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Abstract

In this paper, we deal with the second initial boundary value problem for higher
order hyperbolic systems in domains with conical points. We establish several results
on the well-posedness and the regularity of solutions.

1 Introduction
Boundary value problems in nonsmooth domains have been studied in differential

aspects. Up to now, elliptic boundary value problems in domains with point singulari-

ties have been thoroughly investigated (see, e.g, [1,2] and the extensive bibliography in

this book). We are concerned with initial boundary value problems for hyperbolic

equations and systems in domains with conical points. These problems with the

Dirichlet boundary conditions were investigated in [3-5] in which the unique existence,

the regularity and the asymptotic behaviour near the conical points of the solutions are

established. The Neumann boundary problem for general second-order hyperbolic sys-

tems with the coefficients independent of time in domains with conical points was stu-

died in [6]. In the present paper we consider the Cauchy-Neumann (the second initial)

boundary value problem for higher-order strongly hyperbolic systems in domains with

conical points.

Our paper is organized as follows. Section 2 is devoted to some notations and the

formulation of the problem. In Section 3 we present the results on the unique exis-

tence and the regularity in time of the generalized solution. The global regularity of

the solution is dealt with in Section 4.

2 Notations and the formulation of the problem
Let Ω be a bounded domain in ℝn, n ≥ 2, with the boundary ∂Ω. We suppose that ∂Ω

is an infinitely differentiable surface everywhere except the origin, in a neighborhood

of which Ω coincides with the cone K = {x : x/|x| Î G}, where G is a smooth domain

on the unit sphere Sn-1. For each t, 0 <t ≤ ∞, denote Qt = Ω × (0, t), Ωt = Ω × {t}.

Especially, we set Q = Q∞, Γ = ∂Ω\{0}, S = Γ × [0, +∞).
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For each multi-index p = (p1,..., pn) Î Nn, we use notations |p| = p1 + ... + pn,

Dp =
∂ |p|

∂xp11 . . . ∂xpnn
. For a complex-valued vector function u = (u1 ,..., us) defined on Q,

we denote Dp
u =

(
Dp

u1, ...,D
p
us

)
, utj =

∂ ju
∂tj

= (
∂ ju1
∂tj

, . . . ,
∂ jus
∂tj

), |u| = (
s∑

j=1
|uj|2)

1
2 ..

Let us introduce the following functional spaces used in this paper. Let l denote a

nonnegative integer.

Hl (Ω) - the usual Sobolev space of vector functions u defined in Ω with the norm

‖u‖Hl(�) =

⎛
⎝∫

�

∑
|p|≤l

|Dpu|2dx
⎞
⎠
1
2

< ∞.

H
l−
1
2 (�)

- the space of traces of vector functions from Hl (Ω) on Γ with the norm

‖u‖
H

l−1
2 (�)

= inf
{
‖v‖Hl(�) : v ∈ Hl(�), v|� = u

}
.

Hl,0 (Q, g) (g Î ℝ)- the weighted Sobolev space of vector functions u defined in Q

with the norm

‖u‖Hl,0(Q,γ ) =

⎛
⎝∫

Q

∑
|p|≤l

|Dpu|2e−2γ tdxdt

⎞
⎠

1
2

< ∞.

Especially, we set L2(Q, g) = H0,0(Q, g).
Hl,1 (Q, g) (g Î ℝ)- the weighted Sobolev space of vector functions u defined in Q

with the norm

‖u‖Hl,1(Q,γ ) =

⎛
⎝∫

Q

⎛
⎝∑

|p|≤l

|Dpu|2 + |ut|2
⎞
⎠ e−2γ tdxdt

⎞
⎠

1
2

< ∞.

Vl
2,α(�)- the closure of C∞

0 (�\{0}) with respect to the norm

‖u‖Vl
2,α(�) =

⎛
⎝∑

|p|≤l

∫
�

r2(α+|p|−l)|Dpu|2dx
⎞
⎠

1
2

,

where r = |x| = (∑n
k=1 x

2
k

) 1
2.

Hl
α(�) (α ∈ R) -the weighted Sobolev space of vector functions u defined in Ω with

the norm

‖u‖Hl
α(�) =

⎛
⎝∑

|p|≤l

∫
�

r2α |Dpu|2dx
⎞
⎠

1
2

.

Hung et al. Boundary Value Problems 2011, 2011:17
http://www.boundaryvalueproblems.com/content/2011/1/17

Page 2 of 18



If l ≥ 1, then V
l−1

2
α (�),H

l− 1
2

α (�) denote the spaces consisting of traces of functions

from respective spaces Vl
2,α(�),Hl

α(�) on the boundary Γ with the respective norms

‖u‖
V
l−1
2

α (�)

= inf
{
‖v‖Vl

2,α(�) : v ∈ Vl
2,α(�), v|� = u

}
,

‖u‖
H

l−1
2

α (�)

= inf
{
‖v‖Hl

α(�) : v ∈ Hl
α(�), v|� = u

}
.

Hl,1
α (Q, γ ) (α, γ ∈ R) - the weighted Sobolev space of vector functions u defined in Q

with the norm

‖u‖Hl,1
α (Q,γ ) =

⎛
⎝∫

Q

⎛
⎝∑

|p|≤l

r2α |Dpu|2 + |ut|2
⎞
⎠ e−2γ tdx dt

⎞
⎠

1
2

< ∞.

From the definitions it follows the continuous imbeddings

Vl
2,α(�) ⊂ Hl

α(�) (2:1)

and

Vl+k
2,α+k(�) ⊂ Vl

2,α(�) (2:2)

for arbitrary nonnegative integers l, k and real number a. It is also well known (see

[[2], Th. 7.1.1]) that if α < −n
2
or α > l − n

2
then

Vl
2,α(�) ≡ Hl

α(�) (2:3)

with the norms being equivalent.

