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The goal of this paper is to study the existence and the multiplicity of non-trivial weak
solutions for some degenerate nonlinear elliptic equations on the whole space RY. The
solutions will be obtained in a subspace of the Sobolev space W'?(RY). The proofs rely
essentially on the Mountain Pass theorem and on Ekeland’s Variational principle.
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1. Introduction

The goal of this paper is to study a nonlinear elliptic equation in which the divergence
form operator —div(a(x, Vu)) is involved. Such operators appear in many nonlinear dif-
fusion problems, in particular in the mathematical modeling of non-Newtonian fluids
(see [5] for a discussion of some physical background). Particularly, the p-Laplacian op-
erator —div(|Vu|P~2Vu) is a special case of the operator —div(a(x, Vu)). Problems in-
volving the p-Laplacian operator have been intensively studied in the last decades. We just
remember the work on that topic of Jodo Marcos B. do O1[7], Pfliiger [12], Rddulescu and
Smets [14] and the references therein. In the case of more general types of operators we
point out the papers of Jodo Marcos B. do O [6] and Napoli and Mariani [4]. On the
other hand, when the operator —div(a(x, Vu)) is of degenerate type we refer to Cirstea
and Radulescu [15] and Motreanu and Radulescu [11].

In this paper we study the existence and multiplicity of non-trivial weak solutions to
equations of the type

—div (a(x,Vu)) = F(x,u), xRN, (1.1)

where the operator div(a(x, Vu)) is nonlinear (and can be also degenerate), N > 3 and
function F(x,u) satisfies several hypotheses. Our goal is to show how variational tech-
niques based on the Mountain Pass theorem (see Ambrosetti and Rabinowitz [2]) and
Ekeland’s Variational principle (see Ekeland [8]) can be used in order to get existence of
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2 Existence and multiplicity

one or two solutions for equations of type (1.1). Results regarding the multiplicity of so-
lutions have been originally proven by Tarantello [16], but in the case of linear equations
and in a different framework. More precisely, Tarantello proved that the equation

—Au = |ulYN"2y +T(x) (1.2)

has at least two distinct solutions, in a bounded domain of RY (N > 3), provided that
I # 0 is sufficiently “small” in a suitable sense.

2. Main results

The starting point of our discussion is the equation
~Av+b(x)v= f(x,v) xRN (2.1)

studied by Rabinowitz in [13]. Assuming that function f(x,v) is subcritical and satisfies
a condition of the Ambrosetti-Rabinowitz type (see [2]) and function b(x) is sufficiently
smooth and unbounded at infinity, it is showed in [13] that problem (2.1) has a nontrivial
weak solution in the classical Sobolev space W?(RY).

In the case when b(x) is continuous and nonnegative and f (x,v) = h(x)v* +v# is such
that & : RY — R is some integrable function and 1 <a <2< B < (N +2)/(N -2), N > 3,
Gongalves and Miyagaki proved in [9] that problem (2.1) has at least two nonnegative
solutions in a subspace of W12(RN). In a similar framework, when f(x,v) = Av® +v?>" !
with 0 << 1 and 2* = (2N)/(N —2), N = 3 it is shown in [1] that problem (2.1) has
a nonnegative solution for A positive and small enough. Furthermore, in [1] it is also
proved that in the case N > 4 and a = 1 problem (2.1) has a nonnegative solution pro-
vided that A is positive and small enough. For more information and connections on (2.1)
the reader may consult the references in [9].

In this paper our aim is to study the problem

—div(a(x, V) +b(x) |u|”*u= f(x,u), xRV, (2.2)

where N >3and2 < p<N.

We point out the fact that in the case when a(x, Vu) = [x|*Vu, « € (0,2) and p =2
problem (2.2) was studied by Mihdilescu and Radulescu in [10]. In that paper the authors
present the connections between such equations and some Schrodinger equations with
Hardy potential and show that (2.2) has a nontrivial weak solution. A discussion of some
physical applications for equations of type (2.2) and a list of papers devoted with the
study of such problems is also included in [10].

In the following we describe the framework in which we will study (2.2).

