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1. Introduction

We consider the following variational inequality:

u∈� :
∫
Ω
A(x,∇u) · (∇v−∇u)dx

≥
∫
Ω
H(x,u,∇u)(v−u)dx+

∫
Ω
F(x,u) · (∇v−∇u)dx

(1.1)

for all v∈�={v∈W
1,p
0 (Ω), v≥ψ a.e. in Ω}. Here Ω is a bounded domain in RN (N≥2)

with Lipschitz boundary, 2≤ p ≤N .
A(x,ξ) :Ω×RN → RN satisfies the following conditions:
(i) A is a vector valued function, the mapping x �→ A(x,ξ) is measurable for all ξ ∈

RN , ξ �→ A(x,ξ) is continuous for a.e. x ∈Ω;
(ii) the homogeneity condition: A(x, tξ)= t|t|p−2A(x,ξ), t ∈ R, t 	= 0;
(iii) the monotone inequality: (A(x,ξ)−A(x,ζ))(ξ − ζ)≥ a|ξ − ζ|p;
(iv) |h||ai j|+ |∂Ai(x,h)/∂xj| ≤ τ1|h|p−1;
(v)

∑N
i, j=1 ai jξiξ j ≥ τ2|h|p−2|ξ|2;

(vi) |A(x,ξ)−A(y,ξ)| ≤ b1(1+ |ξ|p−1)|x− y|α0 ;
(vii) |A(x,ξ)−A(x,η)| ≤ b2||ξ|p−2ξ −|η|p−2η|;

where ai j = ∂Ai/∂hj , a, b1, b2, τ1, τ2 are positive constants.
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2 Boundary regularity

We assume that H(x,u,λ), F(x,u)= {Fi(x,u)}1≤i≤N in (1.1) are of the form:

∣∣H(x,u,∇u)∣∣≤ c
(|∇u|p/r′ + |u|r−1 + g(x)

)
, (1.2)∣∣F(x,u)∣∣≤ c

(|u|q/p′ +h(x)
)
, (1.3)

where p < q < r, r′ = r/(r− 1), p′ = p/(p− 1), and if 2≤ p < N , r =Np/(N − p), while if
p =N , then r can be some sufficiently large positive number.

Higher regularity of the weak solution to the p-Laplacian obstacle problem

I(u)= inf
{∫

Ω
|∇u|pdx : u∈ K(ψ)

}
, (1.4)

where

K(ψ)= {v ∈W1,p(Ω) : v ≥ ψ a.e.
}
, (1.5)

has been studied by various authors. In the case when ψ is assumed to have only minimal
regularity properties, it was shown by [8, 11] that the solution of (1.1) is continuous. In
particular, if ψ ∈ C0,α(Ω), then the solution u is also an element of C0,α′(Ω). In the case
when ψ ∈ C2(Ω), papers [4, 6, 10, 12] employed different techniques to prove interior
C1,α(Ω) regularity for the solution u to (1.4). Reference [1] gave an interesting result: the
condition for � to be nonempty is just that ψ should have finite capacity. This implies,
among other things, that ψ+ =max(ψ,0) must vanish on ∂Ω, C—almost everywhere.
This condition is important for the existence of weak solutions to obstacle problem.

When ψ is smooth (say C1,α(Ω)), the interior regularity of weak solutions to problem
(1.1) has been studied extensively by many authors ([3, 13, 14]).

In view of De Giorgi class, paper [2] obtained C0,α interior regularity for solutions of
nonlinear elliptic obstacle problem with natural growth in the gradient by taking appro-
priate test function.

The main concern of these papers is the question of the regularity of the solution u
in terms of the given regularity properties of the obstacle ψ and relevant data. This is
especially interesting in view of the fact that there is a limit to the amount of regularity
that u can inherit from ψ: it is possible for ψ to be real analytic, but u will be at best C1,1,
that is, have bounded second derivatives.

This paper obtains C1,α
loc boundary regularity of weak solutions to the obstacle problem

with C1,β-obstacle function under controllable growth condition (1.2). We present a new
proof to a useful comparison principle.