Now we introduce the differential operator

Lu = L(x, t,D)u =
∑

|p|,|q|≤m

(−1)|p|Dp(apqDqu),

where apq = apq (x, t) are the s × s matrices with the bounded complex-valued com-

ponents in Q. We assume that apq = (−1)|p|+|q|a∗
qp for all |p|, |q| ≤ m, where a∗

qp is the

transposed conjugate matrix to apq. This means the differential operator L is formally

self-adjoint. We assume further that there exists a positive constant μ such that∑
|p|=|q|=m

apq(x, t)ηqηp ≥ μ
∑
|p|=m

∣∣ηp∣∣2 (2:4)

for all hp Îℂs, |p| = m, and all (x, t) ∈ Q̄.

Let v be the unit exterior normal to S. It is well known that (see, e.g., [[7], Th. 9.47])

there are boundary operators Nj = Nj (x, t, D), j = 1, 2,..., m on S such that integration

equality

∫
�

Luv̄ dx =
∑

|p|,|q|≤m

∫
�

apqDquDpv dx +
m∑
j=1

∫
∂�

Nju
∂ j−1v

∂ν j−1
ds (2:5)

holds for all u, v ∈ C∞(�) and for all t Î [0, ∞). The order of the operator Nj is 2m -

j for j = 1, 2,..., m.
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In this paper, we consider the following problem:

utt + Lu = f in Q, (2:6)

Nju = 0 on S, j = 1, . . . ,m, (2:7)

u|t=0 = ut|t=0 = 0 on �. (2:8)

A complex vector-valued function u Î Hm,1(Q, g) is called a generalized solution of

problem (2.6)-(2.8) if and only if u|t = 0 = 0 and the equality∫
Q
utη̄t dx dt +

∑
|p|,|q|≤m

∫
Q
apqD

quDpη dx dt =
∫
Q
f η̄ dx dt (2:9)

holds for all h(x, t) Î Hm,1(Q) satisfying h(x, t) = 0 for all t ≥ T for some positive real

number T.

3 The unique solvability and the regularity in time
First, we introduce some notations which will be used in the proof of Theorems 3.3

and 3.4. For each vector function u,v defined in Ω and each nonnegative integer k,

|u|k,� =

⎛
⎝∫

�

∑
|p|=k

|Dpu|2 dx

⎞
⎠
1
2
, (u, v)� =

∫
�

uv̄ dx.

For vector functions u and v defined in Q and τ > 0, we set

|u|k,Qτ
=

(∫ τ

0
|u(·, t)|2k,� dt

)1
2 , |u|k,�τ

= |u(·, τ )|k,�, (u, v)�τ
= (u(·, τ ), v(·, τ ))�,

Btk(t, u, v) =
∑

|p|,|q|≤m

∫
�

∂kapq
∂tk

(·, t)Dqu(·, t)Dpv(·, t) dx, Bτ

tk(u, v) =
∫ τ

0
Btk(t, u, v) dt.

Especially, we set

B(t, u, v) = Bt0(t, u, v) and Bτ (u, v) = Bτ

t0(u, v).

From the formally self-adjointness of the operator L, we see that

B(τ , u, v) = B(τ , v, u). (3:1)

Next, we introduce the following Gronwall-Bellman and interpolation inequalities as

two fundamental tools to establish the theorems on the unique existence and the regu-

larity in time.

Lemma 3.1 ([8], Lemma 3.1) Assume u, a, b are real-valued continuous on an inter-

val [a, b], b is nonnegative and integrable on [a, b], a is nondecreasing satisfying

u(τ ) ≤ α(τ ) +
∫ τ

a
β(t)u(t) dt for all a ≤ τ ≤ b.
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Then

u(τ ) ≤ α(τ ) exp
(∫ τ

a
β(t) dt

)
for all a ≤ τ ≤ b. (3:2)

From [[9], Th. 4.14], we have the following lemma.

Lemma 3.2. For each positive real number ε and each integer j, 0 <j <m, there exists

a positive real number C = C (Ω, m, ε) which is dependent on only Ω, m and ε such

that the inequality

|u|2j,� ≤ ε|u|2m,� + C|u|20,� (3:3)

holds for all u Î Hm(Ω).

Now we state and prove the main theorems of this section.

Theorem 3.3. Let h be a nonnegative integer. Assume that all the coefficients apq
together with their derivatives with respect to t are bounded on Q. Then there exists a

positive real number g0 such that for each g >g0, if f Î L2(Q, s) for some nonnegative

real number s, the problem (2.6)-(2.8) has a unique generalized solution u in the space

Hm,1(Q, g + s) and

‖u‖2Hm,1(Q,γ+σ ) ≤ C
∥∥f∥∥2

L2(Q,σ ) , (3:4)

where C is a constant independent of u and f.