Consider a: RN xRN — RV, g = a(x, &), is the continuous derivative with respect to &
of the continuous function A : RN x RN — R, A = A(x,&), that is, a(x,&) = (d/d&)A(x,&).
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Suppose that a and A satisfy the hypotheses below:
(A1) A(x,0) = 0 for all x € RY;
(A2) la(x,&)| < c1(0(x) + |E]P71), for all x,& € RN, with ¢; a positive constant and
0 :RN — R is a function such that 8(x) = 0 for all x € RN and 0 € L*(RN) n
Lp/(pfl)(RN);
(A3) there exists k > 0 such that

1
A(x,f’LTV’) < %A(x,£)+§A(x,1//)—k|£—w|f’ (2.3)

for all x,&,y € RN, that is, A(x, -) is p-uniformly convex;
(A4) 0 < a(x,&) - & < pA(x, &), for all x,& € RN;
(A5) there exists a constant A > 0 such that

A(x, &) = AJE|P, (2.4)

for all x,& € RN.

Examples. (1) A(x,&)=(1/p)1&12, a(x,&)=1&P~2E, with p > 2 and we get the p-Laplacian
operator

div (| VulP~2Vu). (2.5)

(2) A(x,8) =(1/p)I§IP+0(0)[(1+1§11)2 1], a(x,§) = [§177E+0(x)(§/(1+1§]*)"2),

with p > 2 and 6 a function which verifies the conditions from (A2). We get the operator

. _ . \Y%
le(|Vu|P 2VI,{)+le (8(x)(1+|v7:l|2)1/2) (2.6)

which can be regarded as the sum between the p-Laplacian operator and a degenerate
form of the mean curvature operator.

,§) = (/p)[(O()YP~D + [§12)P2 — 0(x)PP~V], a(x,§) = (0(x)¥P~V +
13 | P 2 / 25, with p = 2 and 0 a function which verifies the CODdlthIlS from (A2). We
get the operator

div (0¥~ + |Vu2) P2 vy) (2.7)

which is a variant of the generalized mean curvature operator, div((1+ | Vu|?)?=2/2V ).
Assume that function b : R¥ — R is continuous and verifies the hypotheses:
(B) There exists a positive constant by > 0 such that

b(x) = by >0, (2.8)

for all x € RV,
In a first instance we assume that function f : RN x R — R satisfies the hypotheses:
(F1) f € CH(RN XR,R), f = f(x,2) and f(x,0) = 0 for all x € RY;
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(F2) there exist two functions 71, 7, : RY — R, 71 (x), 72(x) = 0 for a.e. x € RN and two
constants r,s € (p — 1,(Np — N + p)/(N — p)) such that

| f(62)] < ()2l +1(x) 257, (2.9)
for all x € RN and all z € R, where 7, € L"(RN) n L°(RN), 1, € L*(RN) n

L®(RN), withrg=Np/(Np—(r+1)(N—p)) and so=Np/(Np—(s+1)(N-p));
(F3) there exists a constant ¢ > p such that

0< uF(x,2) := ij Flet)dt < 2f(x,2), (2.10)

forallx e RN andallz€ R\ {0}.
Next, we study the problem

—div(a(x,Vu)) +b(x)|ul?u = h(x)lul" ' u+g(x)|ul*'u, xeRY (2.11)
withl<g<p-1<s<(Np—-N+p)/(N—-p)andN = 3.
Our basic assumptions on functions h and g : RN — R are the following:
(H) h(x) = 0 for all x € RN and h € L%(RN) N L*(RY), where qo = Np/(Np — (g +
DN - p);
(G) g(x) = 0 for all x € RN and g € L*(RN) N L™ (RY), where so = Np/(Np — (s +
D(N - p)).