2. Notations and preliminaries

Ω is an open bounded subset of RN , N ≥ 2; ∂Ω is the boundary of Ω. If z ∈ RN , we put

BR(z)=
{
x ∈ RN : |x− z| < R

}
, ΓR(z)=

{
x ∈ BR(z) : xn = 0

}
,

B+
R(z)=

{
x ∈ BR(z) : xn > 0

}
, B−R (z)=

{
x ∈ BR(z) : xn < 0

}
.

(2.1)

We denote by B, B+, B−, Γ, respectively, B1(0), B+
1 (0), B

−
1 (0), Γ1(0). For every set E we

denote by Ē its closure, and by |E| its Lebesgue measure. ( f )R = (1/|BR|)
∫
BR

f (x)dx. The
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letter c is used throughout to denote a positive constant, not necessarily the same at each
occurrence.

SinceΩ is compact, ∂Ω can be covered by a finite number of neighbourhoods V of its
points. It is enough to prove the better regularity of u holds true in V ∩Ω. Since ∂Ω is a
Lipschitz boundary, one can find T which is an invertible Lipschitz mapping such that

T(V)= B, T(V ∩Ω)= B+, T(V\Ω)= B−, T(V ∩ ∂Ω)= Γ. (2.2)

Under the mapping T the variational inequality in Ω is transformed to a variational
inequality of the same form in B+, for ū= u◦T−1 which satisfies

∫
B+
Ā(x,∇ū) · (∇v−∇ū)dx

≥
∫
B+
H̄(x, ū,∇ū)(v− ū)dx+

∫
B+
F̄(x, ū) · (∇v−∇ū)dx, ∀v ∈ �̄,

(2.3)

where �̄ = {v ∈W
1,p
0 (B+), v ≥ ψ, a.e. in B+}, Ā, H̄ , F̄ satisfy assumptions of type (i)–

(vii), (1.2), (1.3) with different constants.
In order to simplify the notations, we still denote ū, �̄Ā, H̄ , F̄ by u, �, A, H , F, re-

spectively.

Since the original u∈W
1,p
0 (Ω), we define then

u(x) :=
⎧⎪⎨
⎪⎩
u(x), if x ∈ B+,

−3u(x1, . . . ,xn−1,−xn)+4u
(
x1, . . . ,xn−1,−xn

2

)
, if x ∈ B−.

(2.4)

In light of Extension theorem [5, page 254], we only need to prove a better regularity of
u in B+.

Definition 2.1. The function u∈� that satisfies (2.3) for all v ∈� is called a weak solu-
tion to the obstacle problem with obstacle ψ.

Definition 2.2. Call f ∈ C0,α(Γ), if for all x ∈ Γ, there exists Br(x) (a ball centered at x of
radius r), r > 0, such that f ∈ C0,α(Br(x)).

In the sequel, we will abbreviate B+∩BR(y0)= B+
R , B

+∩Bρ(y0)= B+
ρ , for 0 < ρ < R≤

1, the point y0 ∈ Γ to be understood.
In the following, we will use some lemmas which we state below.

Lemma 2.3. Let w ∈W1,p(B+
R) be a solution of the Dirichlet problem

∫
B+
R

A(x,∇w)∇φdx = 0 ∀φ ∈W
1,p
0

(
B+
R

)
,

w−u∈W
1,p
0

(
B+
R

)
.

(2.5)
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For 0 < ρ < R/2, σ ∈ (0,1),

∫
B+
R

|∇w|pdx ≤ c
∫
B+
R

|∇u|pdx, (2.6)

∫
B+
ρ

|∇w|pdx ≤ c
(
ρ

R

)N ∫
B+
R

|∇w|pdx, (2.7)

∫
B+
ρ

∣∣∇w− (∇w)ρ
∣∣pdx ≤ c

(
ρ

R

)N+σ ∫
B+
R

∣∣∇w− (∇w)R
∣∣pdx. (2.8)

Proof. We can easily get (2.6) by inserting φ=w−u in (2.5).
An argument similar to the one in [15, Lemma 2.2] shows that (2.7) hold.
The proof of (2.8) is similar to that of [9, Theorem 1.7]. �

Lemma 2.4. Let v ∈W1,p(B+
R) be a solution of the Dirichlet problem

∫
B+
R

A(x,∇v)∇φdx =
∫
B+
R

A(x,∇ψ)∇φdx,

w− v ∈W
1,p
0

(
B+
R

)
, ∀φ∈W

1,p
0

(
B+
R

)
,

(2.9)

then

∫
B+
R

|∇w|pdx ≤ c
∫
B+
R

|∇v|pdx, (2.10)
∫
B+
R

|∇v−∇w|pdx ≤ c
∫
B+
R

|∇ψ|pdx. (2.11)