Proof. The uniqueness is proved by similar way as in [[4], Th. 3.2]. We omit the

detail here. Now we prove the existence by Galerkin approximating method. Suppose
{ϕk}∞k=1 is an orthogonal basis of Hm(Ω) which is orthonormal in L2(Ω). Put

uN(x, t) =
N∑
k=1

cNk (t)ϕk(x),

where (cNk (t))
N
k=1 are the solution of the system of the following ordinary differential

equations of second order:

(uNtt ,ϕl)�t + B(t, uN ,ϕl) = (f ,ϕl)�t , l = 1, . . . ,N, (3:5)

with the initial conditions

cNk (0) = 0, dcNk dt(0) = 0, k = 1, . . . ,N. (3:6)

Let us multiply (3.5) by dcNk (t)dt, take the sum with respect to l from 1 to N, and inte-

grate the obtained equality with respect to t from 0 to τ (0 <τ < ∞) to receive

(uNtt , u
N
t )�t + B(t, uN , uNt ) = (f , uNt )�t . (3:7)

Now adding this equality to its complex conjugate, then using (3.1) and the integra-

tion by parts, we obtain

|uNt |20,�τ
+ B(τ , uN , uN) = Bτ

t (u
N, uN) + 2Re(f , uNt )Qτ

. (3:8)

With noting that, for some positive real number r,

ρ|uN|20,�τ
= 2Re ρ(uN, uNt )Qτ

,
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we can rewrite (3.8) as follows

|uNt |20,�τ
+ B0(τ , uN, uN) + ρ|u|20,�τ

= Bτ
t (u

N, uN)

−
∑

|p|, |q| ≤ m
|p| + |q| < 2m − 1

∫
�τ

apqDquNDpuN dx + 2Re ρ(uN, uNt )Qτ
+ 2 Re(f , uNt )Qτ

. (3:9)

By (2.4), the left-hand side of (3.9) is greater than

|uNt (·, τ )|20,� + μ|uN(·, τ )|2m,� + ρ
∥∥u(·, τ )∥∥20,� .

We denote by I, II, III, IV the terms from the first, second, third, and forth, respec-

tively, of the right-hand sides of (3.9). We will give estimations for these terms. Firstly,

we separate I into two terms

∑
|p|=|q|=m

∫
Qτ

∂apq
∂t

DquNDpuN dx dt +
∑

|p|,|q|≤m
|p|+|q|≤2m−1

∫
Qτ

∂apq
∂t

DquNDpuN dx dt ≡ I1 + I2.

Put

μ1 = sup{|∂apq
∂t

(x, t)| :
∣∣p∣∣ = ∣∣q∣∣ = m, (x, t) ∈ Q} and m′ =

∑
|p|=m

1.

Then, by the Cauchy inequality, we have

I1 ≤ μ1

∑
|p|=|q|=m

1
2
(|DquN|20,Qτ

+ |DpuN|20,Qτ
) ≤ m′μ1|uN|2m,Qτ

.

By the Cauchy inequality and the interpolation inequality (3.3), for an arbitrary posi-

tive number ε1, we have

I2 ≤ ε1|uN|2m,Qτ
+ C1|uN|20,Qτ

,

where C1 = C1(ε1) is a nonnegative constant independent of uN, f and τ. Now using

again the Cauchy and interpolation inequalities, for an arbitrary positive number ε2
with ε2 <μ, it holds that

II ≤ ε2|uN(·, τ )|2m,� + C2|uN(·, τ )|20,�,

where C2 = C2(ε2) is a nonnegative constant independent of uN, f and τ. For the

terms III and IV, by the Cauchy inequality, we have

III ≤ (μ − ε2)ρ2

m′μ1 + ε1
|uN|20,Qτ

+
m′μ1 + ε1

μ − ε2
|uNt |20,Qτ

,

and

IV ≤ ε3|uNt |20,Qτ
+

1
ε3

|f |20,Qτ
,
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where ε3 > 0, arbitrary. Combining the above estimations we get from (3.9) that

|uNt (·, τ )|20,� + (μ − ε2)|uN(·, τ )|2m,� + (ρ − C2)|uN(·, τ )|20,� ≤ (m′μ1 + ε1)|uN|2m,Qτ

+
(
C1 +

(μ − ε2)ρ2

m′μ1 + ε1

)
|uN|20,Qτ

+
(
m′μ1 + ε1

μ − ε2
+ ε3

)
|uNt |20,Qτ

+
1
ε3

|f |20,Qτ
.

(3:10)

Now fix ε1, ε2 and consider the function

g(ρ) =
C1 +

(μ − ε2)ρ2

m′μ1 + ε1

ρ − C2
for ρ > C2.

We have

dg
dρ

=
ρ2 − 2C2ρ − C1

A
A(ρ − C2)

2 with A =
(μ − ε2)ρ2

m′μ1 + ε1
.

We see that the function g has a unique minimum at

ρ0 = ρ0(ε1, ε2) = C2 +

√
C2
2 +

C1

A
.

We put

γ0 =
1
2

inf
ε1>0
0<ε2<μ

max{m
′μ1 + ε1

μ − ε2
, g(ρ0)}. (3:11)

Now we take real numbers g, g1 arbitrarily satisfying g0 <g1 <g. Then there are posi-

tive real numbers ε1, ε2, (ε2 <μ), r (r >C2(ε1, ε2)) and ε3 such that

m′μ1 + ε1

μ − ε2
+ ε3 < 2γ1 and

C1(ε1, ε2) +
(μ − ε2)ρ2

m′μ1 + ε1

ρ − C2(ε1, ε2)
< 2γ1.

(3:12)

From now to the end of the present proof, we fix such constants ε1, ε2, ε3 and r. Let
|||uN(·, τ )2�||| stand for the left-hand side of (3.10). It follows from (3.10) and (3.12) that

|||uN(·, τ )|||2� ≤ 2γ1

∫ τ

0
|||u(·, t)|||2� dt + C

∫ τ

0
|f (·, t)|20,� dt for all τ ≤ 0, (3:13)

where C =
1
ε3
. By the Gronwall-Bellman inequality (3.2), we receive from (3.13) that

|||uN(·, τ )|||2� ≤ Ce2γ1τ

∫ τ

0
|f (·, t)|20,� dt for allτ ≥ 0. (3:14)

We see that∫ τ

0
|f (·, t)|20,�dt = e2στ

∫ τ

0
|e−στ f (·, t)|20,� dt ≤ e2στ

∫ τ

0
|e−σ tf (·, t)|20,� dt.