Let WLP(RN) be the usual Sobolev space under the norm

= ([ (9ule+1ul?)d) N (2.12)
and consider the subspace of WP (RY)
E- {u e WhP(RN); JRN (1Vul? +b(x) | ulP)dx < oo}. (2.13)
The Banach space E can be endowed with the norm
Il = [ (19ul? +blul?)d (2.14)

Moreover,
1/
lull = mo? llully, (2.15)

with my = min{1, b }. Thus the continuous embeddings

E & WLP(RN) = L{(RN), psisp*,p*=NN—_p (2.16)

hold true.
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We say that u € E is a weak solution for problem (2.2) if
J a(x,Vu)- Ve dx+J b(x)|ul?ugp dx—J fxu)pdx =0, (2.17)
RN RN RN

forall ¢ € E.
Similarly, we say that u € E is a weak solution for problem (2.11) if

J a(x,Vu) - Ve dx+J b(x)|ul? *uep dx

RY RY (2.18)

—J h(x)lulq*1u¢dx—J g(x)ul* tup dx =0,
RN RY

forall ¢ € E.
Our main results are given by the following two theorems.

THEOREM 2.1. Assuming hypotheses (A1)—(A5), (B) and (F1)—(F3) are fulfilled then prob-
lem (2.2) has at least one non-trivial weak solution.

THEOREM 2.2. Assume 1 <gq<p—1<s<(Np—N+p)/(N—p) and conditions (Al)-

(A5), (B), (H) and (G) are fulfilled. Then problem (2.11) has at least two non-trivial weak

1 1)/ .
solutions provided that the product ||h||<LSq: RA‘?MS 9 | ||L€0 %N ) s small enough.

3. Auxiliary results

In this section we study certain properties of functional T : E — R defined by
=J1meVqu+lJ b(x)|ulPdx, (3.1)
RN P JrN
for all u € E. It is easy to remark that T € C!(E,R) and
(T (u),v) = J a(x,Vu) - Vv dx+J b(x)|ul?~uv dx, (3.2)
RN RN

for all u, v € E.
ProrosiTioN 3.1. Functional T is weakly lower semicontinuous.

Proof. Let u € E and € > 0 be fixed. Using the properties of lower semicontinuous func-
tions (see [3, Section I.3]) is enough to prove that there exists § > 0 such that

T(v)>T(u)—€, VveE with|u—v]| <. (3.3)
We remember Clarkson’s inequality (see [3, page 59])

at+p|f

_ 4
E?E‘S%UaV+WWL Va,feR (3.4)
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Thus we deduce that
u—v

jRNbu) -
slj b(x)|u|de+1J b(x)|v|Pdx, Vuv e
2 JRry 2 Jrw

P

u+v
dx

P
dx+ jRN b(x)

(3.5)

The above inequality and condition (A3) imply that there exists a positive constant k; >0
such that

1(*3Y) <T@ TO) ~killu—vIf, VuveE, (36)

that is, T is p-uniformly convex.
Since T is convex we have

T(v) = T(u)+{T (u),v—u), VvekE. (3.7)

Using condition (A2) and Holder’s inequality we deduce that there exists a positive con-
stant C > 0 such that

T(v) = T(u) —J la(x,Vu)| - |Vv - Vuldx—J b(x) | ulf~ u—v|dx
RN RN
> T(u)—J a1 (0(x) + |VulP™1) | Vv — Vuldx
RN

- J b(e) P~ VP || b(x) VP |1 — vl dx
RY (3.8)

B /p
> 7w) = 1+ (18000 + 19l - ([ 199 = Vulrax)

(p-D/p 1/p
—(J b(x)lulpdx) (J b(x)\v—ulpdx>
RN RN
>T(u)—Cllu—v|, VveE.

It is clear that taking & = €/C relation (3.3) holds true for all v € E with [|[v —u|l < d.
Thus we have proved that T is strongly lower semicontinuous. Taking into account the
fact that T is convex then by [3, Corollary III.8] we conclude that T is weakly lower
semicontinuous and the proof of Proposition 3.1 is complete. O

PRrOPOSITION 3.2. Assume {u,}is a subsequence from E which is weakly convergent tou € E

and

limsup (T (u,),u, — u) <O. (3.9)

n—oo

Then {u,} converges strongly to u in E.

