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We study positive C1(Ω̄) solutions to classes of boundary value problems of the form
−Δpu= g(x,u,c) in Ω, u= 0 on ∂Ω, where Δp denotes the p-Laplacian operator defined
by Δpz := div(|∇z|p−2∇z); p > 1, c > 0 is a parameter, Ω is a bounded domain in RN ;
N ≥ 2 with ∂Ω of class C2 and connected (if N = 1, we assume that Ω is a bounded open
interval), and g(x,0,c) < 0 for some x ∈Ω (semipositone problems). In particular, we first
study the case when g(x,u,c)= λ f (u)− c where λ > 0 is a parameter and f is a C1([0,∞))
function such that f (0) = 0, f (u) > 0 for 0 < u < r and f (u) ≤ 0 for u≥ r. We establish
positive constants c0(Ω,r) and λ∗(Ω,r,c) such that the above equation has a positive
solution when c ≤ c0 and λ ≥ λ∗. Next we study the case when g(x,u,c) = a(x)up−1 −
uγ−1 − ch(x) (logistic equation with constant yield harvesting) where γ > p and a is a
C1(Ω̄) function that is allowed to be negative near the boundary of Ω. Here h is a C1(Ω̄)
function satisfying h(x) ≥ 0 for x ∈ Ω, h(x) �≡ 0, and maxx∈Ω̄h(x) = 1. We establish a
positive constant c1(Ω,a) such that the above equation has a positive solution when c < c1.
Our proofs are based on subsuper solution techniques.

Copyright © 2006 S. Oruganti and R. Shivaji. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider weak solutions to classes of boundary value problems of the form

−Δpu= g(x,u,c) in Ω,

u= 0 on ∂Ω,
(1.1)

where Δp denotes the p-Laplacian operator defined by Δpz := div(|∇z|p−2∇z); p > 1, c >
0 is a parameter,Ω is a bounded domain in RN ; N ≥ 2 with ∂Ω of class C2 and connected
(if N = 1, we assume thatΩ is a bounded open interval) and g(x,0,c) < 0 for some x ∈Ω

(semipositone problems). By a weak solution to (1.1), we mean a function u∈W
1,p
0 (Ω)
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that satisfies
∫
Ω
|∇u|p−2∇u ·∇wdx =

∫
Ω
g(x,u,c)wdx, ∀w ∈ C∞0 (Ω). (1.2)

However in this paper, we in fact study the existence of C1(Ω̄) solutions that are strictly
positive in Ω.

We first study the case when g(x,u,c) = λ f (u)− c where λ > 0 is a parameter and f
satisfies:

(A1) f ∈ C1([0,∞)), f (0)= 0, f (u) > 0 for 0 < u < r and f (u)≤ 0 for u≥ r for some
r > 0.

When c = 0 it is easy to establish the existence of a positive solution for large λ > 0. Here
we consider the challenging semipositone case c > 0. Semipositone problems have been of
great interest during the past two decades, and continue to pose mathematically difficult
problems in the study of positive solutions (see [1–3, 10–12]). Also most of the results
established to date are for the case when p = 2. Here we establish an existence result for
p > 1 for a class of nonlinearities satisfying (A1). Namely, we prove the following theorem.

Theorem 1.1. There exist positive constants c0 = c0(Ω,r) and λ∗ = λ∗(Ω,r,c) such that
(1.1) has a positive solution for c ≤ c0 and λ≥ λ∗.

Remark 1.2. Refer to [2] where the authors study such a problem in the case when p = 2.
In particular, when c is very small they establish an existence of a positive solution for

λ̃ near the first eigenvalue λ1 and then extend the existence for λ ≥ λ̃. In this paper, we
establish the existence of a positive solution directly for λ large. Our proof is new even in
the case p = 2.

Remark 1.3. The case when g(x,u,c)= λ[ f (u)− c] with h(u)= f (u)− c of the form

h(u)

u

has been studied for the case when p = 2 in [6]. For p �= 2 this remains a challenging
semipositone problem for existence of positive solutions for large λ.