Hence, it follows from (3.14) that

|||uN(·, τ )|||2� ≤ Ce2(γ1+σ )τ
∫ τ

0
|e−σ tf (·, t)|20,� dt ≤ Ce2(γ1+σ )τ

∥∥f∥∥2L2(Q,σ ) for τ ≤ 0. (3:15)
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Now multiplying both sides of this inequality by e-2(g+s)τ, then integrating them with

respect to τ from 0 to ∞, we arrive at

|||uN|||2Q,γ+σ :=
∫ ∞

0
e−2(γ+σ )τ |||uN(·, τ )|||2�dτ ≤ C

∥∥f∥∥2L2(Q,σ ) . (3:16)

It is clear that |||.|||Q,g+s is a norm in Hm,1(Q, g + s) which is equivalent to the norm
‖.‖Hm,1(Q,γ+σ ). Thus, it follows from (3.16) that

∥∥uN∥∥2
Hm,1(Q,γ+σ ) ≤ C

∥∥f∥∥2L2(Q,σ ) . (3:17)

From this inequality, by standard weakly convergent arguments (see, e.g., [[10], Ch.

7]), we can conclude that the sequence {uN}∞N=1 possesses a subsequence convergent to

a vector function u Î Hm,1(Q, g + s) which is a generalized solution of problem (2.6)-

(2.8). Moreover, it follows from (3.17) that the inequality (3.4) holds. □
Theorem 3.4. Let h be a nonnegative integer. Assume that all the coefficients apq

together with their derivatives with respect to t up to the order h are bounded on Q. Let

g0 be the number as in Theorem 3.3 which was defined by formula (3.11). Let the vector

function f satisfy the following conditions for some nonnegative real number s

(i) ftk ∈ L2(Q, kγ0 + σ ), k ≤ h,

(ii) ftk(x, 0) = 0, 0 ≤ k ≤ h − 1.

Then for an arbitrary real number g satisfying g >g0 the generalized solution u in the

space Hm,1(Q, g + s) of the problem (3.6)- (3.7) has derivatives with respect to t up to

the order h with utk ∈ Hm,1(Q, (k + 1)γ + σ ) for k = 0, 1,..., h and

h∑
k=0

‖utk‖2Hm,1(Q,(k+1)γ+σ ) ≤ C
h∑

k=0

∥∥ftk∥∥2
L2(Q,kγ0+σ ) , (3:18)

where C is a constant independent of u and f.

Proof. From the assumptions on the regularities of the coefficients apq and of the

function f it follows that the solution (cNk (t))
N
k=1 of the system (3.5), (3.6) has general-

ized derivatives with respect to t up to the order h + 2. Now take an arbitrary real

number g1 satisfying g0 <g1 <g. We will prove by induction that

∥∥uNtk (·, τ )∥∥2Hm(�) ≤ Ce2((k+1)γ1+σ)τ
k∑
j=0

∥∥ftj∥∥2L2(Q,jγ0+σ ) for τ > 0 (3:19)

and for k = 0,..., h, where the constant C is independent of N, f and τ. From (3.15) it

follows that (3.19) holds for k = 0 since the norm |||·||| is equivalent to the norm
‖·‖Hm(�). Assuming by induction that (3.19) holds for k = h - 1, we will show it to be

true for k = h. To this end we differentiate h times both sides of (3.5) with respect to t

to receive the following equality

(uNth+2 ,ϕl)�t +
h∑

k=0

(
h
k

)
Bth−k(t, uNtk ,ϕl) = (fth ,ϕl)�t , l = 1, . . . ,N. (3:20)
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From these equalities together with the initial (3.6) and the assumption (ii), we can

show by induction on h that

uNtk |t=0 = 0 for k = 0, . . . , h + 1. (3:21)

Now multiplying both sides of (3.20) by dh+1cNk dth+1, then taking sum with respect to l

from 1 to N, we get

(uNth+2 , u
N
th+1)�t +

h∑
k=0

(
h
k

)
Bth−k(t, uNtk , u

N
th+1 ) = (fth , u

N
th+1 )�t . (3:22)

Adding the equality (3.22) to its complex conjugate, we have

∂

∂t
|uNth+1 |20,�t

+
h∑

k=0

(
h
k

)[
∂

∂t
Bth−k(t, uNtk , u

N
th ) − Bth−k+1(t, uNtk , u

N
th )

]
= 2Re(fth , u

N
th+1 )�t .

Integrating both sides of this equality with respect to t from 0 to a positive real τ

with using the integration by parts and (3.21), we arrive at

|uNth+1 |20,�τ
+ B(τ , uNth , u

N
th ) = Bτ (uNth , u

N
th ) +

h−1∑
k=0

(
h
k

)
Bτ
th−k+1 (uNtk , u

N
th )

−
h−1∑
k=0

(
h
k

)
Bth−k(τ , uNtk , u

N
th ) + 2Re(fth , u

N
th+1 )Qτ

.

(3:23)

This equality has the form (3.8) with uN replaced by uNth and the last term of the

righthand side of (3.8) replaced by the following expression

h−1∑
k=0

(
h
k

)
Bτ
th−k+1 (uNtk , u

N
th ) −

h−1∑
k=0

(
h
k

)
Bth−k(τ , uNtk , u

N
th ) + 2Re(fth , u

N
th+1)Qτ

.