Proof. Since {u,} is weakly convergent to u in E it follows that {u,} is bounded in E.
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By conditions (A2) and (A3) we have

1 1
0<A(x,§) = J e t8)dt = J a( 18) - € di
o0 dt 0
1
< Clj (O(x)+ &Pt~ dt (3.10)
0
<ci(600lg] +%|£|P), vx,EeRY,
Thus, there exists a constant ¢, > 0 such that
|A(%,E)| < ca(B(x)E[+1EIP), VxRN, (3.11)
Relation (3.11) and Holder’s inequality imply
J A(x,Vu,)dx < cz(J 0(x) | Vuy, |dx+J | Vuy, |pdx)
RN RN RN

< c2+ (81 o-vwy - 1aal| + ]

(3.12)

The above inequality and the fact that {u,} is bounded in E show that there exists M; >0
such that T(u,) < M, for all n. Then we may assume that T(u,) — y. Using Proposition
3.1 we find

T(u) < liminf T (u,) = y. (3.13)

n—oo

Since T is convex the following inequality holds true
T(w) = T(uy) + (T (t4),up — ), Vn (3.14)

Relation (3.9) and the above inequality imply T'(#) > y and thus T (1) = y.
We also have (u, +u)/2 converges weakly to u in E. Using again Proposition 3.1 we
deduce

.. +
y=T(u)shm1nfT(u”2 u) (3.15)
n— oo
If we assume by contradiction that ||, — u|| does not converge to 0 then there exists € >0
such that passing to a subsequence {uy,,} we have ||u,,, — ull = €. That fact and relation
(3.6) imply

1 1 nm
ST+ 5T () - T(”*T”) > kot — th||? = Ky (3.16)
Letting m — oo we find
. U+ Uy »
llgjng — <y—ke (3.17)
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and that is a contradiction with (3.15). Thus we have

||tn = ul] — 0. (3.18)
The proof of Proposition 3.2 is complete. O

4. Proof of Theorem 2.1

In order to prove Theorem 2.1 we define the functional
Jw = | Awvadcr [ b= | FEwds (4.1)
RN p RN RN
J : E — Ris well defined and of class C! with the derivative given by

7 (), ) = JRN a(x, Vi) - Vo dx+ JRN b(x) ul?2ug dx JRN Foweds,  (42)

for all u, ¢ € E. We have denoted by (,) the duality pairing between E and E*, where E*
is the dual of E.

We remark that the critical points of the functional J correspond to the weak solutions
of (2.2). Thus, our idea is to apply the Mountain Pass theorem (see [2]) in order to obtain
a non-trivial critical point and thus a non-trivial weak solution.

First, we prove a lemma which shows that functional ] has a mountain-pass geometry.

LEmMa 4.1. (1) There exist p >0 and o > 0 such that
J(u)=p>0, YueckE with |lull =p. (4.3)
(2) There exists ug € E such that
}irp”](tuo) = -, (4.4)

Proof. (1) By (F2) there exist A;, A; >0 two constants such that

0 <F(x,2) < Ailz|™™ + Ay |25t (4.5)
Then we deduce that
bl F bl
im £®2) _ im £®2) _ (4.6)
-0 |z|P lzl—c0 |2|P

Then, for a € > 0 there exist two constants §; and &, such that
F(x,z) <€lz|P Vz with |z| <6,

N . (4.7)
F(x,z) <€lz|P" Vz with |z] > 6.

Relation (4.5) implies that for all z with |z| € [§;,8,] there exists a positive constant C > 0
such that

F(x,z) < C. (4.8)
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We obtain that for all € > 0 there exists C. > 0 such that
F(x,z) < €lz|? + Cclz|?". (4.9)

Relation (4.9), conditions (A5) and (b1) and the Sobolev embedding imply
J(u) = j Alx, Vuydx+ 1 J b(x)|ulPdx - f Flx,u)dx
RN p RN RN

zAJ |W|de+1j b(x)lulpdxfej |u|de7cEI u|?" dx
RN p RN RN RN

1 (4.10)
zmin{A,—}-nunP—EJ b(x)lulpdx—Cej lul?" dx

p bo Jry RN

> lull? - [(min{A,%} )¢ futle 2 |

Letting € € (0,min{A,1/p} - by) be fixed, we obtain that the first part of Lemma 4.1 holds
true.

