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We study the existence of periodic solutions for second-order nonautonomous dynamical
systems. We give four sets of hypotheses which guarantee the existence of solutions. We
were able to weaken the hypotheses considerably from those used previously for such
systems. We employ a new saddle point theorem using linking methods.
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1. Introduction

We consider the following problem. One wishes to solve

−x′′(t)=∇xV
(
t,x(t)

)
, (1.1)

where

x(t)= (x1(t), . . . ,xn(t)
)

(1.2)

is a map from I = [0,T] to Rn such that each component xj(t) is a periodic function in
H1 with period T , and the function V(t,x)= V(t,x1, . . . ,xn) is continuous from Rn+1 to
R with

∇xV(t,x)=
(
∂V

∂x1
, . . . ,

∂V

∂xn

)
∈ C

(
Rn+1,Rn

)
. (1.3)

Here H1 represents the Hilbert space of periodic functions in L2(I) with generalized
derivatives in L2(I). The scalar product is given by

(u,v)H1 = (u′,v′) + (u,v). (1.4)

For each x ∈Rn, the function V(t,x) is periodic in t with period T .

Hindawi Publishing Corporation
Boundary Value Problems
Volume 2006, Article ID 25104, Pages 1–9
DOI 10.1155/BVP/2006/25104



2 Periodic solutions of second-order nonautonomous dynamical systems

We will study this problem under the following assumptions:
(1)

V(t,x)≥ 0, t ∈ I , x ∈Rn; (1.5)

(2) there are constantsm> 0, α≤ 6m2/T2 such that

V(t,x)≤ α, |x| ≤m, t ∈ I , x ∈Rn; (1.6)

(3) there is a constant μ > 2 such that

Hμ(t,x)

|x|2 ≤W(t)∈ L1(I), |x| ≥ C, t ∈ I , x ∈Rn, (1.7)

limsup
|x|→∞

Hμ(t,x)

|x|2 ≤ 0, (1.8)

where

Hμ(t,x)= μV(t,x)−∇xV(t,x) · x; (1.9)

(4) there is a subset e ⊂ I of positive measure such that

liminf
|x|→∞

V(t,x)
|x|2 > 0, t ∈ e. (1.10)

We have the following theorem.

Theorem 1.1. Under the above hypotheses, the system (1.1) has a solution.

As a variant of Theorem 1.1, we have the following one.

Theorem 1.2. The conclusion in Theorem 1.1 is the same if Hypothesis (2) is replaced by
(2′) there is a constant q > 2 such that

V(t,x)≤ C
(|x|q +1

)
, t ∈ I , x ∈Rn, (1.11)

and there are constantsm> 0, α < 2π2/T2 such that

V(t,x)≤ α|x|2, |x| ≤m, t ∈ I , x ∈Rn. (1.12)

We also have the following theorem.

Theorem 1.3. The conclusions of Theorems 1.1 and 1.2 hold if Hypothesis (3) is replaced by
(3′) there is a constant μ < 2 such that

Hμ(t,x)

|x|2 ≥−W(t)∈ L1(I), |x| ≥ C, t ∈ I , x ∈Rn,

liminf
|x|→∞

Hμ(t,x)

|x|2 ≥ 0.
(1.13)
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And we have the following theorem.

Theorem 1.4. The conclusion of Theorem 1.1 holds if Hypothesis (1) is replaced by
(1′)

0≤V(t,x)≤ C
(|x|2 + 1

)
, t ∈ I , x ∈Rn (1.14)

and Hypothesis (3) by
(3′′) the function given by

H(t,x)= 2V(t,x)−∇xV(t,x) · x (1.15)

satisfies

H(t,x)≤W(t)∈ L1(I), |x| ≥ C, t ∈ I , x ∈Rn,

H(t,x)−→−∞, |x| −→∞, t ∈ I , x ∈Rn.
(1.16)

The periodic nonautonomous problem

x′′(t)=∇xV
(
t,x(t)

)
(1.17)

has an extensive history in the case of singular systems (cf., e.g., Ambrosetti-Coti Zelati
[1]). The first to consider it for potentials satisfying (1.3) were Berger and Schechter [3].
We proved the existence of solutions to (1.17) under the condition that

V(t,x)−→∞ as |x| −→∞ (1.18)

uniformly for a.e. t ∈ I . Subsequently, Willem [16], Mawhin [6], Mawhin and Willem
[8], Tang [11, 12], Tang and Wu [13–15], Wu and Tang [17] and others proved existence
under various conditions (cf. the references given in these publications).

