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Abstract

Given Ω bounded open regular set of ℝ2 and x1, x2, ..., xm Î Ω, we give a sufficient
condition for the problem

−div (eλu∇u) = ρ2f (u)

to have a positive weak solution in Ω with u = 0 on ∂Ω, which is singular at each xi
as the parameters r, l > 0 tend to 0 and where f(u) is dominated exponential
nonlinearities functions.
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1 Introduction and statement of the results
We consider the following problem{−div(a(u)∇u) = ρ2f (u) in �

u = 0 on ∂�,
(1)

where ∇ is the gradient and Ω is an open smooth bounded subset of ℝ2. The func-

tion a is assumed to be positive and smooth. In the following, we take a(u) = elu and f

(u) = elu(eu + egu), for l > 0 and g Î(0, 1), then problem (1) take the form{−�u − λ|∇u|2 = ρ2(eu + eγu) in � ⊂ R2

u = 0 on ∂�.
(2)

Using the following transformation

w = (λρ2eu)λ,

then the function w satisfies the following problem{
−�w = w

λ+1
λ + �w

γ−1
λ in � ⊂ R2

w = (λρ2)λ on ∂�.
(3)
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with ϱ = (lr2)1-l. So when l ® 0+, the exponent q = λ+1
λ

tends to infinity while the

exponent γ−1
λ

tends to -∞. For ϱ ≡ 0, problem (3) has been studied by Ren and Wei in

[1]. See also [2].

We denote by ε the smallest positive parameter satisfying

ρ2 =
8 ε2

(1 + ε2)2
. (4)

Remark that r ~ ε as ε ® 0. We will suppose in the following

(Aλ) : If 0 < ε < λ, then λ1+δ/2ε−δ → 0 as λ → 0, for any δ ∈ (0, 1).

In particular, if we take λ = O(ε2/3), then the condition (Al) is satisfied. Under the

assumption (Al), we can treat equation (2) as a perturbation of the following:

−�u = ρ2(eu + eγu) in � ⊂ R2

for g Î (0, 1).

Our question is: Does there exist vε,l a sequence of solutions of (2) which converges

to some singular function as the parameters ε and l tend to 0?

In [3], Baraket et al. gave a positive answer to the above question for the following

problem{−�u − λ|∇u|2 = ρ2eu in �

u = 0 on ∂�,
(5)

with a regular bounded domain Ω of ℝ2. They give a sufficient condition for the pro-

blem (5) to have a weak solution in Ω which is singular at some points (xi)1≤i≤m as r
and l a small parameters satisfying (Al), where the presence of the gradient term

seems to have significant influence on the existence of such solutions, as well as on

their asymptotic behavior.

In case l = 0 the authors in [4] gave also a positive answer for the following problem{−�u = ρ2(eu + eγu) in � ⊂ R2

u = 0 on ∂�,
(6)

for g Î (0, 1) as r tends to 0. When l = 0 and g = 0, problem (2) reduce to{−�u = ρ2eu in � ⊂ R2

u = 0 on ∂�.
(7)

The study of this problem goes back to 1853 when Liouville derived a representation

formula for all solutions of (7) which are defined in ℝ2, see [5]. It turns out that, beside

the applications in geometry, elliptic equations with exponential nonlinearity also arise

in modeling many physical phenomenon, such as thermionic emission, isothermal gas

sphere, gas combustion, and gauge theory [6]. When r tends to 0, the asymptotic

behavior of nontrivial branches of solutions of (7) is well understood thanks to the pio-

neer work of Suzuki [7] which characterizes the possible limit of nontrivial branches of

solutions of (7). His result has been generalized in [8] to (6) with γ < 1
4, and finally by

Ye in [9] to any exponentially dominated nonlinearity f(u). The existence of nontrivial

branches of solutions with single singularity was first proved by Weston [10] and then

a general result has been obtained by Baraket and Pacard [11]. These results were also
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extended, applying to the Chern-Simons vortex theory in mind, by Esposito et al. [12]

and Del Pino et al. [13] to handle equations of the form -Δu = r2V(x)eu where V is a

nonconstant positive potential. See also [14-16] wherever this rule is applicable. where

the Laplacian is replaced by a more general divergence operator and some new phe-

nomena occur. Let us also mention that the construction of nontrivial branches of

solutions of semilinear equations with exponential nonlinearities allowed Wente to

provide counter examples to a conjecture of Hopf [17] concerning the existence of

compact (immersed) constant mean curvature surfaces in Euclidean space. Another

related problem is the higher dimension problem with exponential nonlinearity. For

example, the 4-dimensional semilinear elliptic problem with bi-Laplacian is treated in

[18] and the problem with an additional singular source term given by Dirac masses is

treated in [19] in the radial case. The results in [18,19] are generalized to noncritical

points of the reduced function, see [20].

We introduce now the Green’s function G(x, x’) defined on Ω × Ω, to be solution of{−�G(x, x′) = 8πδx=x′ in � ⊂ R2

G(x, x′) = 0 on ∂�

and let H(x, x’) = G(x, x’) + 4log |x - x’|, its regular part. Let m Î N, we set

F(x1, . . . , xm) =
m∑
j=1

H(xj, xj) +
∑
i�=j

G(xi, xj) (8)

which is well defined in (Ω)m for xi ≠ xj for i ≠ j. Our main result is the following

Theorem 1 Given b Î (0, 1). Let Ω an open smooth bounded set of ℝ2, l > 0 satisfy-

ing the condition (Al), g Î (0, 1) and S = {x1, ... xm} ⊂ Ω be a nonempty set. Assume

that, the point (x1, ..., xm) is a nondegenerate critical point of the function

F(x1, . . . , xm) =
m∑
j=1

H(xj, xj) +
∑
i�=j

G(xi, xj) in (�)m,

then there exist ε0 > 0, l0 > 0 and {vε,λ}0<ε<ε0
0<λ<λ0

a family of solutions of (2), such that

lim
ε→0
λ⇀0

vε,λ =
m∑
j=1

G(xj, ·) in C2,β
loc (� − {x1, . . . , xm}).

One of the purpose of the present paper is to present a rather efficient method: non-

linear Cauchy-data matching method to solve such singularly problems. This method

has already been used successfully in geometric context (constant mean curvature sur-

faces, constant scalar curvature metrics, extremal Kähler metrics, manifolds with spe-

cial holonomy, ...) and appeared in the study [18] in the context of partial differential

equations.