We next study the case when g(x,u,c) = a(x)up−1 − uγ−1 − ch(x) (Logistic equation
with constant yield harvesting) where γ > p, a is a C1(Ω̄) function that is allowed to be
negative near the boundary ofΩ, and h is a C1(Ω̄) function satisfying h(x)≥ 0 for x ∈Ω,
h(x) �≡ 0 and maxx∈Ω̄h(x)= 1. Again for c > 0 this is a semipositone problem. In order to
precisely state our result for this problem we introduce the region where we allow a(x) to
be negative. Let λ1 be the first eigenvalue of the −Δp with Dirichlet boundary conditions
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and φ1 ∈ C1(Ω̄) be a corresponding eigenfunction such that φ1 > 0 in Ω, ∂φ/∂n < 0 on
∂Ω and ‖φ1‖∞ = 1. Letm> 0, δ > 0, and σ > 0 be such that

∣∣∇φ1∣∣p− λ1φ
p
1 ≥m on Ω̄δ ,

φ1 ≥ σ on Ω \ Ω̄δ ,
(1.3)

where Ω̄δ := {x ∈ Ω | d(x,∂Ω) ≤ δ}. Further assume that there exists a constant a0 > 0
such that

a(x)≥ a0 in Ω \ Ω̄δ (1.4)

and let μ > 0 be such that

a(x)≥−μ in Ω̄δ. (1.5)

Then we prove the following theorem.

Theorem 1.4. Let μ < m(p/(p − 1))p−1 and a0 > (p/(p − 1))p−1λ1. Then there exists a
positive constant c1 = c1(Ω,μ,a0) such that (1.1) has a positive solution for c ≤ c1.

Remark 1.5. Refer to [7] where they studied the case when c = 0 and a(x) is a positive
function throughout Ω̄.

We establish Theorems 1.1 and 1.4 by the method of sub- and super-solutions. By a
super-solution φ of (1.1) we mean a function inW1,p(Ω)∩C(Ω̄) such that φ = 0 on ∂Ω
and

∫
Ω
|∇φ|p−2∇φ ·∇wdx ≥

∫
Ω
g(x,φ,c)wdx, ∀w ∈W , (1.6)

where W = {v ∈ C∞0 (Ω) | v ≥ 0 in Ω}. And by a subsolution ψ of (1.1) we mean a func-
tion inW1,p(Ω)∩C(Ω̄) such that ψ = 0 on ∂Ω and

∫
Ω
|∇ψ|p−2∇ψ ·∇wdx ≤

∫
Ω
g(x,ψ,c)wdx, ∀w ∈W , (1.7)

where W is as defined before. Then if there exist sub- and super-solutions ψ and φ re-
spectively such that ψ ≤ φ inΩ then (1.1) has a C1(Ω̄) solution u such that ψ ≤ u≤ φ (see
[7, 8]).

In semipositone problems it is well documented that finding a nonnegative subsolu-
tion is nontrivial. Recently in [4] an anti-maximum principle by [5, 8, 9] was used to

create a crucial subsolution in the study of the problem when g(x,u,c)= λ f̃ (u)− c where

f̃ satisfies f̃ (0)= 0, f̃ (u)≥ 0 and limu→∞( f̃ (u)/u)= 0. Namely, the authors exploited the
C1(Ω̄) solution of

−Δpzα−αz
p−1
α =−1 in Ω,

zα = 0 on ∂Ω,
(1.8)
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which is positive in Ω by the anti-maximum principle for α∈ (λ1,λ1 + ν) for some ν > 0
where λ1 is the first eigenvalue of the −Δp with Dirichlet boundary conditions. How-

ever this requires a further restriction on f̃ namely: there exists m > 0 such that f̃ (v) >
vp−1−mp−1αp−2 + (c/α),∀v ∈ [0,mα‖zα‖∞]. Moreover they obtain a positive a solution
for λ near the first eigenvalue λ1. In proving Theorem 1.1 we avoid the use of the anti-
maximumprinciple in creating a crucial subsolution. Thus we avoid this above restriction
on f for small u which seems unnatural when we look for positive solutions for large λ.
In Theorem 1.1 we establish a subsolution by analyzing an appropriate power of the first
eigenfunction of the −Δp with Dirichlet boundary conditions.