Proof. Formula (2.10) follows immediately from taking φ =w− v in (2.5).
Inserting φ = v−w in (2.5) and (2.9), by monotone inequality (iii) and Hölder’s in-

equality, we have

∫
B+
R

|∇v−∇w|pdx ≤ c
∫
B+
R

(
A(x,∇v)−A(x,∇w)) · (∇v−∇w)dx

= c
∫
B+
R

A(x,∇ψ) · (∇v−∇w)dx

≤ c
∫
B+
R

|∇ψ|p−1|∇v−∇w|dx

≤ c
(∫

B+
R

|∇ψ|pdx
)(p−1)/p(∫

B+
R

|∇v−∇w|pdx
)1/p

(2.12)

from which we get (2.11). �

Lemma 2.5. If v ∈W1,p(B+
R) is a solution of the Dirichlet problem (2.9), then v ≥ ψ in B+

R .

Proof. It follows from v = u on ∂B+
R , u∈�, that v ≥ ψ on ∂B+

R . Let ξ =min(v,ψ), ξ = ψ

on ∂B+
R , ξ −ψ ∈W

1,p
0 (B+

R). As test functions in (2.9) we take φ = ξ −ψ, from (2.9) and
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monotony inequality (iii), we have

0=
∫
B+
R

A(x,∇v)−A(x,∇ψ) ·∇(ξ −ψ)dx

=
∫
B+
R

⋂{x,v(x)≤ψ(x)}
A(x,∇v)−A(x,∇ψ) ·∇(v−ψ)dx

≥ a
∫
B+
R

⋂{x,v(x)≤ψ(x)}
|∇v−∇ψ|pdx

= a
∫
B+
R

|∇ξ −∇ψ|pdx

(2.13)

therefore ξ = ψ a.e. in B+
R , that is, v ≥ ψ a.e. in B+

R . �

This lemma is a useful comparison principle, it can be used to obtain the existence or
regularity of solutions to elliptic equation or variational inequality.

We extend v to B+ by setting v = u on B+\B+
R , and hence v ∈�. We have the following

corollary.

Corollary 2.6. Suppose u is a weak solution to the obstacle problem (2.3), v ∈W1,p(B+
R)

is a solution of the Dirichlet problem (2.9), then v ∈� satisfies the variational inequality

∫
B+
A(x,∇u) · (∇v−∇u)dx ≥

∫
B+
H(x,u,∇u)(v−u)dx+

∫
B+
F(x,u) · (∇v−∇u)dx.

(2.14)

Lemma 2.7. Assume u is a weak solution to the obstacle problem (2.3), where H , F verify
(1.2), (1.3), respectively, g ∈ Lt(B+) with t > N/p, h ∈ Ls(B+) with s > p′, v satisfies (2.9),
then

∫
B+
R

|∇v|pdx ≤ c
[∫

B+
R

|∇u|pdx+
∫
B+
R

|∇ψ|pdx
]
, (2.15)

∫
B+
R

|∇u−∇v|pdx ≤ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+
(∫

B+
R

|∇u|pdx
)q/p

+
(∫

B+
R

|u|rdx
)q/p

+RNp(1−1/r−1/t)/(p−1) +RN(1−p′/s) +RN(1−p/m)
}
,

(2.16)

where δ = (r− p)/r(p− 1) > 0.

Proof. By inserting φ = v− u in (2.9), an application of Hölder’s inequality and Young’s
inequality yields

∫
B+
R

|∇v|pdx ≤ c
∫
B+
R

A(x,∇v) ·∇vdx

= c
[∫

B+
R

A(x,∇v) ·∇udx+
∫
B+
R

A(x,∇ψ) ·∇(v−u)dx
]



6 Boundary regularity

≤ c
[∫

B+
R

|∇v|p−1|∇u|dx+
∫
B+
R

|∇ψ|p−1|∇u−∇v|dx
]