2 Construction of the approximate solution
We first describe the rotationally symmetric approximate solutions of

−�u − λ|∇u|2 = ρ2(eu + eγu) (9)

in ℝ2 which will play a central role in our analysis. Given ε > 0, we define

uε(x) := 2 log(1 + ε2) − 2 log(ε2 + |x|2) (10)
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which is clearly a solution of

−�u = ρ2eu. (11)

in ℝ2. Let us notice that equations (11) is invariant under dilation in the following

sense: If v is a solution of (11) and if τ > 0, then v(τ ·) + 2logτ is also a solution of (11).

With this observation in mind, we define for all τ > 0

uε,τ (x) := 2 log(1 + ε2) + 2 log τ − 2 log(ε2 + |τx|2). (12)

2.1 A linearized operator on ℝ2

For all ε, τ, l > 0, we set

Rε,λ := τ rε,λ/ε where rε,λ := max(ε2(1−γ )−δ/2,
√

λ,
√

ε). (13)

for δ Î (0, 1). We define the linear second order elliptic operator

L := −� − 8

(1 + |x|2)2 (14)

which corresponds to the linearization of (11) about the solution u1 (= uε = τ = 1)

given by (10) which has been defined in the previous section. We are interested in the

classification of bounded solutions of Lw = 0 in ℝ2. Some solutions are easy to find.

For example, we can define

φ0(x) :=
r
2

∂ru1(x) + 1 = 2
1 − r2

1 + r2
,

where r = |x|. Clearly Lφ0 = 0 and this reflects the fact that (11) is invariant under

the group of dilations τ ® u(τ ·) + 2 logτ. We also define, for i = 1, 2

φi(x) := −∂xiu1(x) =
2xi

1 + |x|2 ,

which are also solutions of Lφi = 0. Since, these solutions correspond to the invar-

iance of the equation under the group of translations a ® u(· + a). We recall the fol-

lowing result which classifies all bounded solutions of Lw = 0 which are defined in ℝ2.

Lemma 1 [11]Any bounded solution of Lw = 0defined in ℝ2 is a linear combination

of ji for i = 0, 1, 2.

Let Br denote the ball of radius r centered at the origin in ℝ2.

Definition 1 Given k Î N, b Î (0, 1) and μ Î ℝ, we introduce the Hölder weighted

spaces Ck,β
μ (R2) as the space of functions w ∈ Ck,β

loc (R
2) for which the following norm

||w||Ck,β
μ (R2) := ||w||Ck,β (B̄1) + sup

r≥1

(
(1 + r2)

−μ/2||w(r ·)||Ck,β
μ (B̄1−B1/2)

)
,

is finite.

We define also

Ck,β
rad,μ(R

2) = {f ∈ Ck,β
μ (R2); such that f (x) = f (|x|),∀ x ∈ R2}.

As a consequence of the result of Lemma 1, we recall the surjectivity result of L
given in [11].
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Proposition 1 [11]

(i) Assume that μ > 1 and μ ∉ N, then

Lμ : C2,β
μ (R2) → C0,β

μ−2(R
2)

w �→ Lw

is surjective.

(ii) Assume that δ > 0 and δ ∉ N then

Lδ : C2,β
rad,δ(R

2) → C0,β
rad,δ−2(R

2)
w �→ Lw

is surjective.

We set B̄∗
1 = B̄1 − {0}, we define

Definition 2 Given k Î N, b Î (0, 1) and μ Î ℝ, we introduce the Hölder weighted

spaces Ck,β
μ (B̄∗

1) as the space of functions in Ck,β
loc (B̄

∗
1) for which the following norm

||u||Ck,β
μ (B̄∗

1)
= sup

r≤1/2

(
r−μ||u(r ·)||Ck,β(B̄2−B1)

)
,

is finite.

Then, we define the subspace of radial functions in Ck,β
rad,δ(B̄

∗
1) by

Ck,β
rad,δ(B̄

∗
1) = {f ∈ Ck,β

δ (R2); such that f (x) = f (|x|),∀ x ∈ B̄∗
1}.

We would like to find a solution u of

�u + λ|∇u|2 + ρ2(eu + eγu) = 0 (15)

in Brε,λ. By using the transformation, v(x) = u( ε
τ
x) + 4 log ε − 2 log

(
τ (1 + ε2)/2

)
, then

Eq. (15) is equivalent to

�v + λ|∇v|2 + 2

(
ev +

22(1−γ )ε4(1−γ )

((1 + ε2)τ )2(1−γ )
eγ v

)
= 0 (16)

in B̄Rε,λ. We look for a solution of (16) of the form v(x) = u1(x) + h(x), this amounts

to solve

L h := �(h) =
8

(1 + |x|2)2 (e
h−h−1)− 8ε4(1−γ )

((1 + ε2)τ )2(1−γ )(1 + |x|2)2γ
eγh+λ|∇(u1+h)|2 (17)

In B̄Rε,λ. We will need the following:

Definition 3 Given r̄ ≥ 1, k Î ∞, b Î (0, 1) and μ Î ℝ, the weighted space Ck,β
μ (Br̄) is

defined to be the space of functions w ∈ Ck,β(Br̄) endowed with the norm

||w||Ck,β
μ (B̄r̄)

:= ||w||Ck,β (B1) + sup
1≤r≤r̄

(
r−μ||w(r ·)||Ck,β(B̄1−B1/2)

)
.

For all s ≥ 1, we denote by Eσ : C0,β
μ (B̄σ ) → C0,β

μ (R2) the extension operator defined by

εσ (f )(x) =

⎧⎨
⎩

f (x) for |x| ≤ σ

χ

( |x|
σ

)
f
(

σ
x
|x|

)
for |x| ≤ σ ,

(18)
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where t a c(t) is a smooth non-negative cutoff function identically equal to 1 for t ≤

1 and identically equal to 0 for t ≥ 2. It is easy to check that there exists a constant c

= c(μ) > 0, independent of s ≥ 1, such that

||εσ (w)||C0,β
μ (R2) ≤ c||w||C0,β

μ (B̄σ )
. (19)

We fix δ Î (0, 1) and denote by Gδ to be a right inverse of Lδ provided by Proposi-

tion 1. To find a solution of (17), it is enough to find a fixed point h, in a small ball of

C2,β
rad,δ(R

2), solution of

h = ℵ(h) = Gδ ◦ Eδ ◦ �(h). (20)

We have

�(0) = λ|∇u1|2 − 8ε4(1−γ )

((1 + ε2)τ )2(1−γ )(1 + |x|2)2γ
.