The periodic problem (1.1) was studied by Mawhin and Willem [7, 8], Long [5], Tang
and Wu [13–15] and others (cf. the refernces quoted in them). Ben-Naoum et al. [2]
and Nirenberg (cf. Ekeland and Ghoussoub [4]) proved the existence of nonconstant
solutions.

We will prove Theorems 1.1–1.4 in the next section.We use a linkingmethod of critical
point theory (cf. [9, 10]). These methods allow us to improve the previous results.

2. Proofs of the theorems

We now give the proof of Theorem 1.1.

Proof. Let X be the set of vector functions x(t) given by (1.2) and described above. It is a
Hilbert space with norm satisfying

‖x‖2X =
n∑

j=1

∥
∥xj
∥
∥2
H1 . (2.1)
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We also write

‖x‖2 =
n∑

j=1

∥
∥xj
∥
∥2, (2.2)

where ‖ · ‖ is the L2(I) norm.
Let

N = {x(t)∈ X : xj(t)≡ constant, 1≤ j ≤ n
}

(2.3)

and M = N⊥. The dimension of N is n, and X =M ⊕N . Proof of the following lemma
can be found in [7].

Lemma 2.1. If x ∈M, then

‖x‖2∞ ≤
T

12
‖x′‖2, ‖x‖ ≤ T

2π
‖x′‖. (2.4)

We define

G(x)= ‖x′‖2− 2
∫

I
V
(
t,x(t)

)
dt, x ∈ X. (2.5)

For each x ∈ X write x = v +w, where v ∈ N , w ∈M. For convenience, we will use the
following equivalent norm for X :

‖x‖2X = ‖w′‖2 +‖v‖2. (2.6)

If x ∈M and

‖x′‖2 = ρ2 = 12
T
m2, (2.7)

then Lemma 2.1 implies that ‖x‖∞ ≤m, and we have by Hypothesis (2) that V(t,x)≤ α.
Hence,

G(x)≥ ‖x′‖2− 2
∫

|x(t)|<m
αdt ≥ ρ2− 2αT ≥ 0. (2.8)

We also note that Hypothesis (1) implies

G(v)≤ 0, v ∈N. (2.9)

Take

A= ∂Bρ∩M, ρ2 = 12
T
m2, B =N , (2.10)

where

Bσ =
{
x ∈ X : ‖x‖X < σ

}
. (2.11)
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By [9, Theorem 1.1], A links B. (For background material on linking theory, cf. [10].)
Moreover, by (2.8) and (2.9), we have

sup
A
[−G]≤ 0≤ inf

B
[−G]. (2.12)

Hence, we may apply [9, Theorem 1.1] to conclude that there is a sequence {x(k)} ⊂ X
such that

G
(
x(k)
)=

∥
∥
∥
[
x(k)
]′∥∥
∥
2− 2

∫

I
V
(
t,x(k)(t)

)
dt −→ c ≤ 0, (2.13)

(
G′
(
x(k)
)
,z
)

2
= ([x(k)]′,z′)−

∫

I
∇xV

(
t,x(k)(t)

) · z(t)dt −→ 0, z ∈ X , (2.14)
(
G′
(
x(k)
)
,x(k)

)

2
=
∥
∥
∥
[
x(k)
]′∥∥
∥
2−
∫

I
∇xV

(
t,x(k)(t)

) · x(k)(t)dt −→ 0. (2.15)

If

ρk =
∥
∥x(k)

∥
∥
X ≤ C, (2.16)

then there is a renamed subsequence such that x(k) converges to a limit x ∈ X weakly in
X and uniformly on I . From (2.14) we see that

(
G′(x),z

)

2
= (x′,z′)−

∫

I
∇xV

(
t,x(t)

) · z(t)dt = 0, z ∈ X , (2.17)

from which we conclude easily that x is a solution of (1.1).
If

ρk =
∥
∥x(k)