(2) To prove the second part of the lemma, first, we remark that by condition (F3) we
have

F(x,z) > Alz|¥, Vlz| =7, x € RN, (4.11)

where A and # are two positive constants.
On the other hand we claim that

Ax,zE) < A(x,6)zP, Vz=1, x,§ RV, (4.12)

Indeed, if we put a(t) = A(x, &) then by (A1) and (A4) we have

& (1) = alwt) £ = raln i) (1) < Lacord) = La, (413)
Hence
aft) _p
w =7 (4.14)
or
log (a(t)) —log (a(1)) < plog(t). (4.15)

We deduce that a(t)/a(1) < tP and thus (4.12) holds true.
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Let now ug € E be such that meas({x € RY; |ug(x)| > 5}) > 0. Using relations (4.11)
and (4.12) we obtain

J(tug) = J'RN [A(x,tVuo) + %b(x)tp | u0|p]dx— RNF(x,tuo)dx

stpj [A(x,Vuo)+ b(x) | uo| ] —J F(x,tug)dx
RN p {x€RN5[up (x) |21}

(4.16)
- J F(x,tup)dx
{xERN;|ug(x)| <1}
stpj [A(x,Vuo)+ b(x) | uo| ]dx—t"/\ | uo |“dx.
RN p {x€RN;|ug (x)| =1}
Since y > p the right-hand side of the above inequality converges to —oo as t — co.
The lemma is completely proved. O

Proof of Theorem 2.1. Using Lemma 4.1 we may apply the Mountain Pass theorem (see
[2]) to functional /. We obtain that there exists a sequence {u,} in E such that

J(u,) —¢>0,  J(u,) — 0 inE*. (4.17)

We prove that {u,} is bounded in E. We assume by contradiction that [|u,|| — o asn —
co. Then, using relation (4.17) and conditions (A4), (A5) and (F3) we deduce that for n
large enough the following inequalities hold

c+1+ ||un|| Z](Un) - i(],(un),un>
- JRN [A(x,Vun) - ia(x,vun) . Vun]dx

J [ b(x)|un|p——b(x)|un|]

o

[fx,u,, Uy, (xun)]dx (4.18)
( g J (x, Vu, dx+<——f)J’ b(x) | u, | dx
P\A

1
P
1
ull
)
(— ) J |Vun|pdx+< )J b(x)|un|pdx

zmin{(l - g)A %- ;} [

Dividing by || u, |l and letting # — co we obtain a contradiction. Therefore {u,} is bounded
in E by a positive constant denoted by M. It follows that there exists u € E such that, pass-
ing to a subsequence still denoted by {u,}, it converges weakly to u in E and u, (x) — u(x)
a.e. x € RV, Since E is continuously embedded in L?” (RY) by [17, Theorem 10.36] we de-
duce that u, converges weakly to u in L?" (RN). Then it is clear that |u,|"~'u, converges
weakly to |u|""'uin LP"/"(RN).
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Define the operator U : LP"/"(RN) — R by
Wow) = | iGxuw d. (4.19)
RN

We remark that U is linear and continuous provided that 7; € L (RY), u € LP" (RN) and
1/p* +r/p* +1/ry = 1. All the above pieces of information imply

(U, | ta) — (U, Jul" ), (4.20)
that is,

lim Tl(x)|un|”1unudxzj eI (4.21)
RV

n—oo RN

With the same arguments we can show that

lim J (%) |ty |571unu dx = J 7, () |u|*T dx, (4.22)
n—oo RN RN
lim | 71(x)]|u, |H1dx = J 71 (%) |u|" M dx, (4.23)
n—oo RN RN
lim | 7(x)]|u, |S+ldx = J 7, () |u|* dx. (4.24)
n—oo RN RN

Relations (4.21), (4.23) and the fact that

J 71 (%) |ty | rilw(u,1 —u)dx = I 71(x) | un |r+1dx— J Y‘rl(x)\ul”ldx

RY RY RY (4.25)

+J Tl(x)lulmdx—J Tl(x)|un|q_lunudx
RN RN

yield
71115130 . 71(%) |ty | r_lu,,(un —u)dx = 0. (4.26)
Similarly we obtain
%Ln; o 7o (x) |ty |S71un(un —u)dx=0. (4.27)
By (4.26), (4.27) and condition (F2) we get
lim | f(x,uy)(uy —u)dx =0. (4.28)

n—o JgN
On the other hand we have
J a(x,Vu,) - Vu, dx+J b(x) | u, |p72un(un —u)dx
RN RN