This implies that given � > 0, there exist c� >0 (only depend on �), such that for δ Î
(0,1) and |x| = r, we have

sup
r≤Rε,λ

r2−δ |�(0)| ≤ sup
r≤Rε,λ

r2−δ

(
λ|∇u1|2 + 8ε4(1−γ )

((1 + ε2)τ )2(1−γ )(1 + |x|2)2γ

)

≤ cκ
(
λ + max{ε4(1−γ ), ε2+δr−2−δ

ε,λ }
)
.

Making use of Proposition 1 together with (19), we conclude that

||h||C2,β
rad,δ(R

2) ≤ 2cκ r2ε,λ. (21)

Now, let h1, h2 such that ||hi|| ≤ 2cκr2ε,λ in C2,β
rad,δ(R

2), then for δ Î (0, 1 - r] we have

sup
r≤Rε,λ

r2−δ |�(h2) − �(h1)|

≤ cκ sup
r≤Rε,λ

r2−δ(1 + |x|2)−2
∣∣∣eh2 − eh1 + h1 − h2

∣∣∣ + cκλ sup
r≤Rε,λ

r2−δ(|∇(u1 + h2)|2 − |∇(u1 + h1)|2)

+cκ sup
r≤Rε,λ

r2−δ(1 + |x|2)−2γ |eγh1 − eγh2 |

≤ cκ max{ε4(1−γ ), ε2+δ r−2−δ
ε,λ }||h2 − h1||C2,β

rad,δ(R
2) + cκλ||h2 − h1||C2,β

rad,δ(R
2)

+cκ max{ε4(1−γ ), ε2 r−2
ε,λ }||h2 − h1||C2,β

rad,δ(R
2).

Similarly, making use of Proposition 1 together with condition (Al) and (19), we con-

clude that given � > 0, there exist ε� > 0, l� > 0 and c̄κ > 0 (only depend on �) such

that

||ℵ(h2) − ℵ(h1)||C2,β
rad,δ(R

2) ≤ c̄κ r
2
ε,λ||h2 − h1||C2,β

rad,δ(R
2). (22)

Reducing l� > 0 and ε� > 0 if necessary, we can assume that, c̄κ r2ε,λ ≤ 1
2 for all l Î

(0, l�) and ε Î (0, ε�). Then, (21) and (22) are enough to show that h ↦ ℵ is a con-

traction from {h ∈ C2,β
rad,δ(R

2) : ||h||C2,β
rad,δ(R

2) ≤ 2cκr2ε,λ} into itself and hence has a

unique fixed point h in this set. This fixed point is solution of (20) in B̄Rε,λ. We sum-

marize this in the:
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Proposition 2 Given δ Î (0, 1 - g] and � > 1, then there exist c̄κ > 0 (independent of

ε and l) and a unique h ∈ C2,β
rad,δ(R

2) with ||h||C2,β
rad,δ(R

2) ≤ 2cκ r2ε,λ such that

v(x) = u1(x) + h(x)

solves (16) in B̄Rε,λ.

2.2 Analysis of the Laplace operator in weighted spaces

In this section, we study the mapping properties of the Laplace operator in weighted

Hölder spaces. Given x1, ..., xm Î Ω, we define x := (x1, ..., xm)

�̄∗(x) := �̄ − {x1, . . . xm},

and we choose r0 > 0 so that the balls Br0 (xi) of center xi and radius r0 are mutually

disjoint and included in Ω. For all r Î (0, r0), we define

�̄r(x) := �̄ − ∪m
i=1Br(xi).

With these notations, we have:

Definition 4 Given k Î ℝ, b Î (0,1) and ν Î ℝ, we introduce the Hölder weighted

space Ck,β
ν (�̄∗(x)) as the space of functions w ∈ Ck,β

loc (�̄
∗(x)) for with the following norm

||w||Ck,β
ν (�̄∗(x)) := ||w||Ck,β (�̄r0/1

) +
m∑
i=1

sup
0<r≤r0/2

(
r−ν ||w(xi + r ·)||Ck,β(B̄2−B1)

)

is finite.

When k ≥ 2, we denote by [Ck,β
ν (�̄∗(x))]0 be the subspace of functions

w ∈ Ck,β
ν (�̄∗(x)) satisfying w = 0 on ∂Ω. We recall the

Proposition 3 [21]Assume that ν < 0 and ν ∉ ℤ, then

Lν : [C2,β
ν (�̄∗(x))]0 → C0,β

ν−2(�̄
∗(x))

w �→ �w

is surjective. Denote by G̃νa right inverse of Lν.

Remark 1 Observe that, when ν < 0, ν ∉ ℤ, the right inverse even though is not

unique and can be chosen to depend smoothly on the points x1, ..., xm, at least locally.

Once a right inverse is fixed for some choice of the points x1, ..., xm, a right inverse

which depends smoothly on some points x̃1, . . . , x̃m close to x1, ..., xm can be obtained

using a simple perturbation argument. This argument will be used later in the non-

linear exterior problem, since we will move a little bit the points (xi).

2.3 Harmonic extensions

We study the properties of interior and exterior harmonic extensions. Given

ϕ ∈ C2,β(S1) and define Hi (=Hi (�; ·)) to be the solution of{
�Hi = 0 in B1

Hi = ϕ on ∂B1
(23)

We denote by e1, e2 the coordinate functions on S1.
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Lemma 2 [21]If we assume that∫
S1

ϕdvS1 = 0 and
∫
S1

ϕ e� dvS1 = 0 for � = 1, 2 (24)

then there exists c > 0 such that

||Hi(ϕ; ·)||C2,β
2 (B̄∗

1)
≤ c ||ϕ||C2,β (S1).

Given ϕ̃ ∈ C2,β(S1), we define He(= He(ϕ̃; ·)) to be the solution of

{
�He = 0 in R2 − B1

He = ϕ̃ on ∂B1
(25)

which decays at infinity.

Definition 5 Given k Î N, b Î (0,1) and ν Î ℝ, we define the space Ck,β
ν (R2 − B1) as

the space of functions w ∈ Ck,β
loc (R

2 − B1) for which the following norm

||w||Ck,β
ν (R2−B1)

= sup
r≥1

(
r−ν ||w(r ·)||Ck,β

ν (B̄2−B1)

)
,

is finite.

Lemma 3 [21]If we assume that∫
S1

ϕ̃ dvS1 = 0. (26)

Then there exists c > 0 such that

||He(ϕ̃, ; ·)||C2,β
−1 (R

2−B1)
≤ c|| ϕ̃||C2,β(S1).