≤ c

{(∫
B+
R

|∇v|pdx
)(p−1)/p(∫

B+
R

|∇u|pdx
)1/p

+
(∫

B+
R

|∇ψ|pdx
)(p−1)/p(∫

B+
R

|∇u−∇v|pdx
)1/p}

≤ cε1
∫
B+
R

|∇v|pdx+ c
(
ε1, p

)∫
B+
R

|∇u|pdx+ cε2
∫
B+
R

|∇u−∇v|pdx

+ c
(
ε2, p

)∫
B+
R

|∇ψ|pdx

≤ (cε1 + cε2
)∫

B+
R

|∇v|pdx+ (c(ε1, p)+ cε2
)∫

B+
R

|∇u|pdx

+ c
(
ε2, p

)∫
B+
R

|∇ψ|pdx
(2.17)

for (cε1 + cε2) sufficiently small (cε1 + cε2 < 1), we can get (2.15). �

By ψ ∈W1,m(Ω),m>N , we have

∫
BR

|∇ψ|pdx ≤ c‖∇ψ‖pmRN(1−p/m). (2.18)

Combining monotone inequality (iii), (2.9), (2.14), and (1.2) and using Poincare’s
inequality, Hölder’s inequality, we have

∫
B+
R

|∇u−∇v|pdx

≤ c
∫
B+
R

[
A(x,∇u)−A(x,∇v)] · (∇u−∇v)dx

≤ c
∫
B+
R

[
H(x,u,∇u)(u− v) +

(
F(x,u)−A(x,∇ψ)) · (∇u−∇v)]dx

≤ c
∫
B+
R

(|∇u|p(1−1/r) + |u|r−1 + |g|)|u− v|dx

+ c
∫
B+
R

(|u|q/p′ +h(x)
)|∇u−∇v|dx+ c

∫
B+
R

|∇ψ|p−1 · |∇u−∇v|dx

≤ c
[∫

B+
R

(|∇u|p + |u|r + |g|r/(r−1))dx
]1−1/r(∫

B+
R

|u− v|rdx
)1/r

+
(∫

B+
R

(|u|q + |h|p′)dx
)1/p′(∫

B+
R

|∇u−∇v|pdx
)1/p

+
∫
B+
R

|∇ψ|p−1 · |∇u−∇v|dx
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≤ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1−1/r

+‖g‖tRN(1−1/r−1/t)
}

×R1−N(1/p−1/r)
(∫

B+
R

|∇u−∇v|pdx
)1/p

+ c
{(∫

B+
R

(|u|p + |∇u|p)dx
)q/pp′

+‖h‖sRN(1/p′−1/s) +
∥∥|∇ψ|p−1∥∥p/(p−1)

}

×
(∫

B+
R

|∇u−∇v|pdx
)1/p

(2.19)

since 0 < R≤ 1, by (2.18), Hölder inequality, Young inequality, we have

∫
B+
R

|∇u−∇v|pdx

≤ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+
(∫

B+
R

|∇u|pdx
)q/p

+
(∫

B+
R

|u|pdx
)q/p

+‖g‖p/(p−1)t RNp(1−1/r−1/t)/(p−1)

+‖h‖p/(p−1)s RN(1−p′/s) +
∫
B+
R

|∇ψ|pdx
}

≤ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+
(∫

B+
R

|∇u|pdx
)q/p

+
(∫

B+
R

|u|pdx
)q/p

+RNp(1−1/r−1/t)/(p−1) +RN(1−p′/s) +RN(1−p/m)
}

≤ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+
(∫

B+
R

|∇u|pdx
)q/p

+
(∫

B+
R

|u|rdx
)q/r∣∣BR

∣∣(q/p)(1−p/r) +RNp(1−1/r−1/t)/(p−1) +RN(1−p′/s) +RN(1−p/m)
}

≤ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+
(∫

B+
R

|∇u|pdx
)q/p

+
(∫

B+
R

|u|rdx
)q/p

+RN(q/p) +RNp(1−1/r−1/t)/(p−1) +RN(1−p′/s) +RN(1−p/m)
}

≤ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+
(∫

B+
R

|∇u|pdx
)q/p

+
(∫

B+
R

|u|rdx
)q/p

+RNp(1−1/r−1/t)/(p−1) +RN(1−p′/s) +RN(1−p/m)
}

(2.20)

which implies (2.16).
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3. C0,λ regularity

Theorem 3.1. Assume that H(x,u,∇u) satisfies (1.2), g ∈ Lt(B+) with t > N/p, F(x,u)
satisfies (1.3), h ∈ Ls(B+) with s > N/(p− 1), and ψ ∈W1,m(B+) with m > N . If u ∈ �
makes (2.3) hold, then u ∈ C0,λ(Γ) with λ =min{1−N(1/t + 1/r − 1/p)/(p− 1),1−N/
s(p− 1),1−N/m}.