Since the coefficients apq together with their derivatives with respect to t up to the

order h are bounded, by the Cauchy and interpolation inequalities and the induction

assumption, we see that

|
h−1∑
k=0

(
h
k

)
Bth−k(τ , uNtk , u

N
th )| ≤ ε

(|uNth (·, τ )|2m,� + |uNth (·, τ )|20,�
)
+ C

h−1∑
k=0

∥∥uNtk (·, τ )∥∥2m,�τ

≤ ε
(|uNth (·, τ )|2m,� + |uNth (·, τ )|20,�

)
+ Ce2(hγ1+σ )τ

k∑
j=0

∥∥ftj∥∥2L2(Q,jγ0+σ ) ,

|
h−1∑
k=0

(
h
k

)
Bτ
th−k+1 (uNtk , u

N
th )| ≤ ε

(|uNth |2m,Qτ
+ |uNth |20,Qτ

)
+ C

h−1∑
k=0

∥∥uNtk ∥∥2m,Qτ

= ε
(|uNth |2m,Qτ

+ |uNth |20,Qτ

)
+ C

h−1∑
k=0

∫ τ

0

∥∥uNtk (·, t)∥∥2m,� dt

≤ ε
(|uNth |2m,Qτ

+ |uNth |20,Qτ

)
+ C

k∑
j=0

∥∥ftj∥∥2L2(Q,jγ0+σ )

∫ τ

0
e2(hγ1+σ )t dt

≤ ε
(|uNth |2m,Qτ

+ |uNth |20,Qτ

)
+ Ce2(hγ1+σ )τ

k∑
j=0

∥∥ftj∥∥2L2(Q,jγ0+σ ) .
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and

|2Re(fth , uNth+1)Qτ
| ≤ ε|uNth+1 |20,Qτ

+ C
∥∥fth∥∥2L2(Q)

≤ ε|uNth+1 |20,Qτ
+ Ce2(hγ1+σ )τ

∥∥fth∥∥2
L2(Q,hγ0+σ ) .

Thus, repeating the arguments which were used to get (3.15) from (3.8), we can

obtain (3.19) for k = h from (3.23).

Now we multiply both sides of (3.19) by e-2((k+1)g+s)τ, then integrate them with

respect to τ from 0 to ∞ to get

∥∥uNtk ∥∥2Hm,1(Q,(k+1)γ+σ ) ≤ C
k∑
j=0

∥∥ftj∥∥2L2(Q,jγ0+σ ) , k = 0, . . . , h. (3:24)

From this inequality, by again standard weakly convergent arguments, we can con-

clude that the sequence {uNtk }∞N=1 possesses a subsequence convergent to a vector func-

tion u(k) Î Hm,1(Q, (k +1)g +s), moreover, u(k) is the kth generalized derivative in t of

the generalized solution u of problem (2.6)-(2.8). The estimation (3.18) follows from

(3.24) by passing the weak convergences. □

4 The global regularity
First, we introduce the operator pencil associated with the problem. See [11] for more

detail. For convenience we rewrite the operators L(x, t, D), Nj (x, t, D) in the form

L = L(x, t, ∂x) =
∑

|p|≤2m

ap(x, t) Dp

Nj = Nj(x, t,D) =
∑

|p|≤2m−j

bjp(x, t) Dp, j = 1, . . . ,m.

Let L0(x, t, D), N0j (x, t, D), be the principal homogeneous parts of L(x, t, D), Nj (x, t,

D). It can be directly verified that the derivative Da can be written in the form

Dα = r−|α|
|α|∑
p=0

Pα,p(ω,Dω)(rDr)p,

where Pa, p (ω, ∂ω) are differential operators of order ≤ |a| - p with smooth coeffi-

cients on �̄, r = |x|, ω is an arbitrary local coordinate system on Sn-1, Dω =
∂

∂ω
,

Dr =
∂

∂r
. Thus we can write L0(0, t, D) and N0j (0, t, D) in the form

L0(0, t,D) = r−2mL(ω, t,Dω , rDr),

N0,j(0, t,D) = r−2m+jNj(ω, t,Dω , rDr).

The operator pencil associated with the problem is defined by

U(λ, t) = (L(ω, t,Dω ,λ),Nj(ω, t,Dω ,λ)),λ ∈ C, t ∈ (0, +∞).
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For every fixed l Î ℂ and t Î (0, ∞), the operator U(λ, t) continuously maps

H2m(G) into L2(G) ×
m∏
j=1

H
j−
1
2 (∂G).

For some fixed t Î (0, ∞), a complex number l0 is called an eigenvalue of U(λ, t) if
there exists �0 Î H2m(G) such that �0 ≠ 0 and U(λ0, t)ϕ0 = 0. It is well known that

the spectrum of the operator U(λ0, t) for each t Î (0, ∞), is an enumerable set of

eigenvalues (see [[2], Th. 5.2.1]).

Now let us give the main theorem of this section:

Theorem 4.1. Suppose that all the assumptions of Theorem 3.4 hold for a given posi-

tive integer h. Assume further that the strip

m − ε − n
2

≤ Reλ ≤ 2m − α − n
2

(4:1)

does not contain any eigenvalue of U(λ, t) for all t Î (0, +∞) and for some real num-

bers ε and a satisfying 0 ≤ a ≤ m + ε, 0 < ε <
1
2
if m ≥ n

2
and n is even, otherwise ε =

0. Then utk ∈ H2m,1
α (Q, (k + 2)γ + σ )for k = 0, 1,..., h - 1 and

h−1∑
k=0

‖utk‖2H2m,1
α (Q,(k+2)γ+σ )

≤ C
h∑

k=0

∥∥ftk∥∥2L2(Q,kγ0+σ ) , (4:2)

where C is a constant independent of u and f.

To prove Theorem 4.1 we need to establish some following lemmas.