If F ⊂ L2(S1) is a space of functions defined on S1, we define the space F⊥ to be the

subspace of functions F of which are L2(S1) -orthogonal to the functions 1, e1,e2. We

will need the:

Lemma 4 [21]The mapping

P : C2,β(S1)⊥ → C1,β(S1)⊥
ψ �→ ∂rHi − ∂rHe

where Hi(= Hi (ψ; ·)) and He = He(ψ; ·), is an isomorphism.

3 The nonlinear interior problem
We are interested in studying equations of type

�w + λ|∇w|2 + 2(ew + eγw) = 0. (27)

In B̄Rε,λ.

Given ϕ ∈ C2,β(S1) satisfying (24), we define

v := u1 +Hi(ϕ, ·/Rε,λ) + h.

Then, we look for a solution of (27) of the form w = v + v and using the fact that Hi

is harmonic, this amounts to solve
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Lv := S(v) =
8

(1 + r2)2
eh

(
eH

i(ϕ,·/Rε,λ)+v − v − 1
)
+

8

(1 + r2)2

(
eh − 1

)
v

+ λ|∇[u1 +Hi(ϕ, ·/Rε,λ) + h + v]|2 − λ|∇(u1 + h)|2

+
8ε4(1−γ )

((1 + ε2)τ )2(1−γ )(1 + |x|2)2γ
eγh

(
eγH

i(ϕ,·/Rε,λ)+γ v − 1
)
.

(28)

We fix μ Î (1,2) and denote by Gμ to be a right inverse of Lμ provided by Proposi-

tion 1. To find a solution of (28), it is sufficient to find v ∈ C2,β
μ ((R2)) solution of

v = Gμ ◦ Eμ ◦ S(v). (29)

We denote by N (= Nε,τ ,ϕ), the nonlinear operator appearing on the right-hand side

of equation (29).

Given � > 0 (whose value will be fixed later on), we further assume that the func-

tions � satisfy

||ϕ||C2,β (S1) ≤ κ r2ε,λ . (30)

Then, we have the following result

Lemma 5 Given � > 0. There exist ε� > 0, l� > 0, c� > 0 and c̄κ > 0(only depend on

�) such that for all l Î (0, l�) and ε Î (0, ε�)

||N (0)||C2,β
μ (BRε,λ )

≤ cκ r
2
ε,λ.

and

||N (v2) − N (v1)||C2,β
μ (BRε,λ )

≤ cκ r
2
ε,λ||v2 − v1||C2,β

μ (BRε,λ )

provided v1, v2 ∈ C2,β
μ (R2)satisfying ||vi||C2,β

μ (R2) ≤ 2cκ r2ε,λ.

Proof. The proof of the first estimate follows from the asymptotic behavior of Hi

together with the assumption on the norm of boundary data � given by (30). Indeed,

let c� be a constant depending only on � (provided ε and l are chosen small enough)

it follows from the estimate of Hi, given by lemma 2, that

||Hi( · /Rε,λ)||C2,β
2 (B̄Rε,λ )

≤ cκ R
−2
ε,λ ||ϕ||C2,β ≤ cκ ε2.

Since for each x ∈ BRε,λ, we have

|h(x)| ≤ cκ r2+δ
ε,λ ε−δ ≤

⎧⎨
⎩

ε(1+γ )/2 → 0 as ε tends to 0, for rε,λ =
√

ε ,
λ1+δ/2ε−δ → 0 as λ tends to 0 by (Aλ), for rε,λ =

√
λ ,

ε2(1−γ ) → 0 as ε tends to 0, for rε,λ = ε2(1−γ )−δ/2 ,

where δ Î (0, 1 - g]. Then∥∥∥(1 + | · |2)−2
eh

(
eH

i(ϕ; ·/Rε,λ) − 1
)∥∥∥

C0,β
μ−2(B̄Rε,λ )

≤ cκ ε2.

On the other hand, using the condition (Al), we have

λ sup
r≤Rε,λ

r2−μ|∇[u1 +Hi(ϕ, ·/Rε,λ) + h]|2 ≤ cκ r
2
ε,λ,

λ sup
r≤Rε,λ

r2−μ|∇[u1 + h]|2 ≤ cκ r2ε,λ
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and ∥∥∥∥∥ 8ε4(1−γ )

((1 + ε2)τ )2(1−γ )(1 + |x|2)2γ
eγh

(
eγH

i(ϕ,·/Rε,λ) − 1
)∥∥∥∥∥

C0,β
μ−2(B̄Rε,λ )

≤ cκε2ε4(1−γ )−μ ≤ cκ r2ε,λ.

Making use of Proposition 1 together with (20), we get

||N (0)||C2,β
μ (BRε,λ )

≤ cκ r
2
ε,λ. (31)

In order to derive the second estimate, we use the fact that, for v1, v2 ∈ C2,β
μ (R2)

satisfying ||vi||C2,β
μ (R2) ≤ 2cκ r2ε,λ for i = 1,2, μ Î (1,2) and the condition (Al), then there

exist c� >0 (only depend on �) such that

sup
r≤Rε,λ

r2−μ |S(v2) − S(v1)|

≤ cκ r2ε,λ||v2 − v1||C2,β
μ (R2) + cκλ||v2 − v1||C2,β

μ (R2) + cκr2ε,λ||v2 − v1||C2,β
μ (R2).

Similarly, making use of Proposition 1 together with (19), we conclude that there

exists c̄κ > 0 (only depend on �) such that

||N (v2) − N (v1)||C2,β
μ (BRε,λ )

≤ c̄κ r
2
ε,λ ||v2 − v1||C2,β

μ (BRε,λ )
. (32)

□
Reducing l� > 0 and ε� > 0 if necessary, we can assume that, c̄κ r

2
ε,λ ≤ 1

2 for all l Î

(0, l�) and ε Î (0, ε�). Then, (31) and (32) are enough to show that v �→ N (v) is a

contraction from {v ∈ C2,β
μ (R2) : ||v||C2,β

μ (R2) ≤ 2cκ r2ε,λ} into itself and hence has a

unique fixed point v(= v̄ε,τ ,ϕ) in this set. This fixed point is solution of (20) in ℝ2. We

summarize this in the following:

Proposition 4 Given � >0, there exist ε� >0, l� >0 and c� >0 (only depending on �)

such that for all ε Î (0, ε� ), l Î (0, l�) satisfying (A), for all τ in some fixed compact

subset of [τ -, τ+] ⊂ (0, ∞) and for a given � satisfying (24)-(30), then there exists a

unique v(:= v̄ε,τ ,ϕ)solution of (29) such that

w := u1 +Hi(ϕ, ·/Rε,λ) + h + v̄ε,τ ,ϕ

Solve (27) in B̄Rε,λ. In addition,

||v||C2,β
μ (R2) ≤ 2cκ r2ε,λ.