Before proceeding with the formal proof, we make an important observation. It is a
well-known result.

Proposition 3.2. If f ∈W1,p(Ω), then for all constants k ∈ RN ,

∫
Bρ

∣∣∇ f − (∇ f )ρ,x0
∣∣pdx ≤ C(p)

∫
Bρ

|∇ f − k|pdx (3.1)

for every ρ for which Bρ(x0)⊂Ω.

Proof. By elementary inequality, we have

∫
Bρ

∣∣∇ f − (∇ f )ρ,x0
∣∣pdx ≤ C(p)

[∫
Bρ

|∇ f − k|pdx+
∫
Bρ

∣∣k− (∇ f )ρ,x0
∣∣pdx

]
. (3.2)

Moreover

∫
Bρ

∣∣k− (∇ f )ρ,x0
∣∣pdx = ∣∣Bρ

∣∣∣∣k− (∇ f )ρ,x0
∣∣p = ∣∣Bρ

∣∣
∣∣∣∣k− 1∣∣Bρ

∣∣
∫
Bρ

∇ f dx
∣∣∣∣
p

= ∣∣Bρ

∣∣
∣∣∣∣ 1∣∣Bρ

∣∣
∫
Bρ

(k−∇ f )dx
∣∣∣∣
p

= ∣∣Bρ

∣∣1−p
∣∣∣∣
∫
Bρ

(k−∇ f )dx
∣∣∣∣
p

≤ ∣∣Bρ

∣∣1−p ∫
Bρ

|∇ f − k|pdx∣∣Bρ

∣∣p(1−1/p) =
∫
Bρ

|∇ f − k|pdx.
(3.3)

Therefore (3.1) holds for any k ∈ RN . �

Proof of Theorem 3.1. To get the regularity, we need to prove the following inequality:

∫
B+
ρ

|∇u|pdx ≤ cρN−p+pλ. (3.4)

Let us consider three different situations.
(1) If B2R(y0)⊂ B+, inequality (3.4)–(4.1) has been proved in [13], since it is related

to interior regularity.
(2) If BR(y0)⊂ B−, by Extension theorem [5, page 254], if we can get C1,α regularity

of u in B+, we can deduce the same result for u in B−, so we need not care about
this situation.
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(3) If BR(y0)∩B+ 	=Ø, we also give three different situations as follows:
(a) y0 ∈ Γ,
(b) y0 ∈ B−,
(c) y0 ∈ B+.

We only prove the situation (a), since the others can be transformed into the situation
(a) or the interior regularity situation by applying the finitely covered theorem, see [13].

Assume h∈ Ls(B+,RN ) with s > N/(p− 1), ψ ∈W1,m(B+) withm>N , we see that

∫
B+
R

|h|p/(p−1) ≤ ‖h‖p/(p−1)s RN[1−p/s(p−1)],
∫
B+
R

∣∣∣|∇ψ|p−2∇ψ− (|∇ψ|p−2∇ψ)R
∣∣∣p/(p−1)dx ≤ c

∫
B+
R

|∇ψ|pdx ≤ c‖∇ψ‖pmRN(1−p/m).

(3.5)

Combining (2.7), (2.10), (2.11), (2.16), and (3.5), we have

∫
B+
ρ

|∇u|pdx

≤ c
∫
B+
ρ

|∇w|pdx+ c
∫
B+
ρ

|∇u−∇w|pdx

≤ c
(
ρ

R

)N ∫
B+
R

|∇u|pdx+ c
∫
B+
R

|∇u−∇v|pdx+ c
∫
B+
R

|∇v−∇w|pdx

≤ c
(
ρ

R

)N ∫
B+
R

|∇u|pdx

+ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+
(∫

B+
R

|∇u|pdx
)q/p

+
(∫

B+
R

|u|rdx
)q/p

+RNp(1−1/r−1/t)/(p−1) +RN[1−p/s(p−1)] +RN(1−p/m)
}

≤ c
(
ρ

R

)N ∫
B+
R

|∇u|pdx+ c
[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+ c
(∫

B+
R

|∇u|pdx
)q/p

+ c
(∫

B+
R

|u|rdx
)q/p

+ cRN−p+pλ,

(3.6)

where λ=min{1−N(1/t+1/r− 1/p)/(p− 1),1−N/s(p− 1),1−N/m}.
By t > N/p, we have the following.
(i) If 2≤ p<N , then 1/t< p/N , 1/t+1/r−1/p< p/N+(N−p)/N p−1/p = (p− 1)/N ,