(4.29)
= (J (un),up —u) + JRNf(x,uy,) (un — u)dx.
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Relations (4.28) and (4.29) imply

lim (JRN a(x,Vuy,) - V(u, —u)dx+ JRN b(x) | uy |p72(un - u)dx) =0, (4.30)

n— o0

that is,

%iqrgl()(T’(un),un—u) =0, (4.31)
where T is the functional defined in the above section. Then applying Proposition 3.2 we
deduce that {u,} converges strongly to u in E. Since ] € C'(E,R) by (4.17) we deduce that
(J'(u),p) = 0 for all ¢ € E, that is, u is a weak solution of problem (2.2). Relation (4.17)
also implies that /(1) = ¢ > 0 and that shows that u is non-trivial.

The proof of Theorem 2.1 is complete. O

5. Proof of Theorem 2.2

We remark that the weak solutions of (2.11) correspond to the critical points of the energy
functional I : E — R defined as follows

1(u)=J A(x,w)dx+1j b(x)|u|de—ﬁjﬂh(x)wﬂdx

(5.1)
s+1
1 J g)ul*dx, VYuekE.
A simple calculation shows that I is well defined on E and I € C!(E,R) with
(I'(u),9) = J a(x,Vu)- Ve dx+J b(x)|ulP*ug dx
(5.2)
- J h(x)|ul® ug dx — J g(x)[ul* tup dx,
RN RN
forall wand ¢ € E.
LemMa 5.1. The following assertions hold.
(i) There exist p >0 and o > 0 such that
I(u) 20>0, YuekE with|lull =p. (5.3)
(ii) There exists w € E such that
}im[(tw) = —o0, (5.4)
(iii) There exists ¢ € E such that ¢ =0, ¢ # 0 and
I(tp) <0 (5.5)

fort >0 small enough.
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Proof. (i) First, let ¥ be the best Sobolev constant of the embedding WP (RN) —

LP" (RN), that is,

. VulPdx
G fRN|—|/
WP RO} ( fon lul?” dx) PP

Thus we obtain
SPI/‘DHV”LP*(RN) <|vll, VveE

By Holder’s inequality and relation (5.7) we deduce

[ re it < e - !
R

LP™ (RN)
1 q
< Il - ey - (77 Mllr o)
1
< 1Al oo ry) - Farp [l 9

< (q+Dpllula,

where p = ||kl o0 @®y)/[ (g + 1)F@VP], With similar arguments we have
|| gGotuldx < (ol
RN

where v = [|gllpo@y)/[(p+ 1) FEDP].
Thus, we obtain

I(u) Zmin{A,%} Nuall” = g Nl = v [l
= —u- NullfP =y ullP) - lull?, Vu€kE,
where A = min{A, 1/p} >0. We show that there exists £, > 0 such that
p-tIP ey 5P
To do that we define the function

Q(t) =p-t1"17Ppy . H17P 150,

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

Since lim;—o Q(t) = lim;—.. Q(t) = oo it follows that Q possesses a positive minimum, say
to > 0. In order to find ¢, we have to solve equation Q (ty) = 0, where Q (t) = (g +1 - p) -
p-t7P+(s+1—p)-v-tP. Asimple computationyieldsty = [((p—qg—1)/(s+1—p)) -

(u/v)]=D . Thus relation (5.11) holds provided that

—ag—-1 (g+1-p)/(s—q) —a—1 (s+1-p)/(s—q)
y.[i.g] +v.|:1i.ﬁ:| <A_

stl—-p v stl—-p v

(5.13)
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Since y = C; - ||hllpowyy and v = C; - gl o rvy with Cy, C, positive constants, we deduce
that (5.13) holds true if and only if the following inequality holds

1 / ) 1)/
Cs - Il - gy 70 <, (5.14)

where C; is a positive constant. But inequality (5.14) holds provided that product
1-p)/(s— 1/ .
||h||(LSqJ;(R15)) a gl Lﬁ’o(ﬁw =4 s small enough.