Also recently in [13] the Logistic equation with constant yield harvesting was studied
via an anti-maximum principle in the case when a(x) is a positive constant equal to A0

(> λ1) throughout Ω̄. But in the case of Theorem 1.4, since we allow a(x) to be negative
near the boundary, the idea in [13] fails. Again we use an appropriate power of the eigen-
function to create the crucial subsolution needed to establish Theorem 1.4. We will prove
Theorem 1.1 in Section 2 and Theorem 1.4 in Section 3.

2. Proof of Theorem 1.1

Here note that g(x,u,c)= λ f (u)− c where f satisfies (A1). Let λ1, φ1, δ,m, σ , and Ωδ be
as described in Section 1.

We now construct our positive subsolution. Let ψ := ((p− 1)/p)rφ
p/(p−1)
1 . (Note that

‖ψ‖∞ < r.) Then∇ψ = rφ
1/(p−1)
1 ∇φ1 and ψ will be a subsolution if

∫
Ω
|∇ψ|p−2∇ψ ·∇wdx ≤

∫
Ω

[
λ f (ψ)− c

]
wdx, ∀w ∈W. (2.1)

But∫
Ω
|∇ψ|p−2∇ψ ·∇wdx = r p−1

∫
Ω

∣∣∇φ1∣∣p−2φ1∇φ1 ·∇wdx

= r p−1
[∫

Ω

∣∣∇φ1∣∣p−2∇φ1 ·∇(φ1w)dx−
∫
Ω

∣∣∇φ1∣∣pwdx
]

= r p−1
∫
Ω

[
λ1φ

p
1 −

∣∣∇φ1∣∣p
]
wdx.

(2.2)

Now r p−1[λ1φ
p
1 − |∇φ1|p] ≤ −mrp−1 in Ω̄δ . Hence if c ≤ c0 =mrp−1 then r p−1[λ1φ

p
1 −

|∇φ1|p]≤ [λ f (ψ)− c] in Ω̄δ , since f (ψ)≥ 0.
Next in Ω− Ω̄δ , r p−1[λ1φ

p
1 −|∇φ1|p]≤ λ1r p−1 while

λ f (ψ)− c ≥ λα− c, (2.3)

where α= inf{ f (s) | ((p− 1)/p)rσ p/(p−1) ≤ s≤ ((p− 1)/p)r}. Hence if λ≥ λ∗=(λ1r p−1 +
c)/α then in Ω− Ω̄δ ,

r p−1
[
λ1φ

p
1 −

∣∣∇φ1∣∣p
]
≤ λ f (ψ)− c. (2.4)

Hence if c ≤ c0 and λ≥ λ∗ then (2.1) is satisfied and ψ is a subsolution.
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We next construct a super-solution φ such that φ≥ ψ. Let φ :=Mφ0 where φ0 ∈ C1(Ω)
is the solution of

−Δpφ0 = 1 in Ω,

φ0 = 0 on ∂Ω.
(2.5)

Now φ will be a super-solution if

∫
Ω
|∇φ|p−2∇φ ·∇wdx ≥

∫
Ω

[
λ f (φ)− c

]
wdx, ∀w ∈W. (2.6)

But
∫
Ω |∇φ|p−2∇φ · ∇wdx = Mp−1 ∫

Ωwdx ≥ ∫Ω[λ f (φ) − c]wdx, provided Mp−1 ≥ λ
sup[0,r] f (s) :=M(λ) (say). That is, if M ≥ (M(λ))1/(p−1) then (2.6) is satisfied and φ is
a super-solution. Since φ0 > 0 inΩ and ∂φ0/∂n < 0 on ∂Ω, we can chooseM large enough
so that φ ≥ ψ is also satisfied. Hence Theorem 1.1 is proven.