N(1/t+1/r− 1/p)/(p− 1) < 1.
(ii) If p = N , by t > 1, we can assume that r is a positive number sufficiently large,

such that: 1/t+1/r <1, so N(1/t+1/r−1/N)/(N−1)<(N/(N−1))(1−1/N)=1.
Hence, if 2≤ p ≤N , we always have N(1/t+1/r− 1/p)/(p− 1) < 1.
Using s > N/(p− 1),m>N , by the definition of λ, we see that: 0 < λ < 1.
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In the meantime, by Poincare’s inequality and Hölder’s inequality, we also have

∫
B+
ρ

|u|rdx ≤ c
∫
B+
ρ

∣∣uR∣∣rdx+ c
∫
B+
R

∣∣u−uR
∣∣rdx

≤ c
(
ρ

R

)N ∫
B+
R

|u|rdx+ cRr[1−N(1/p−1/r)]
(∫

B+
R

|∇u|pdx
)r/p

,

(3.7)

where

r
[
1−N

(
1
p
− 1

r

)]
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Np

N − p

[
1−N

(
1
p
− N − p

N p

)]
= 0, if 2≤ p < N ;

r
[
1−N

(
1
N
− 1

r

)]
=N , if p =N.

(3.8)

Adding (3.7) to (3.6) and setting

φ(R)=
∫
B+
R

(|∇u|p + |u|r)dx, (3.9)

we obtain

φ(ρ)≤ c

[(
ρ

R

)N
+ χ(R)

]
φ(R) + cRN−p+pλ, (3.10)

where

χ(R)=
[∫

B+
R

(|∇u|p + |u|r)dx
]δ

+
(∫

B+
R

|∇u|pdx
)(q−p)/p

+
(∫

B+
R

|u|rdx
)(q−p)/p

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∫
B+
R

|∇u|pdx
)(r−p)/p

, if 2≤ p < N ;

RN

(∫
B+
R

|∇u|pdx
)(r−p)/p

, if p =N.

(3.11)

We can always get χ(R)→ 0 as R→ 0+. Applying [7, page 86, Lemma 2.1], we deduce
that for ρ sufficiently small,

∫
B+
ρ

|∇u|pdx ≤ φ(ρ)≤ cρN−p+pλ. (3.12)

�

By Dirichlet growth theorem (see [7, page 64, Theorem 1.1]), u∈ C0,λ
loc(Γ).
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4. C1,α1 regularity

Theorem 4.1. Assume that H(x,u,∇u) satisfies (1.2), g ∈ Lt(B+) with t > N , F
∈ C0,β(B+,R) with β > 0, ψ ∈ C1,γ(B+) for some γ > 0. If u ∈ � makes (2.3) hold, then
u∈ C1,α1 (Γ) for some 0 < α1 < σ/p.

To get our result, we need to prove the following inequality:

∫
B+
ρ

∣∣∇u− (∇u)ρ
∣∣pdx ≤ cρN+pα1 . (4.1)

It is easy to see that |∇ψ|p−2∇ψ ∈ C0,γ(B+) if ψ ∈ C1,γ(B+) and 2≤ p ≤N .
Utilizing the conditions of Theorem 4.1, we see that:

∫
B+
R

∣∣F −FR
∣∣p/(p−1)dx ≤ ‖F‖p/(p−1)C0,β(B+)R

N+βp/(p−1), (4.2)

∣∣∇ψ(x)∣∣p−2∇ψ(x)−∣∣∇ψ(y)∣∣p−2∣∣∇ψ(y)∣∣
≤ ∥∥|∇ψ|p−2∇ψ∥∥C0,γ(B+)|x− y|γ, ∀x, y ∈ B+.