(i) Let y € C§’(RN), y > 0, y # 0. Then using relation (4.12) we have

tP
I(ty) = IRNA(x,ti)dx-k " JRN b(x) |y |Pdx

tq+1
B q+1

s+l

J g0y dx (5.15)

J g |1//|5+1dx

J ORI
RN

s+1

P
stpj A(x,VI//)dx+t—J b(x)lylPdx — -
RN p Jry

Thus I(ty) — —oco as t — oo and (ii) is proved.
(iii) Let 9 € CZ(RN), ¢ > 0, ¢ # 0 and ¢ > 0. Then the above inequality implies

P q+1
i) = [ A Vg " | pwlglrax- i [ elgleax<0 16

for t < 8Y(P—a-1) with

(1/(g+1)) g h(x) |<p|‘1”dx

= 5.17
[ fan A(x, Vo)dx + (1/p) fgn b(x)@|Pdx] (5.17)
It follows that (iii) holds true.
The proof of Lemma 5.1 is complete. O

Proof of Theorem 2.2. Using Lemma 5.1 and the Mountain Pass theorem we deduce the
existence of a sequence {u,} in E such that

I(u,) — €>0, I'(u,) — 0 inE*. (5.18)

We prove that {u,} is bounded in E. We assume by contradiction that [|u,|| — o asn —
0. Using relation (5.18) and conditions (A4) and (A5) we deduce that for n large enough
we obtain

_ 1
C+1+||unl| = I(un )—Tl(l (1), tn)

1
- JRN <A('x’vun) - ma(xa vun) . Vun>dx

1 1 g+l
+<5_ 5+—1> b(x) |1 ] dx

(5.19)

q+
(q+1(s+1j h(x|u,,| dx
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or

_ S—q q+1
C+1+||un||+4(q+l)(s+1) JRNh(x)|u,,| dx

2( —L>AJ | Vi, |Pdx
s+1 RN

(5.20)

11 P
+(p s+1) b |y | dx

coinf(= 2 ()

By relation (5.8) and the above inequality we obtain

R 1Al B
(@+1)(s+1) IEED T larvp

coinf (1= L (2 1)}

Since 1 < g < p—1and |[u,| — o, dividing the above inequality by [|u, [/ and passing to
the limit as n — oo we obtain a contradiction. Thus {u,} is bounded in E. It follows that
there exists u; € E such that passing to a subsequence, still denoted by {u,}, it converges
weakly to u; in E and u,(x) — u1(x) a.e. x € RN. With the same arguments as those used
in the proof of relation (4.29) we can show that

T fun|[ + ™

(5.21)

Lim (T (un), = 1) = 0, (5.22)
where T is the functional defined in the third section.
Then applying Proposition 3.2 we deduce that {u,} converges strongly to u; in E. Since
I € C'(E,R) relation (5.18) implies (I'(ul),(p) = 0 for all ¢ € E, that is, u; is a weak solu-
tion of problem (2.11). Relation (5.18) also yields I(u1) = ¢ > 0 and thus u; is non-trivial.
We prove now that there exists a second weak solution u, € E such that u, # u;. By
Lemma 5.1(i) it follows that there exists a ball centered at the origin B C E, such that

infI >0. (5.23)
JB

On the other hand, by Lemma 5.1(iii) there exists ¢ € E such that I(t¢) <0, forall t >0
small enough. Recalling that relation (5.10) holds for all u € E, that is,

I(w) = A~ llull? =g Nl = ful** (5.24)
we get that

—oo < c:=infI<0. (5.25)
B
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Weletnow 0 < € < infypI — infp I. Applying Ekeland’s Variational principle for functional
I:B — R, (see [8]), there exists u¢ € B such that

I(ue) <infl+€
B (5.26)
I(ue) <I(w)+e€-||u—uel|, u+#ue.

Since

I(ue) <inflI+e€ <infl+e <infl (5.27)
B B B

it follows that u. € B. Now, we define [l : B — Rby M (u) = I(u) + € - [lu — uell. It is clear
that u is a minimum point of . and thus

Mue +-v) = M(ue)
¢ >

for a small { >0 and v in the unit sphere of E. The above relation yields

0 (5.28)

I(ue + - v) —1(ue)
¢

Letting { — 0 it follows that (I (u),v) + € - [|v|| >0 and we infer that [T (uc)|| < €. We
deduce that there exists {u,} ¢ B such that I(u,) — ¢ and I (u,) — 0. Using the same
arguments as in the case of solution u; we can prove that {u,} converges strongly to u,
in E. Moreover, that fact yields that I' (u,) = 0. Thus, u; is a weak solution for (2.11) and
since 0 > ¢ = I(uy) it follows that u, is non-trivial.