∥
∥
X −→∞, (2.18)

let x̃(k) = x(k)/ρk. Then, ‖x̃(k)‖X = 1. Let x̃(k) = w̃(k) + ṽ(k), where w̃(k) ∈M and ṽ(k) ∈ N .
There is a renamed subsequence such that ‖[x̃(k)]′‖ → r and ‖x̃(k)‖→ τ, where r2 + τ2 = 1.
From (2.13) and (2.15) we obtain

∥
∥[x̃(k)

]′∥∥2− 2
∫
I V
(
t,x(k)(t)

)
dt

ρ2k
−→ 0,

∥
∥[x̃(k)

]′∥∥2−
∫
I∇xV

(
t,x(k)(t)

) · x(k)(t)dt
ρ2k

−→ 0.

(2.19)

Thus,

2
∫
I V
(
t,x(k)(t)

)
dt

ρ2k
−→ r2, (2.20)

∫
I∇xV

(
t,x(k)(t)

) · x(k)(t)dt
ρ2k

−→ r2. (2.21)
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Hence, by (1.9),

∫
I Hμ

(
t,x(k)(t)

)
dt

ρ2k
−→

(
μ

2
− 1
)
r2. (2.22)

Note that

∣
∣x̃(k)(t)

∣
∣≤ C

∥
∥x̃(k)

∥
∥
X = C. (2.23)

If

∣
∣x(k)(t)

∣
∣−→∞, (2.24)

then by (1.8)

limsup
Hμ
(
t,x(k)(t)

)

ρ2k
= limsup

Hμ
(
t,x(k)(t)

)

∣
∣x(k)(t)

∣
∣2

∣
∣x̃(k)(t)

∣
∣2 ≤ 0. (2.25)

If

∣
∣x(k)(t)

∣
∣≤ C, (2.26)

then

Hμ
(
t,x(k)(t)

)

ρ2k
−→ 0. (2.27)

Hence,

limsup

∫
I Hμ

(
t,x(k)(t)

)
dt

ρ2k
≤ 0. (2.28)

Hence by (2.22)

(
μ

2
− 1
)
r2 ≤ 0. (2.29)

If r �= 0, this contradicts the fact that μ > 2. If r = 0, then w̃(k) → 0 uniformly in I by
Lemma 2.1. Moreover, T|ṽ(k)|2 = ‖ṽ(k)‖2 → 1. Hence, there is a renamed subsequence
such that ṽ(k) → ṽ in N with |ṽ|2 = 1/T . Hence, x̃(k) → ṽ uniformly in I . Consequently,
|x(k)| →∞ uniformly in I . Thus, by Hypothesis (4),

liminf

∫
I V
(
t,x(k)(t)

)
dt

ρ2k
≥
∫

e
liminf

V
(
t,x(k)(t)

)

∣
∣x(k)(t)

∣
∣2

∣
∣x̃(k)(t)

∣
∣2dt > 0. (2.30)

This contradicts (2.20). Hence the ρk are bounded, and the proof is complete. �
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The proof of Theorem 1.2 is similar to that of Theorem 1.1 with the exception of the
inequality (2.8) resulting from Hypothesis (2). In its place we reason as follows: if x ∈M,
we have by Hypothesis (2′),

G(x)≥ ‖x′‖2− 2
∫

|x|<m
α
∣
∣x(t)

∣
∣2dt− 2C

∫

|x(t)|>m

(∣∣x(t)
∣
∣q +1

)
dt

≥ ‖x′‖2− 2α‖x‖2− 2C
(
1+m−q)

∫

|x(t)|>m

∣
∣x(t)

∣
∣qdt

≥ ‖x′‖2
(
1−

[
2αT2

4π2

])
−C′

∫

|x(t)|>m

∣
∣x(t)

∣
∣qdt

≥
(
1−

[
αT2

2π2

])
‖x‖2X −C′′

∫

I
‖x‖qXdt

≥
(
1−

[
αT2

2π2

])
‖x‖2X −C′′′‖x‖qX

=
(
1−

[
αT2

2π2

]
−C′′′‖x‖q−2X

)
‖x‖2X

(2.31)

by Lemma 2.1. Hence, we have the following lemma.