Observe that the function v(:= v̄ε,τ ,ϕ) being obtained as a fixed point for contraction

mappings, it depends continuously on the parameter τ.

4 The nonlinear exterior problem
Recall that G(·, x̃) denote the unique solution of

−�G(·, x̃) = 8π δx̃

in Ω, with G(·, x̃) = 0 on ∂Ω. In addition, the following decomposition holds

G(x, x̃) = −4 log |x − x̃| +H(x, x̃)

Baraket et al. Boundary Value Problems 2011, 2011:10
http://www.boundaryvalueproblems.com/content/2011/1/10

Page 10 of 17



where x �→ H(x, x̃) is a smooth function. Here, we give an estimate of the gradient of

H(x, x̃) without proof (see [14], Lemma 2.1), there exists a constant c >0, so that

||∇H(·, x̃)||∞ ≤ c d(x̃, ∂�)−1.

Let x̃ := (x̃1, . . . , x̃m) close enough to x := (x1, ..., xm), η̃ := (η̃1, . . . , η̃m) ∈ Rm close to

0 and ϕ̃ := (ϕ̃1, . . . , ϕ̃m) ∈ (C2,β(S1))m satisfying (26). We define

ṽ :=
m∑
i=1

(1 + η̃i)G(·, x̃i) +
m∑
i=1

χr0 (· − x̃i)He(ϕ̃i; (· − x̃i)/rε,λ). (33)

where χr0 is a cutoff function identically equal to 1 in Br0/2 and identically equal to 0

outside Br0.

We would like to find a solution of

�v + λ|∇v|2 + ρ2(ev + eγ v) = 0 (34)

in �̄rε,λ(x̃) := �̄ − ∪m
i=1Brε,λ(x̃i) which is a perturbation of ṽ. Writing v = ṽ + ṽ. This

amounts to solve

−� ṽ = ρ2(eṽ+ṽ + eγ ṽ+γ ṽ) + λ|∇(ṽ + ṽ)|2 + �ṽ.

We need to define some auxiliary weighted spaces:

Definition 6 Let r̄ ∈ (0, r0/2), k Î ℝ, b Î (0, 1) and ν Î ℝ, we define the Hölder

weighted space Ck,β
ν (�̄r̄ (x)) as the set of functions w ∈ Ck,β(�̄r̄(x)) for which the follow-

ing norm

||w||Ck,β
ν (�̄r̄ (x))

:= ||w||Ck,β (�̄r0/2 (x))
+

m∑
i=1

sup
r∈[r̄,r0/2)

(
r−ν ||w(xi + r ·)||Ck,β(B̄2−B1)

)
.

is finite

For all s Î (0, r0/2) and all Y = (y1, ..., ym) Î Ωm such that ||X - Y || ≤ r0/2, where X

= (x1, ..., xm), we denote by

Ẽσ ,Y : C0,β
ν (�̄σ (Y)) → C0,β

ν (�̄∗ (Y)),

the extension operator defined by Ẽσ ,Y(f ) = f in �̄σ (Y)

Ẽσ ,Y(f )(yi + x) = χ̃

( |x|
σ

)
f
(
yi + σ

x
|x|

)

for each i = 1, ..., m and Ẽσ ,Y(f ) = 0 in each Bs/2(yi), where t �→ χ̃(t) is a cutoff func-

tion identically equal to 1 for t ≥ 1 and identically equal to 0 for t ≤ 1/2. It is easy to

check that there exists a constant c = c(ν) >0 only depending on ν such that

||Ẽσ ,Y (w)||C0,β
ν (�̄∗ (Y)) ≤ c ||w||C0,β

ν (�̄σ (Y)). (35)

We fix

ν ∈ (−1, 0)

and denote by G̃ν : C0,β
ν−2(�̄

∗(x̃)) → C2,β
ν (�̄∗(x̃)) a right inverse of Δ provided by Pro-

position 3 with �̄∗(x̃) = �̄ − {x̃1, . . . , x̃m}. Clearly, it is enough to find ṽ ∈ C2,β
ν (�̄∗(x̃))
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solution of

ṽ = G̃ν ◦ Ẽrε,λ,x̃
(
ρ2

(
eṽ+ṽ + eγ ṽ+γ ṽ

)
+ λ|∇(ṽ + ṽ)|2 + �ṽ

)
= G̃ν ◦ Ẽrε,λ,x̃ ◦ �̃(ṽ). (36)

where

�̃(ṽ) = ρ2
(
eṽ+ṽ + eγ ṽ+γ ṽ

)
+ λ|∇(ṽ + ṽ)|2 + � ṽ.

We denote by Ñ (= Ñε,η̃,x̃,ϕ̃) the nonlinear operator which appears on the right hand

side of Eq.(36). Given � > 0 (whose value will be fixed later on), we assume that the

points x̃ = (x̃1, . . . , x̃m), the functions ϕ̃ = (ϕ̃1, . . . , ϕ̃m) and the parameters

η̃ = (η̃1, . . . , η̃m) to satisfy

|x̃i − xi| ≤ κ rε,λ, (37)

||ϕ̃i||C2,β(S1) ≤ κ r2ε,λ (38)

and

|η̃i| ≤ κr2ε,λ. (39)

Then, the following result holds

Lemma 6 Given � >0, there exist ε� >0, l� >0, c� >0 and c̄κ > 0(depending on �)

such that for all ε Î (0, ε� ), l Î (0, l�)

||Ñ (0)||C2,β
ν (�̄∗(x̃)) ≤ cκ r

2
ε,λ

and

||Ñ (ṽ2) − Ñ (ṽ1)||C2,β
ν (�̄∗(x̃)) ≤ cκ r

2
ε,λ ||ṽ2 − ṽ1||C2,β

ν (�̄∗(x̃))

provided ṽ1, ṽ2 ∈ C2,β
ν (�̄∗(x̃))and satisfy ||ṽi||C2,β

ν (�̄∗(x̃)) ≤ 2cκ r2ε,λ.