(4.3)

By ψ ∈ C1,γ(B+), we can get |∇ψ|p−1 ≤ c, so combining condition (vi) we have

∣∣A(x,∇ψ)−A(y,∇ψ)∣∣≤ c|x− y|α0 . (4.4)

By condition (vii), (4.3), and (4.4), we see that for all φ∈W
1,p
0 (B+

R), there holds

∫
B+
R

A(x,∇ψ) ·∇φdx

=
∫
B+
R

(
A(x,∇ψ)− (A(x,∇ψ))R

)
·∇φdx

=
∫
B+
R

∫
BR

− [
A(x,∇ψ(x))−A

(
y,∇ψ(y))] ·∇φ(x)dydx

=
∫
B+
R

∫
BR

− [
A
(
x,∇ψ(x))−A

(
x,∇ψ(y))

+A
(
x,∇ψ(y))−A

(
y,∇ψ(y))] ·∇φ(x)dydx

≤ c
∫
B+
R

∫
BR

−
(
|x− y|α0 +

∣∣∣∣∣∇ψ(x)∣∣p−2∇ψ(x)−∣∣∇ψ(y)∣∣p−2∇ψ(y)
∣∣∣)∣∣∇φ(x)∣∣dydx

≤ c
∫
B+
R

(
Rα0 +Rγ

)∣∣∇φ(x)∣∣dx.
(4.5)

From last formula, we see that
∫
B+
R

A(x,∇ψ) ·∇φdx ≤ c
∫
B+
R

(
Rα0 +Rγ

)∣∣∇φ(x)∣∣dx. (4.6)

In the following, we give two lemmas which will be used in the proof of Theorem 4.1.
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Lemma 4.2. Assume that ψ ∈ C1,γ(B+), w,v ∈W1,p(B+
R) solve the Dirichlet problem (2.5),

(2.9), respectively, then there holds

∫
B+
R

|∇v−∇w|pdx ≤ c
(
RN+γp/(p−1) +RN+α0p/(p−1)

)
. (4.7)

Proof. Inserting φ = v −w in (2.5) and (2.9), by (4.6), monotone inequality (iii), and
Hölder inequality, we have

∫
B+
R

|∇v−∇w|pdx ≤ c
∫
B+
R

(
A(x,∇v)−A(x,∇w)) · (∇v−∇w)dx

= c
∫
B+
R

A(x,∇ψ) · (∇v−∇w)dx

≤ c
∫
B+
R

(
Rα0 +Rγ

)|∇v−∇w|dx

≤ c
(
Rγ+N(p−1)/p +Rα0+N(p−1)/p)(∫

B+
R

|∇v−∇w|pdx
)1/p

.

(4.8)

From last formula, we get (4.7). �

Lemma 4.3. Assume that A(x,ξ) satisfies condition (i)–(vii), u is a weak solution to obstacle
problem (1.1), whereH verifies (1.2), g ∈ Lt(B+), t > N ; F ∈ C0,β(B+), β > 0; ψ ∈ C1,γ(B+),
γ > 0. v ∈W1,p(B+

R) solves the Dirichlet problem (2.9), then there holds

∫
B+
R

|∇u−∇v|pdx ≤ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+RNp(1−1/r−1/t)/(p−1)

+RN+βp/(p−1) +RN+γp/(p−1) +RN+α0 p/(p−1)
}
,

(4.9)

where δ = (r− p)/r(p− 1) > 0.

Proof. Combining monotone inequality (iii), and (1.2), (2.14), (2.18), (4.6), Hölder in-
equality, we have