Lemma 2.2.

G(x)≥ ε‖x‖2X , ‖x‖X ≤ ρ, x ∈M (2.32)

for ρ > 0 sufficiently small, where ε < 1− [αT2/2π2].

The remainder of the proof is essentially the same.
In proving Theorem 1.3 we follow the proof of Theorem 1.1 until we reach (2.20).

Then we reason as follows. If
∣
∣x(k)(t)

∣
∣−→∞, (2.33)

then

liminf
Hμ
(
t,x(k)(t)

)

ρ2k
= liminf

Hμ
(
t,x(k)(t)

)

∣
∣x(k)(t)

∣
∣2

∣
∣x̃(k)(t)

∣
∣2 ≥ 0. (2.34)

If
∣
∣x(k)(t)

∣
∣≤ C, (2.35)

then by Hypothesis (3′),

Hμ
(
t,x(k)(t)

)

ρ2k
−→ 0. (2.36)

Hence,

liminf

∫
I Hμ

(
t,x(k)(t)

)
dt

ρ2k
≥ 0. (2.37)
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Thus by (2.22)

(
μ

2
− 1
)
r2 ≥ 0. (2.38)

If r �= 0, this contradicts the fact that μ < 2. If r = 0, then w̃(k) → 0 uniformly in I by
Lemma 2.1. Moreover, T|ṽ(k)|2 = ‖ṽ(k)‖2 → 1. Hence, there is a renamed subsequence
such that ṽ(k) → ṽ in N with |ṽ|2 = 1/T . Hence, x̃(k) → ṽ uniformly in I . Consequently,
|x(k)| →∞ uniformly in I . Thus, by Hypothesis (4),

liminf

∫
I V
(
t,x(k)(t)

)
dt

ρ2k
≥
∫

e
liminf

V
(
t,x(k)(t)

)

∣
∣x(k)(t)

∣
∣2

∣
∣x̃(k)(t)

∣
∣2dt > 0. (2.39)

This contradicts (2.20). Hence the ρk are bounded, and the proof is complete.
In proving Theorem 1.4, we follow the proof of Theorem 1.1 until (2.20). Assume first

that r > 0. Note that (2.13) and (2.15) imply that

∫

I
H
(
t,x(k)(t)

)
dt −→−c. (2.40)

On the other hand, by Hypothesis (1′), we have

0←− ∥∥[x̃(k)]′∥∥2− 2
∫

I

V
(
t,x(k)(t)

)
dt

ρ2k

≥ ∥∥[x̃(k)]′∥∥2− 2C
∫

I

(∣∣x̃(k)(t)
∣
∣2 + ρ−2k

)
dt

−→ r2− 2C
∫

I

∣
∣x̃(t)

∣
∣2dt.

(2.41)

Hence, x̃(t) �≡ 0. Let Ω0 ⊂ I be the set on which x̃(t) �= 0. The measure of Ω0 is positive.
Moreover, |x(k)(t)| →∞ as k→∞ for t ∈Ω0. Thus,

∫

I
H
(
t,x(k)(t)

)
dt ≤

∫

Ω0

H
(
t,x(k)(t)

)
dt+

∫

I\Ω0

W(t)dt −→−∞ (2.42)

by Hypothesis (3′′). But this contradicts (2.40). If r = 0, then w̃(k) → 0 uniformly in I
by Lemma 2.1. Moreover, T|ṽ(k)|2 = ‖ṽ(k)‖2 → 1. Thus, there is a renamed subsequence
such that ṽ(k)→ ṽ in N with |ṽ|2 = 1/T . Hence, x̃(k)(t)→ ṽ uniformly in I . Consequently,
|x(k)(t)| →∞ uniformly in I . Thus, by Hypothesis (4),

liminf

∫
I V
(
t,x(k)(t)

)
dt

ρ2k
≥
∫

e
liminf

V
(
t,x(k)(t)

)

∣
∣x(k)(t)

∣
∣2

∣
∣x̃

(k)
(t)
∣
∣2dt > 0. (2.43)

This contradicts (2.20). Hence the ρk are bounded, and the proof is complete.
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