Remark 2.1. We have, in the proof of Theorem 1.1, an explicit expression for both c0(Ω,r)
and λ∗(Ω,r,c).

3. Proof of Theorem 1.4

Here note that g(x,u,c)= a(x)up−1−uγ−1− ch(x). Let λ1, φ1,m, σ , δ, a0, μ, andΩδ be as
described in Section 1.

Let ψ = εφ
p/(p−1)
1 where ε will be chosen small enough later. (Note that ‖ψ‖∞ ≤ ε.)

Then ψ will be a subsolution if

∫
Ω
|∇ψ|p−2∇ψ ·∇wdx ≤

∫
Ω

[
a(x)ψp−1−ψγ−1− ch(x)

]
wdx, ∀w ∈W. (3.1)

Using a calculation similar to the one in the proof of Theorem 1.1, we have

∫
Ω
|∇ψ|p−2∇ψ ·∇wdx = εp−1

(
p

p− 1

)p−1∫
Ω

[
λ1φ

p
1 −

∣∣∇φ1∣∣p
]
wdx. (3.2)

Hence inequality (3.1) will be satisfied if both

εp−1
(

p

p− 1

)p−1
(−m)≤−μεp−1− εγ−1− c

(
considering Ω̄δ

)
, (3.3)

εp−1
(

p

p− 1

)p−1
λ1φ

p
1 ≤ a0ε

p−1φp
1 − εγ−1− c

(
considering Ω \ Ω̄δ

)
(3.4)

are satisfied. Note that since μ <m(p/(p− 1))p−1 inequality (3.3) will be satisfied if

ε < α1 =
{
m
(

p

p− 1

)p−1
−μ

}1/(γ−p)
,

c ≤ c̃1(ε)= εp−1
{
m
(

p

p− 1

)p−1
−μ− εγ−p

}
.

(3.5)
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Note that c̃1(ε) > 0. Similarly, since a0 > (p/(p− 1))p−1λ1, inequality (3.4) will be satisfied
if

ε ≤ α2

[{
a0−

(
p

p− 1

)p−1
λ1

}
σ p

]1/(γ−p)
,

c ≤ c̃2(ε)= εp−1
[{

a0−
(

p

p− 1

)p−1
λ1

}
σ p− εγ−p

]
.

(3.6)

Note that c̃2(ε) > 0. Choose α =min{α1,α2} and ε = α/2. Then simplifying, both c̃1(ε)
and c̃2(ε) are greater than (α/2)γ−1[2γ−p− 1]. Hence if c ≤ (α/2)γ−1[2γ−p−1]=c1(Ω,a0,μ)
then ψ is a subsolution.

We next construct a super-solution φ such that φ≥ ψ. Let φ :=Mφ0 where φ0 ∈ C1(Ω̄)
is the solution of (2.5). Now φ will be a super-solution if

∫
Ω
|∇φ|p−2∇φ ·∇wdx ≥

∫
Ω

[
a(x)φp−1−φγ−1− ch(x)

]
wdx, ∀w ∈W. (3.7)

But
∫
Ω |∇φ|p−2∇φ ·∇wdx =Mp−1 ∫

Ωwdx ≥ ∫Ω[a(x)φp−1−φγ−1− ch(x)]wdx, provided

Mp−1≥sup[0,k][‖a‖∞sp−1− sγ−1] :=M1 (say) where k=‖a‖1/(γ−p)∞ . That is, ifM≥M
1/(p−1)
1

then (3.7) is satisfied and φ is a super-solution. Since φ0 > 0 in Ω and ∂φ0/∂n < 0 on
∂Ω, we can choose M large enough so that φ ≥ ψ is also satisfied. Hence Theorem 1.4 is
proven.

Remark 3.1. We have, in the proof of Theorem 1.4, an explicit expression for c1(Ω,a0,μ).
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