Proof: Recall that Ñ (ṽ) = G̃ν ◦ �̃(ṽ), we will estimate Ñ (0) in different subregions of

�̄∗(x̃).
* In Br0 (x̃i), we have χr0 (x − x̃i) = 1, �ṽ = 0 and

|He(ϕ̃i; (x − x̃i)/rε,λ)| ≤ κr3ε,λr
−1 (40)

so that

|�̃(0)| ≤ cκε2|x − x̃i|−4(1+η̃i)
m∏

�=1,��=i
|x − x̃�|−4(1+η̃�)

+ ε2|x − x̃i|−4γ (1+η̃i)
m∏

�=1,��=i
|x − x̃�|−4γ (1+η̃�) + λ|∇ ṽ|2

≤ cκε2r−4(1+η̃i) + λ
∣∣(1 + η̃i)r−1 + (1 + η̃i)|∇H(x, x̃)| + |∇He(ϕ̃i; (· − x̃i)/rε,λ)|

∣∣2
≤ cκε

2r−4(1+η̃i) + cκλ
(
(1 + η̃i)r−1 + (1 + η̃i) log r + r2ε,λr

−2)2.
Hence, for ν Î (- 1, 0) and for η̃i small enough, we get

||�̃(0)||C0,β
ν−2(∪m

i=1Br0 (x̃i))
≤ sup

rε,λ≤r≤r0/2
r2−ν |�̃(0)| ≤ cκε

2r−2
ε,λ + cκλ.
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* In � − Br0 (x̃i), we have χr0 (x − x̃i) = 1 and �ṽ = 0. Thus

|�̃(0)| ≤ cκε2
m∏

�=1

e(1+η̃�)G(x,x̃�) + cκλ
(
(1 + η̃i)r−1 + (1 + η̃i) log r + r2ε,λr

−2)2.
So, for ν Î (- 1, 0), we have

||�̃(0)||C0,β
ν−2(�−∪m

i=1Br0 (x̃i))
≤ sup

r0≤r
r2−ν |�̃(0)| ≤ cκε

2 + cκλ.

* In Br0 (x̃i) − Br0/2(x̃i), using the estimat (40), then we have∣∣∣�̃(0)
∣∣∣ ≤ cκ ε2r−4(1+η̃ji ) + cκλ

(
(1 + η̃i)r−1 + (1 + η̃i) log r + r2ε,λr

−2)2
+

m∑
i=1

|[�,χr0 (x − x̃i)]| |He(ϕ̃i; (x − x̃i)/rε,λ)|

≤ cκ (ε2 + cκλ
(
(1 + η̃i)r−1 + (1 + η̃i) log r + r2ε,λr

−2)2 + r−1r3ε,λ),

where

[�,χr0 ]w = �wχr0 + w�χr0 + 2∇w · ∇χr0 .

Then

||�̃(0)||C0,β
ν−2(∪m

i=1(Br0 (x̃i)−Br0/2(x̃i)))
≤ sup

r0/2≤r≤r0

r2−ν |�̃(0)| ≤ cκ r
2
ε,λ + cκλ.

So,

||�̃(0)||C0,β
ν−2(∪m

i=1(�−Br0 (x̃i))
≤ cκ r

2
ε,λ. (41)

Making use of Proposition 3 together with (34), we conclude that

||Ñ (0)||C2,β
ν (�̄∗(x)) ≤ cκ r

2
ε,λ (42)

For the proof of the second estimate, let ṽ1 and ṽ2 ∈ C2,β
ν (�̄∗(x̃)) satisfying

||ṽi||C2,β
μ (�̄∗(x̃)) ≤ 2cκ r2ε,λ for i = 1,2, we have

|�̃(ṽ2)−�̃(ṽ1)| ≤ cκε2eṽ |eṽ2−eṽ1 |+cκε2eγ ṽ |eγ ṽ2−eγ ṽ1 |+λ

∣∣∣|∇(ṽ + ṽ2)|2 − |∇(ṽ + ṽ1)|2
∣∣∣ .

Then for g Î (0,1), we get∣∣∣�̃(ṽ2) − �̃(ṽ1)
∣∣∣ ≤ cκε2|x − xi|−4(1+η̃i) |ṽ2 − ṽ1| + cκλ|∇(ṽ2 − ṽ1)|(|∇(ṽ2 + ṽ1)| + 2|∇ ṽ|)
≤ cκε

2r−4(1+η̃ji ) |ṽ2 − ṽ1| + cκλ|∇(ṽ2 − ṽ1)|(|∇(ṽ2 + ṽ1)| + 2|∇ ṽ|).

So, for η̃i small enough and using the estimate (35), there exist c̄κ (depending on � ),

such that:

||Ñ (ṽ2) − Ñ (ṽ1)||C2,β
ν (�̄∗(x̃)) ≤ cκ r

2
ε,λ ‖ ṽ2 − ṽ1‖C2,β

ν (�̄∗(x̃)). (43)

□
Reducing l� > 0 and ε � > 0 if necessary, we can assume that, c̄κ r

2
ε,λ ≤ 1

2 for all l Î

(0, l�) and ε Î (0, ε�). Then, (42) and (43) are enough to show that ṽ �→ Ñ (ṽ) is a

contraction from {ṽ ∈ C2,β
ν (R2) : ||ṽ||C2,β

ν (R2) ≤ 2cκ r2ε,λ} into itself and hence has a
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unique fixed point ṽ(= v̄ε,τ ,ϕ) in this set. This fixed point is solution of (35). We sum-

marize this in the following

Proposition 5 Given � >0, there exists ε� > 0 and l� > 0 (depending on �) such that

for all ε Î (0, ε�) and l Î (0, l�), for all set of parameter η̃isatisfying (39) and function

ϕ̃ satisfying (26), there exists a unique ṽ(= ṽε,η̃,x̃,ϕ̃) solution of (36) such that

||ṽ||C2,β
ν (�̄∗(x)) ≤ 2 c̄κ r2ε,λ.

As in the previous section, observe that the function ṽ(:= ṽε,η̃,x̃,ϕ̃) being obtained as a

fixed point for contraction mapping, depends smoothly on the parameters η̃ and the

points x̃.

5 The nonlinear Cauchy-data matching
Keeping the notations of the previous sections, we gather the results of Proposition 4

and 5. Assume that x̃ := (x̃1, . . . , x̃m) ∈ �m Î Ωm are given close to x := (x1, ..., xm) and

satisfy (37). Assume also that τ := (τ1, ..., τm) Î [τ -, τ
+]m ⊂ (0, ∞)m are given (the

values of τ- and τ + will be fixed shortly). First, we consider some set of boundary data

ϕ := (ϕ1, ...,ϕm) ∈ (C2,β(S1))m satisfying (24). We set

Ri
ε,λ = τirε,λ/ε.