∫
B+
R

|∇u−∇v|pdx ≤ c
∫
B+
R

[
A(x,∇u)−A(x,∇v)] · (∇u−∇v)dx

≤ c
∫
B+
R

[
H(x,u,∇u)(u− v) +

(
F(x,u)−A(x,∇ψ)) · (∇u−∇v)]dx

≤ c
∫
B+
R

(|∇u|p(1−1/r) + |u|r−1 + |g|)|u− v|dx

+ c
∫
B+
R

∣∣F −FR
∣∣|∇u−∇v|dx+ c

∫
B+
R

(
Rα0 +Rγ

)|∇u−∇v|dx
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≤ c
{(∫

B+
R

(|∇u|p + |u|r + |g|r/(r−1))dx
)1−1/r(∫

B+
R

|u− v|rdx
)1/r

+
(∫

B+
R

∣∣F −FR
∣∣p′dx

)1/p′(∫
B+
R

|∇u−∇v|pdx
)1/p

+
∫
B+
R

(
Rα0 +Rγ

)|∇u−∇v|dx
}

≤ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1−1/r

+‖g‖tRN(1−1/r−1/t)
}

×R1−N(1/p−1/r)
(∫

B+
R

|∇u−∇v|pdx
)1/p

+ c
{(∫

B+
R

∣∣F −FR
∣∣p′dx

)1/p′
+Rγ+N(p−1)/p +Rα0+N(p−1)/p

}

×
(∫

B+
R

|∇u−∇v|pdx
)1/p

.

(4.10)

Since 0 < R≤ 1, by (4.2), and last formula, we have

∫
B+
R

|∇u−∇v|pdx ≤ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+RNp(1−1/r−1/t)/(p−1)

+RN+βp/(p−1) +RN+γp/(p−1) +RN+α0.p/(p−1)
}
.

(4.11)

Hence (4.9) holds. �

Similar to the proof of (3.12), we get for any μ∈ (0,1)

∫
B+
ρ

|∇u|pdx,
∫
B+
ρ

|∇v|pdx,
∫
B+
ρ

|u|rdx ≤ cρN−p+pμ. (4.12)

In view of t > N , we have the following.
(i) If 2≤ p < N , 1− 1/r− 1/t > 1−1/r−1/N = (p− 1)/p, fromwhich we getNp(1−

1/r− 1/t)/(p− 1) > N .
(ii) If p = N , we can assume that r is a positive number large such that 1/t + 1/r <

1/N , Np(1− 1/r− 1/t)/(p− 1) > N2(1− 1/N)/(N − 1)=N .
Hence,we always have Np(1− 1/r− 1/t)/(p− 1) > N when 2≤ p ≤N .
In the following, we prove Theorem 4.1.
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By (4.2), (4.3), (4.9), Lemmas 2.3, 4.2, and 4.3, we have

∫
B+
ρ

∣∣∇u− (∇u)ρ
∣∣pdx

≤ c
∫
B+
ρ

∣∣∇u− (∇w)ρ
∣∣pdx

≤ c
∫
B+
ρ

∣∣∇w− (∇w)ρ
∣∣pdx+ c

∫
B+
ρ

|∇u−∇v|pdx+ c
∫
B+
ρ

|∇v−∇w|pdx

≤ c
∫
B+
ρ

∣∣∇w− (∇w)ρ
∣∣pdx

+ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+RNp(1−1/r−1/t)/(p−1) +RN+βp/(p−1) +RN+γp/(p−1) +RN+α0p/(p−1)
}

+ c
(
RN+γp/(p−1) +RN+α0 p/(p−1)

)

≤ c
(
ρ

R

)N+σ ∫
B+
R

∣∣∇u− (∇u)R
∣∣pdx

+ c
{[∫

B+
R

(|∇u|p + |u|r)dx
]1+δ

+RNp(1−1/r−1/t)/(p−1) +RN+βp/(p−1) +RN+γp/(P−1) +RN+α0p/(p−1)
}

≤ c
(
ρ

R

)N+σ ∫
B+
R

∣∣∇u− (∇u)R
∣∣pdx

+ c
(
R(1+δ)(N−p+pμ) +RNp(1−1/r−1/t)/(p−1) +RN+βp/(p−1)

+RN+γp/(P−1) +RN+α0p/(p−1)
)
.

(4.13)

We can select μ sufficiently close to 1, such that (1+ δ)(N − p+ pμ) > N . Hence we get

∫
B+
ρ

∣∣∇u− (∇u)ρ
∣∣pdx ≤ c

(
ρ

R

)N+σ ∫
BR

∣∣∇u− (∇u)R
∣∣pdx+ cRN+pα1 (4.14)

for some 0 < α1 < σ/p.
Applying [7, page 86, Lemma 2.1], we get

∫
B+
ρ

∣∣∇u− (∇u)ρ
∣∣pdx ≤ cρN+pα1 (4.15)

for ρ sufficiently small. By [7, page 72, Theorem 1.3], we obtain that u∈ C1,α1
loc (Γ).
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