Lemma 4.2. Let l be a nonnegative integer, t0 be a fixed number in [0, ∞), and let

u ∈ Hl+2m
loc (�\{0})) ∩ V0

2,α−l−2m(�) be a solution of the following elliptic boundary value

problem

L(x, t0,D)u = f in �, (4:3)

Nj(x, t0,D)u = gj on �, j = 1, . . . ,m, (4:4)

where
f ∈ Vl

2,α(�), gj ∈ V
l+j−

1
2

2,α (�)
. Then u ∈ Vl+2m

2,α (�)and the following estimate

‖u‖2
Vl+2m
2,α (�) ≤ C

⎛
⎜⎜⎝∥∥f∥∥2

Vl
2,α(�) +

m∑
j=1

∥∥gj∥∥2
V
l+j−

1
2

2,α (�)

+ ‖u‖2V0
2,α−l−2m(�)

⎞
⎟⎟⎠ (4:5)

holds with the constant C independent of u, f, gj and t0.

Proof. Without generality we assume that the domain Ω coincides with the cone K in

the unit ball. Set Ω0 = {x Î Ω: |x| ≥ 2-1},

�k = {x|x ∈ �, 2−k ≤ |x| ≤ 2−k+1}, k = 1, 2, . . . ,

and Γk = ∂Ω ∩ ∂Ωk, k = 0, 1 .... According to well known results on the regularity of

solutions of elliptic boundary problems in smooth domains (see, e.g., [12]), we have
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‖u‖2Hl+2m(�2) ≤ C(
∥∥f∥∥2Hl(�1∪�2∪�3)

+
∥∥gj∥∥2

W
l+j−

1
2 (�1∪�2∪�3)

+ ‖u‖2L2(�1∪�2∪�3))

with the constant C independent of u, f, gj and t0. By making change of variable x =

2-k x’ for a positive integer k, we get from (4.3), (4.4) that∑
|p|=2m

apD
p
x′u +

∑
|p|≤2m−1

2(|p|−2m)kapD
p
x′u= 2−2mkf in �, (4:6)

∑
|p|=2m−j

bjpD
p
x′u +

∑
|p|≤2m−j−1

2(|p|−2m+j)kbjpD
p
x′u= 2−(2m−j)kgj on �, j = 1, . . . ,m. (4:7)

Similarly as above, from (4.6), (4.7), we have

‖u‖2Wl+2m(�2) ≤ C
(∥∥∥2−2mkf

∥∥∥2
Wl(�1∪�2∪�3)

+
∥∥∥2−(2m−j)kgj

∥∥∥2
W

l+j−
1
2 (�1∪�2∪�3)

+ ‖u‖2L2(�1∪�2∪�3)

⎞
⎠ (4:8)

with the constant C independent of u, f, gj, t0 and k. Let g̃j ∈ Vl+j
2,α(�) be arbitrary

extensions of gj to Ω, j = 1,..., m. Then we have from (4.8) that

‖u‖2Wl+2m(�2) ≤ C
(∥∥∥2−2mkf

∥∥∥2
Wl(�1∪�2∪�3)

+
∥∥∥2−(2m−j)kg̃j

∥∥∥2
Wl+j(�1∪�2∪�3)

+ ‖u‖2L2(�1∪�2∪�3)

)
.

(4:9)

Returning to variable x with noting that, in Ωk+2, 2-k-2 ≤ r ≤ 2-k-1, from (4.9) we have

∑
|p|≤l+2m

∥∥∥r2(p+|p|−l−2m)u
∥∥∥2
L(�k+2)

≤ C

⎛
⎝∑

|p|≤l

∥∥∥r2(p+|p|−l)f
∥∥∥2

L(�k+1∪�k+2∪�k+3)

+
∑

|p|≤l+j

∥∥∥r2(p+|p|−l−j)gj
∥∥∥2
Wl+j(�k+1∪�k+2∪�k+3)

+
∥∥∥r2(p−l−2m)u

∥∥∥2
L2(�k+1∪�k+2∪�k+3)

⎞
⎠ .

(4:10)

Taking sum both sides of these inequalities with respect to k from 1 to ∞, we have

‖u‖2
Vl+2m
2,α (�) ≤ C

⎛
⎝∥∥f∥∥2Vl

2,α(�) +
m∑
j=1

∥∥g̃j∥∥2Vl+j+1
2,α (�) + ‖u‖2V0

2,α−l−2m(�)

⎞
⎠ . (4:11)

Here it is noted that
∑

|p|≤l+2m

∥∥r2(α+|p|−l−2m)u
∥∥2
L(�0) can be estimated by the right-hand

side of (4.11). It follows from (4.11) that

‖u‖2
Vl+2m
2,α (�) ≤ C

⎛
⎜⎜⎝∥∥f∥∥2

Vl
2,α(�) +

m∑
j=1

∥∥gj∥∥2
V
l+j−

1
2

2,α (�)

+ ‖u‖2V0
2,α−l−2m(�)

⎞
⎟⎟⎠

with the constant C independent of u, f, gj and t0. □
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Lemma 4.3. Let t0 be a fixed number in [0, ∞), u ∈ H2m
loc (�\{0}) ∩ Hm(�) be a gener-

alized solution of the following elliptic boundary value problem

L(x, t0,D)u = f in �, (4:12)

Nj(x, t0,D)u = gj on �, j = 1, . . . ,m, (4:13)

where f ∈ H0
m+ε(�),

gj ∈ H
j−
1
2

m+ε (�)
, j = 1,..., m, ε is defined as in Theorem 4.1. Then

u ∈ H2m
m+ε(�). Moreover, the following inequalities

‖u‖2H2m
m+ε(�) ≤ C

⎛
⎜⎜⎝∥∥f∥∥2H0

m+ε(�) +
m∑
j=1

∥∥gj∥∥2
H

j−
1
2

m+ε (�)

+ ‖u‖2Hm(�)

⎞
⎟⎟⎠ , (4:14)

holds with the constant C independent of u, and f, gj, and t0.