According to the result of Proposition 4, we can find viint a solution of

�v + λ|∇v|2 + ρ2(ev + eγ v) = 0 (44)

in each Brε,λ(x̃i) that can be decomposed as

viint(x) = vε,τi(x− x̃i)+h(Ri
ε,λ(x− x̃i)/rε,λ)+Hi(ϕi; (x− x̃i)/rε,λ)+ v̄ε,τi,ϕi(Ri

ε,λ(x− x̃i)/rε,λ),

where the function vi = v̄ε,τi ,ϕi satisfies

||vi||C2,β
μ (R2) ≤ 2cκ r2ε,λ . (45)

Similarly, given some boundary data ϕ̃ = (ϕ̃1, . . . , ϕ̃m) ∈ (C2,β(S1))m satisfying (26),

some parameters η̃ := (η̃1, . . . , η̃m) ∈ Rm satisfying (38), provide ε Î (0, ε�) and l Î (0,

l�), we use the result of Proposition 5, to find a solution vext of (43) which can be

decomposed as

vext =
m∑
i=1

(1 + η̃i)G(·, x̃i) +
m∑
i=1

χr0 (· − x̃i)He(ϕ̃i; (· − x̃i)/rε,λ) + ṽε,η̃,x̃,ϕ̃

in �̄rε,λ where, the function ṽ(:= ṽε,η̃,x̃,ϕ̃) ∈ C2,β
ν (�̄∗(x̃)) satisfies

||ṽ||C2,β
ν (�̄∗(x̃)) ≤ 2cκ r2ε,λ. (46)

It remains to determine the parameters and the functions in such a way that the

function which is equal to viint in ∪m
i=1Brε,λ(x̃i) and that is equal to vext in �̄rε,λ(x̃)) is a

smooth function. This amounts to find the boundary data and the parameters so that,

for each i = 1 ..., m

viint = vext and ∂rv
i
int = ∂rvext, (47)
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on ∂Brε,λ(x̃i). Assuming we have already done so, this provides for each ε and l small

enough a function vε,λ ∈ C2,β (which is obtained by patching together the functions viint
and the function vext) solution of -Δv - l |∇v|2 = r2 (ev + egv) and elliptic regularity

theory implies that this solution is in fact smooth. This will complete the proof of our

result since, as ε and l tend to 0, the sequence of solutions we have obtained satisfies

the required properties, namely, away from the points xi the sequence vε,l converges to∑
i G(·, xi). Before we proceed, the following remarks are due. First, it will be conveni-

ent to observe that the function vε,τi can be expanded as

vε,τi(x) = −2 log τi − 4 log |x| +O
(

ε2τ−2
i

|x|2
)

(48)

near ∂Brε,λ. The function

m∑
�=1

(1 + η̃�)G(x, x̃�)

which appear in the expression of vext can be expanded as

m∑
�=1

(1 + η̃�)G(x + x̃i, x̃�) = −4(1 + η̃i) log |x| + Fi(x̃; x̃i) + ∇Fi(x̃; x̃i) · x +O(r2ε,λ) (49)

Near ∂Brε,λ(x̃i). Here, we have defined

Fi(x̃; ·) := H(x̃i, ·) +
∑
��=i

G(x̃�, ·).

Thus for x near ∂Brε,λ, we have

(viint − vext)(x) = −2 log τi + 4η̃i log |x − x̃i| + h(Ri
ε,λ(x − x̃i)/rε,λ)

+Hi(ϕi; (x − x̃i)/rε,λ) − He(ϕ̃i; (x − x̃i)/rε,λ)

−
⎛
⎝(1 + η̃i)H(x, x̃i) +

m∑
�=1,��=i

(1 + η̃�)G(x, x̃�)

⎞
⎠ +O

(
ε2τ−2

i

|x − x̃i|2
)
+O(r2ε,λ)

= −2 log τi + 4η̃i log |x| −
⎛
⎝(1 + η̃i)H(x̃i, x̃i) +

m∑
�=1,��=i

(1 + η̃�)G(x̃i, x̃�)

⎞
⎠

+O(|x − x̃i|2) +O
(

ε2τ−2
i

|x − x̃i|2
)
+O(r2ε,λ)

= −2 log τi + 4η̃i log rε,λ − Fi(x̃i, x̃) +O(ε) +O(r2ε,λ)

= −2 log τi + 4η̃i log rε,λ − Fi(x̃i, x̃) +O(r2ε,λ)

(50)

where x̃ = (x̃1, . . . , x̃m).

Next, in (47), all functions are defined on ∂Brε,λ(x̃i), but it will be convenient to solve

the following equations

(viint − vext)(x̃i + rε,λ·) = 0 and ∂r((viint − vext)(x̃i + rε,λ·)) = 0 (51)

on S1. Here, all functions are considered as functions of y Î S1 and we have simply

used the change of variables x = x̃i + rε,λy to parameterize ∂Brε,λ(x̃i).

Since the boundary data, we have chosen satisfy (24) and (26), we can decompose

ϕi = ϕi
0 + ϕi

1 + ϕi,⊥ and ϕ̃i = ϕ̃i
0 + ϕ̃i

1 + ϕ̃i,⊥
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where ϕi
0, ϕ̃

i
0 ∈ E0 = R are constant functions on S1, ϕi

1, ϕ̃
i
1 belong to

E1 = ker(�S1 + 1) = Span{e1, e2} and where ϕi,⊥, ϕ̃i,⊥ are L2(S1) orthogonal to E0 and E1.

Projecting the equations (51) over E0 will yield the system{−2 log τi + 4η̃i log rε,λ − Fi(x̃i, x̃) +O(r2ε,λ) = 0
4η̃i +O(r2ε,λ) = 0.

(52)

Let us comment briefly on how these equations are obtained. They simply come

from (51) when expansions (48) and (49) are used, together with the expression of Hi

and He given in Lemma 2 and Lemma 3, and also the estimates (45) and (46). The sys-

tem (52) can be readily simplified into

1
log rε,λ

[
2 log τi + Fi(x̃i, x̃)

]
= O(r2ε,λ) and η̃i = O(r2ε,λ).

We are now in a position to define τ - and τ + since, according to the above, as ε and l
tend to 0 we expect that x̃i will converge to xi and that τi will converge to τ ∗

i satisfying

2 log τ ∗
i = −Fi(xi, x)

and hence, it is enough to choose τ - and τ + in such a way that

2 log(τ−) < − sup
i

Fi(xi, x) ≤ − inf
i
Fi(xi, x) < 2 log(τ +).

We now consider the L2-projection of (51) over E1. Given a smooth function f

defined in Ω, we identify its gradient ∇f = (∂x1 f , ∂x2 f ) with the element of E1

∇̄f =
2∑
i=1

∂xi f ei.