Finally, we point out the fact that u; # u, since

+e- vl =0. (5.29)

I(w) =c>0>c=1I(w). (5.30)
The proof of Theorem 2.2 is complete. O

Acknowledgment

The author would like to thank Professor V. Radulescu for proposing these problems and
for numerous valuable discussions.

References

[1] C.O. Alves, J. V. Gongalves, and O. H. Miyagaki, On elliptic equations in RN with critical expo-
nents, Electronic Journal of Differential Equations 1996 (1996), no. 9, 1-11.

[2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and appli-
cations, Journal of Functional Analysis 14 (1973), no. 4, 349-381.

[3] H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Collection of Applied Mathematics for
the Master’s Degree, Masson, Paris, 1983.

[4] P. De Napoli and M. C. Mariani, Mountain pass solutions to equations of p-Laplacian type, Non-
linear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal.
Series A: Theory and Methods 54 (2003), no. 7, 1205-1219.



Mihai Mihailescu 17

[5] J. 1. Diaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. 1. Elliptic Equations,
Research Notes in Mathematics, vol. 106, Pitman, Massachusetts, 1985.

[6] ). M. B. do O, Existence of solutions for quasilinear elliptic equations, Journal of Mathematical
Analysis and Applications 207 (1997), no. 1, 104-126.

, Solutions to perturbed eigenvalue problems of the p-Laplacian in RY, Electronic Journal
of Differential Equations 1997 (1997), no. 11, 1-15.

[8] 1. Ekeland, On the variational principle, Journal of Mathematical Analysis and Applications 47
(1974), no. 2, 324-353.

[9] J. V. Gongalves and O. H. Miyagaki, Multiple positive solutions for semilinear elliptic equations
in RN involving subcritical exponents, Nonlinear Analysis. Theory, Methods & Applications. An
International Multidisciplinary Journal. Series A: Theory and Methods 32 (1998), no. 1, 41-51.

[10] M. Mihiilescu and V. Rddulescu, Ground state solutions of non-linear singular Schrédinger equa-
tions with lack of compactness, Mathematical Methods in the Applied Sciences 26 (2003), no. 11,
897-906.

[11] D. Motreanu and V. Radulescu, Eigenvalue problems for degenerate nonlinear elliptic equations in
anisotropic media, Boundary Value Problems 2005 (2005), no. 2, 107-127.

[12] K. Pfliiger, Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear bound-
ary condition, Electronic Journal of Differential Equations 1998 (1998), no. 10, 1-13.

[13] P. H. Rabinowitz, On a class of nonlinear Schrodinger equations, Zeitschrift fiir Angewandte
Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de
Mathématiques et de Physique Appliquées 43 (1992), no. 2, 270-291.

[14] V.Radulescu and D. Smets, Critical singular problems on infinite cones, Nonlinear Analysis. The-
ory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and
Methods 54 (2003), no. 6, 1153—1164.

[15] E St. Cirstea and V. Radulescu, Multiple solutions of degenerate perturbed elliptic problems involy-
ing a subcritical Sobolev exponent, Topological Methods in Nonlinear Analysis 15 (2000), no. 2,
283-300.

[16] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Annales
de I'Institut Henri Poincaré. Analyse Non Linéaire 9 (1992), no. 3, 281-304.

[17] M. Willem, Analyse harmonique réelle, Methods Collection, Hermann, Paris, 1995.

Mihai Mihailescu: Department of Mathematics, University of Craiova, 200 585 Craiova, Romania
E-mail address: mmihailes@yahoo.com


mailto:mmihailes@yahoo.com

	1. Introduction
	2. Main results
	3. Auxiliary results
	4. Proof of [thm:1]Theorem 2.1
	5. Proof of [thm:2]Theorem 2.2
	Acknowledgment
	References