Proof. Firstly, since m + ε > j + 1 − n
2

for j = 1,..., m, by (2.3), it holds that

Hj+1
m+ε(�) ≡ Vj+1

2,m+ε(�), and therefore,
H

j−
1
2

m+ε (�) ≡ V
j−
1
2

2,m+ε(�)
. Moreover, it is obvious

that H0
m+ε(�) ≡ V0

2,m+ε(�). Hence, f ∈ V0
2,m+ε(�) and

gj ∈ V
j−
1
2

2,m+ε(�)
for j = 1, . . . ,m.

If m <
n
2
, then Hm(�) ≡ Hm

0 (�) ≡ Vm
2,0(�) ⊂ V0

2,−m(�) by (2.3) and (2.2). Thus the

assertion of the lemma follows from Lemma 4.2 with noting that the space V2m
2,m+ε(�)

is continuously imbedded in H2m
m+ε(�) according to (2.1).

Now consider the case m ≥ n
2
. Let � = [

n
2
] be the greatest integer not exceeding

n
2
.

Then we have � − n
2

< ε < � + 1 − n
2
. According to [[2], Th. 7.1.1], the function u

which belongs to Hm(�) ⊂ Hm
ε (�) has the representation

u(x) =
∑

|α|≤m−�−1

cαx
α + v(x),

where v ∈ Vm
2,ε(�), and

cα =
1
α!

lim
r→0

1
|�|

∫
�

Dα
x u(ω, r)dω

with the following estimates

‖v‖Vm
2,ε(�) ≤ C‖u‖Hm(�), (4:15)

|cα| ≤ C‖u‖Hm(�), |α| ≤ m − � − 1. (4:16)

Here |�| =
∫

�

dω, and C is a constant independent of u and t0. Put

w =
∑

|α|≤m−�−1

cαx
α

. From (4.16) we see easily that w ∈ H2m
m+ε(�) and

‖w‖H2m
m+ε(�) ≤ C‖u‖Hm(�),
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where C is a constant independent of u and t0. From this we have

L(x, t0,D)w ∈ H0
m+ε(�) = V0

2,m+ε(�),

Nj(x, t0,D)w ∈ H
j−
1
2

m+ε (�) = V
j−
1
2

2,m+ε(�).

Hence, it follows from (4.12) and (4.13) that

L(x, t0,D)v = f̃ := f − L(x, t0,D)w ∈ V0
2,m+ε(�), (4:17)

Nj(x, t0,D)v = g̃j := gj − Nj(x, t0,D)w ∈ V
j−
1
2

2,m+ε(�), j = 1, . . . ,m.
(4:18)

Now we can apply Lemma 4.2 to conclude from (4.17) and (4.18) that v ∈ V2m
2,m+ε(�).

Therefore, u = v + w ∈ H2m
m+ε(�) with the estimate (4.14). The lemma is completely

proved.

Proof of Theorem 4.1: First, we show by induction on h that

utk(·, t) ∈ H2m
loc (�\{0}) for a.e. t ∈ (0,∞) and all k ≤ h − 1. (4:19)

According to Theorem 3.4 it holds that utk ∈ Hm,1(Q, (k + 1)γ + σ ), k ≤ h. In particu-

lar, utt Î L2(Q, 2g + s). Thus, from the equality (2.9) it follows that

B(t, u, η) = (f (·, t) − utt(·, t), η) (4:20)

for all h Î Hm(Ω) and a.e. t Î (0, ∞). Since f (·, t) - utt(·, t) Î L2(Ω) for a.e. t Î (0,

∞), according to results for elliptic boundary value problem in domains with smooth

boundaries, it follows from (4.20) that u(·, t) ∈ H2m
loc (�\{0}) for a.e. t Î (0, ∞), more-

over, the function u satisfies the following equalities:

L(x, t,D)u = f − utt

for a.e. (x, t) Î Q and

Nj(x, t,D)u = 0 on S

in the trace sense. Thus, the assertion (4.19) holds for h = 1, and by (2.5) we also

have

(L(x, t,D)u, η) = B(t, u, η) (4:21)

for all η ∈ C∞
0 (�\{0}) and a.e. t Î (0, ∞). Assume now (4.19) holds for h - 2. It fol-

lows from (4.20) that

B(t, uth−1 , η) = (fth−1(·, t), η) − (uth+1(·, t), η) −
h−2∑
k=0

(
h − 1
k

)
Bth−1−k(t, utk , η) (4:22)

for all h Î Hm(Ω), a.e. t Î (0, ∞). Since utk ∈ H2m
loc (�\{0}), by the induction assump-

tion, we have from (4.21) that

(Lth−1−k(x, t,D)u, η) = Bth−1−k(t, u, η) (k ≤ h − 2) (4:23)
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for all η ∈ C∞
0 (�\{0}) and a.e. t Î (0, ∞). Combining (4.22) and (4.23) we obtain

B(t, uth−1 , η) = (Fh−1(·, t), η) (4:24)

for all C∞
0 (�\{0}) and a.e. t Î (0, ∞), where

Fh−1 = fth−1(·, t) − uth+1(·, t) −
h−2∑
k=0

h − 1kLth−1−k(·, t)utk ∈ L2,loc(�\{0}).

Similarly as above, it follows from (4.24) that uth(·, t) ∈ H2m
loc (�\{0}) for a.e. t Î (0,

∞), and therefore, (4.19) holds for h - 1.