With these notations in mind, we obtain the equations

∇̄Fi(x̃i, x̃) = O(r2ε,λ) and ϕi
1 = O(r2ε,λ) (53)

Finally, we consider the L2-projection onto L2(S1)⊥. This yields the system{
ϕi,⊥ − ϕ̃i,⊥ +O(r2ε,λ) = 0

∂r(Hi,⊥ − He,⊥) +O(r2ε,λ) = 0.
(54)

Thanks to the result of Lemma 4, this last system can be re-written as

ϕi,⊥ = O(r2ε,λ) and ϕ̃i,⊥ = O(r2ε,λ).

If we define the parameters t = (ti) Î ℝm by

ti =
1

log rε,λ
[2 log τi + Fi(x̃i, x̃)], for i = 1, · · · ,m

then, the system we have to solve reads

(t, η̃,ϕ0, ϕ̃0,ϕ1, ϕ̃1, ∇̄F(x̃, x),ϕ⊥, ϕ̃⊥) = O(r2ε,λ), (55)

where as usual, the terms O(r2ε,λ) depend nonlinearly on all the variables on the left

side, but is bounded (in the appropriate norm) by a constant (independent of ε and l)
time r2ε,λ, provide ε Î (0, ε�) and l Î (0, l�). Then, the nonlinear mapping which

appears on the right-hand side of (55) is continuous and compact. In addition, redu-

cing ε� and l� if necessary, this nonlinear mapping sends the ball of radius κ r2ε,λ (for
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the natural product norm) into itself, provided � is fixed large enough. Applying

Schauder’s fixed Theorem in the ball of radius κ r2ε,λ in the product space where the

entries live yields the existence of a solution of Eq. (55) and this completes the proof

of our Theorem 1. □

Acknowledgements
The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the
work through the research group project No RGP-VPP-087.

Author details
1Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2Département de Mathématiques, Faculté des Sciences de Tunis Campus Universitaire, 2092 Tunis, Tunisia

Authors’ contribution
The authors declare that the work was realized in collaboration with same responsibility. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 22 March 2011 Accepted: 12 August 2011 Published: 12 August 2011

References
1. Ren, X, Wei, J: On a two-dimensional elliptic problem with large exponent in nonlinearity. Trans Am Math Soc. 343,

749–763 (1994)
2. Esposito, P, Musso, M, Pistoia, A: Concentrating solutions for a planar problem involving nonlinearities with large

exponent. J Diff Eqns. 227, 29–68 (2006)
3. Baraket, S, Ben Omrane, I, Ouni, T: Singular limits solutions for 2-dimensional elliptic problem involving exponential

nonlinearities with non linear gradient term. Nonlinear Differ Equ Appl. 18, 59–78 (2011)
4. Baraket, S, Ye, D: Singular limit solutions for two-dimensional elliptic problems with exponentionally dominated

nonlinearity. Chin Ann Math Ser B. 22, 287–296 (2001)
5. Liouville, J: Sur l’équation aux différences partielles . J Math. 18, 17–72 (1853)
6. Tarantello, G: Multiple condensate solutions for the Chern-Simons-Higgs theory. J Math Phys. 37, 3769–3796 (1996)
7. Suzuki, T: Two dimensional Emden-Fowler Equation with Exponential Nonlinearity. Nonlinear Diffusion Equations and

Their Equilibrium States Birkäuser. 3, 493–512 (1992)
8. Nangasaki, K, Suzuki, T: Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially

dominated nonlinearities. Asymptotic Anal. 3, 173–188 (1990)
9. Ye, D: Une remarque sur le comportement asymptotique des solutions de -Δu = λ f(u). C R Acad Sci Paris I. 325,

1279–1282 (1997)
10. Weston, VH: On the asymptotique solution of a partial differential equation with exponential nonlinearity. SIAM J Math.

9, 1030–1053 (1978)
11. Baraket, S, Pacard, F: Construction of singular limits for a semilinear elliptic equation in dimension 2. Calc Var Partial

Differ Equ. 6, 1–38 (1998)
12. Esposito, P, Grossi, M, Pistoia, A: On the existence of Blowing-up solutions for a mean field equation. Ann I H Poincaré

-AN. 22, 227–257 (2005)
13. Del Pino, M, Kowalczyk, M, Musso, M: Singular limits in Liouville-type equations. Calc Var Partial Differ Equ. 24, 47–87 (2005)
14. Wei, J, Ye, D, Zhou, F: Bubbling solutions for an anisotropic Emden-Fowler equation. Calc Var Partial Differ Equ. 28,

217–247 (2007)
15. Wei, J, Ye, D, Zhou, F: Analysis of boundary bubbling solutions for an anisotropic Emden-Fowler equation. Ann I H

Poincaré AN. 25, 425–447 (2008)
16. Ye, D, Zhou, F: A generalized two dimensional Emden-Fowler equation with exponential nonlinearity. Calc Var Partial

Differ Equ. 13, 141–158 (2001)
17. Wente, HC: Counter example to a conjecture of H. Hopf. Pacific J Math. 121, 193–243 (1986)
18. Baraket, S, Dammak, M, Ouni, T, Pacard, F: Singular limits for a 4-dimensional semilinear elliptic problem with

exponential nonlinearity. Ann I H Poincaré AN. 24, 875–895 (2007)
19. Dammak, M, Ouni, T: Singular limits for 4-dimensional semilinear elliptic problem with exponential nonlinearity adding

a singular source term given by Dirac masses. Differ Int Equ. 11-12, 1019–1036 (2008)
20. Clapp, M, Munoz, C, Musso, M: Singular limits for the bi-Laplacian operator with exponential nonlinearity in ℝ

4. Ann I H
Poincaré AN. 25, 1015–1041 (2008)

21. Baraket, S, Ben Omrane, I, Ouni, T, Trabelsi, N: Singular limits solutions for 2-dimensional elliptic problem with exponentially
dominated nonlinearity and singular data. Communications in Contemporary Mathematics 2. 13(4), 129 (2011)

doi:10.1186/1687-2770-2011-10
Cite this article as: Baraket et al.: Singular limiting solutions for elliptic problem involving exponentially
dominated nonlinearity and convection term. Boundary Value Problems 2011 2011:10.

Baraket et al. Boundary Value Problems 2011, 2011:10
http://www.boundaryvalueproblems.com/content/2011/1/10

Page 17 of 17


	Abstract
	1 Introduction and statement of the results
	2 Construction of the approximate solution
	2.1 A linearized operator on ℝ2
	2.2 Analysis of the Laplace operator in weighted spaces
	2.3 Harmonic extensions

	3 The nonlinear interior problem
	4 The nonlinear exterior problem
	5 The nonlinear Cauchy-data matching
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

