0,∞)
and so y ∈ PC1[0,∞). In addition, 0≤ y(t)≤M, 0≤ y′(t)≤M, and

y′(t)≤
∫∞

t
φ(s)ds for t ∈ [0,∞). (2.35)

Fix x ∈ [0,∞) and choose k ≥ x, k ∈N+. Then for each n∈N+
k =Nk\{k}, we have

yn(x)= y′n(k)x+
∫ x

0

∫ k

s
g
(
τ, yn(τ), y′n(τ)

)
dτ ds−

∑

0<ti<k

bi y
′
n

(
ti
)
x

+
∑

0<ti≤x
bi y

′
n

(
ti
)(
x− ti

)
+
∑

0<ti<x

ai yn
(
ti
)
.

(2.36)

Let n→∞ through N+
k to obtain

zk(x)= z′k(k)x+
∫ x

0

∫ k

s
g
(
τ,zk(τ),z′k(τ)

)
dτ ds

−
∑

0<ti<k

biz
′
k

(
ti
)
x+

∑

0<ti≤x
biz

′
k

(
ti
)(
x− ti

)
+
∑

0<ti<x

aizk
(
ti
)
.

(2.37)

Thus

y(x)= y′(k)x+
∫ x

0

∫ k

s
g
(
τ, y(τ), y′(τ)

)
dτ ds

−
∑

0<ti<k

bi y
′(ti
)
x+

∑

0<ti≤x
bi y

′(ti
)(
x− ti

)
+
∑

0<ti<x

ai y
(
ti
)
.

(2.38)

Consequently y ∈ PC2(0,∞) with

y′′(t) + g
(
t, y(t), y′(t)

)= 0, 0 < t <∞, t �= tk,

Δy′
(
tk
)= bk y

′(tk
)
, Δy

(
tk
)= ak y

(
tk
)
.

(2.39)

Thus y is a solution of (1.1) with y > 0 on (0,∞). The proof is complete. �

Theorem 2.4. Let g : [0,∞)× [0,∞)× [0,∞)→ [0,∞). Assume that (A1), (A3) of Theorem
2.1 and the following condition hold.
(B1) g(t,x,v)≤ q(t)w(max{x,v}) on [0,∞)× [0,∞)× [0,∞)withw > 0 continuous and

nondecreasing on [0,∞), q(t)∈ C[0,∞).
(B2)

Q =
∫∞

0
q(s)ds <∞, Q1 =

∫∞

0
sq(s)ds <∞,

sup
c≥0

c

w(c)
> T =max

{
Q1

1−A
,Q
}
.

(2.40)

Then BVP (1.1) has at least one positive solution.
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Proof. ChooseM > 0 with

M

w(M)
> T. (2.41)

We first show that (2.9) has at least one solution. To the end, we consider the operator

y = λ
(
Ln
)−1

Fy, λ∈ (0,1), (2.42)

which is equivalent to (2.5λ). Let y ∈ PC1[0,n] be any solution of (2.5λ), then y ≥ 0,
y′ ≥ 0 on [0,n]. From (B1) we have

−y′′(t)≤ q(t)w
(‖y‖1

)
for t ∈ [0,n]. (2.43)

Integrate (2.43) from t to n to obtain

y′(t)≤w
(‖y‖1

)
∫ n

t
q(s)ds−

∑

t<tk<n

bk y
′(tk

)≤w
(‖y‖1

)
∫ n

t
q(s)ds (2.44)

so

y′(t)≤Qw
(‖y‖1

)
. (2.45)

Integrate (2.44) from 0 to t to obtain

y(t)≤w
(‖y‖1

)
∫ t

0

∫ n

s
q(τ)dτ ds+

∑

0<tk<t

ak y
(
tk
)≤w

(‖y‖1
)
∫ t

0
sq(s)ds+A‖y‖∞.

(2.46)

Combine (2.45) and (2.46) to find

‖y‖1 ≤ Tw
(‖y‖1

)
. (2.47)

Now (2.41) together with (2.47) implies ‖y‖1 �=M. Set

U = {u∈ PC1[0,n] : ‖u‖1 <M
}
, K = E = PC1[0,n]. (2.48)

Now the nonlinear alternative of Leray-Schauder type [7] guarantees that (Ln)−1N has a
fixed point, that is, (2.9) has a solution yn ∈ PC1[0,n], and

0≤ yn ≤M, 0≤ y′n ≤M. (2.49)

The other proof is similar to the proof of Theorem 2.1, here we omit it. �
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3. Examples

Example 3.1. Consider the boundary value problem

y′′ +η(y′)βe−t +μe−t = 0, 0 < t <∞,

Δy′
(
tk
)= 1

k
y′
(
tk
)
, Δy

(
tk
)= 2

3k(k+1)
y
(
tk
)
, k = 1,2, . . . ,

y(0)= 0, y bounded on [0,∞)

(3.1)

with β ∈ [0,1), η ∈ (0,1), μ > 0. Set g(t,u,v)= ηe−t(y′)β + μe−t. Take p(t)= ηe−t, r(t)=
μe−t, then g satisfies (A2) and P = η < 1. For each H > 0, take ψH(t) = ηe−t and γ = β,
then (A1) is satisfied. Furthermore,

bk = 1
k
> 0,

∞∑

k=1

∣
∣ak
∣
∣=

∞∑

k=1

2
3k(k+1)

= 2
3
< 1. (3.2)

Therefore, Theorem 2.1 now guarantees that (3.1) has a solution y ∈ PC1[0,∞) with y >
0 on (0,∞).

Example 3.2. Consider the boundary value problem

y′′ +
(
yα + (y′)β

)
e−t +μe−t = 0, 0 < t <∞,

Δy′
(
tk
)= y′

(
tk
)
, Δy

(
tk
)= 1

(k+1)2
y
(
tk
)
, k = 1,2, . . . ,

y(0)= 0, y bounded on [0,∞)

(3.3)

with α ∈ [0,1), β ∈ [0,1), μ > 0. We will apply Theorem 2.4 with q(t) = e−t, w(s) = sα +
sβ +μ. Clearly (A1), (A3), and (B1) hold. Also,

sup
c≥0

c

w(c)
= sup

c≥0
c

cα + cβ +μ
=∞, (3.4)

so (B2) is true. Theorem 2.4 shows that (3.3) has a solution y ∈ PC1[0,∞) with y > 0 on
(0,∞).

Remark 3.3. We cannot apply the results of [12] even if (3.3) has no impulses, since [12,
condition (2.3) of Theorem 2.1] is not satisfied.
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