Now we prove the assertion of the theorem by induction on h. Let us consider first

the case h = 1. We rewrite (2.6), (2.7) in the form

L(x, t,D)u = f1 := f − utt in Q, (4:25)

Nj(x, t,D)u = 0 on S, j = 1, . . . ,m. (4:26)

Since f1(·, t) ∈ L2(�) ⊂ H0
α(�) for a.e. t Î [0, ∞), by Lemma 4.3, it follows from

(4.25) and (4.26) that u(·, t) ∈ H2m
m+ε(�) for a.e. t Î (0, ∞) and

∥∥u(·, t)∥∥2H2m
m+ε(�) ≤ C

(∥∥f1(·, t)∥∥2L2(�) +
∥∥u(·, t)∥∥2Hm(�)

)
,

where C is a constant independent of u, f1 and t. Since the trip

m − ε − n
2

≤ Reλ ≤ 2m − α − n
2

does not contain any eigenvalue of U(λ, t) for all t Î [0, +∞), and ε +
n
2

/∈ {1, . . . ,m}
by the definition of the number ε, we can apply Theorem 7.2.4 and the note below

Theorem 7.3.5 of [2] to conclude from (4.25), (4.26) that u(·, t) ∈ H2m
α (�) and

∥∥u(·, t)∥∥2H2m
α (�) ≤ C

(∥∥f1(·, t)∥∥2L2(�) +
∥∥u(·, t)∥∥2Hm(�)

)
, (4:27)

where C is a constant independent of u, f1 and t. Now multiplying both sides of

(4.27) with e-2(2g+s)t, then integrating with respect to t from 0 to ∞ and using estimates

from Theorem 3.4, we obtain

‖u‖2
H2m,1

α (Q,2γ+σ )
≤ C

∥∥f∥∥2
L2(Q,σ ) , (4:28)

where C is a constant independent of u and f. Hence, the theorem is valid for h = 1.

Assume that the theorem is true for some nonnegative h - 2. We will prove it for h -

1. Differentiating (h - 1) times both sides of (4.25), (4.26) with respect to t, we have

Luth−1 = f̃ := fth−1 − uth+1 −
h−2∑
k=0

(
h − 1
k

)
Lth−1−kutk in Q, (4:29)

Njuth−1 = g̃j := −
h−2∑
k=0

(
h − 1
k

)
(Nj)th−1−kutk on S, j = 1, . . . ,m. (4:30)
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By the induction assumption, it holds that

utk ∈ H2m,1
α (Q, (k + 2)γ + σ ) ⊂ H2m,1

α (Q, (h + 1)γ + σ ), k = 0, . . . , h − 2.

Moreover,

fth−1 ∈ L2(Q, (h − 1)γ + σ ) ⊂ L2(Q, (h + 1)γ + σ )

by the assumption of the theorem and

uth+1 ∈ L2(Q, (h + 1)γ + σ )

by Theorem 3.4. Thus, for a.e. t Î (0, ∞), we have f̃ (·, t) ∈ H0
α(�),

g̃(·, t) ∈ H
j−
1
2

α (�)

and

∥∥∥f̃ (·, t)∥∥∥2
H0

α(�)
≤ C

(∥∥fth−1(·, t)∥∥2 + ∥∥uth+1(·, t)∥∥2
L2(�) +

h−2∑
k=0

∥∥utk(·, t)∥∥2
H2m

α (�)

)
.

∥∥g̃j(·, t)∥∥2
H

j−
1
2

α (�)

≤ C
h−2∑
k=0

∥∥utk(·, t)∥∥2H2m
α (�) , j = 1, . . . ,m,

where C is the constant independent of u, f and t. Now we can repeat the arguments

above to conclude that uth−1 ∈ H2m,1
α (Q, (h + 1)γ + σ ) with the estimate (4.2) for k = h

-1. The proof is completed.

5 An example
In this section we apply the previous results to the Cauchy-Neumann problem for the

classical wave equation. We consider the following problem:

utt − �u = f in Q, (5:1)

∂u
∂ν

= 0 on S, (5:2)

u|t=0 = ut|t=0 = 0 on �, (5:3)

where Δ is the Laplace operator.

For problem (5.1)-(5.3) it can be directly verified that the constants μ, μ1 and g0 are

now defined by

μ = 1,μ1 = 0 and γ0 = 0.

The operator pencil associated with the problem (5.1)-(5.3) is now defined by (see

[[13], Sec. 2.3])

U(λ, t)u = U(λ)u| = (δu + λ(λ + n − 2)u, ∂νu|∂G), (5:4)

where δ is the Laplace-Beltrami operator on the unit sphere Sn-1. It is well known

that (see also [[13], Sec. 2.3]) the trip

2 − n < Re λ < 0 (5:5)
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does not contains any eigenvalue of the operator pencil U(λ, t). We see that if 0 ≤ a
≤ 1 and n > 4 - 2a, then the trip (4.1) with m = 1 is contained in the trip (5.5), since ε

can be chosen as zero or an arbitrary small positive real number. Thus, we can apply

Theorem 4.1 to receive the following result.

Theorem 5.1. Let h be a nonnegative integer and a be a real number, 0 ≤ a ≤ 1.

Assume that the vector function f satisfy the following conditions for some nonnegative

real number s

(i) ftk ∈ L2(Q, σ ), k ≤ h,

(ii) ftk(x, 0) = 0, 0 ≤ k ≤ h − 1.

Assume further that n > 4 - 2a. Then for an arbitrary positive real number g the pro-

blem (5.1)-(5.3) has a unique generalized solution u in the space H1,1(Q, g + s) which
has derivatives with respect to t up to the order h with utk ∈ H2,1

α (Q, (k + 2)γ + σ )for k

= 0, 1,..., h - 1, and

h−1∑
k=0

‖utk‖2H2,1
α (Q,(k+2)γ+σ )

≤ C
h∑

k=0

∥∥ftk∥∥2L2(Q,σ ) ,

where C is a constant independent of u and f.
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