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Abstract

This paper is concerned with investigating the spatial behavior of solutions for a
class of hyperbolic equations in semi-infinite cylindrical domains, where nonlinear
dissipative boundary conditions imposed on the lateral surface of the cylinder. The
main tool used is the weighted energy method.
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1 Introduction
The aim of this paper is to study the spatial asymptotic behavior of solutions of the

problem determined by the equation
Uy = Auy —au; — A*u,  (x,t) € Q x (0,00), (1.1)
where a is a positive constant and
Q={xeR" :x, €R", ¥ =(x1,...,%:,_1) € [y, C R"'},
where
T ={(x, %) € Q:x, = 7).

When we consider equation (1.1), we impose the initial and boundary conditions

u(x,0) = wu(x,0)=0 x€9, (1.2)

u(x¥,0,t) = K, 1), gz (*, 0, t) =ha(x', 1), (¥,t) € g x (0,00), (1.3)
ou

u = 0,Au=-—f <8v) , (% t) € o x (0,00), (1.4)

where v is the outward normal to the boundary and

To={xeR" ¥ €3y, 1 <x, <00},
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where r — [, is a map from R* into family of bounded domains in R"" with suffi-
ciently smooth boundary dI'; such that

0 <mp <inf|[';| <sup|T;| <m; < o0.
T T

In the sequel, we are using

Q=QN{xeR":0<x, <1},

R, =QNn{xeR":t <x, <00},

and assume f satisfies

F(v) = /f(g)ds >avf(v) >0, >0 VWeR, (1.5)
0
f(v) = y?, p> ;,y >0, YveR. (1.6)

In recent years, much attention has been directed to the study of spatial behavior of
solutions of partial differential equations and systems. The history and development of
this question is explained in the work of Horgan and Knowles [1]. The interested
reader is referred to the papers [2-9] and the reviews by Horgan and Knowles
[1,10,11]. The energy method is widely used to study such results.

Spatial growth or decay estimates for nontrivial solutions of initial -boundary value
problems in semi-infinite domains with nonlinearities on the boundary have been stu-
died by many authors. Since 1908, when Edvard Phragmén and Ernst Lindel6f pub-
lished their idea [12], many authors have obtained spatial growth or decay results by
Phragmén-Lindelof theorems. In [13], Horgan and Payne proved some these types of
theorems and showed the asymptotic behavior of harmonic functions defined on a
three-dimensional semi-infinite cylinder when homogeneous nonlinear boundary con-
ditions are imposed on the lateral surface of the cylinder. Payne and Schaefer [14]
proved such results for some classes of heat conduction problems. In [15], Quintanilla
investigate the spatial behavior of several nonlinear parabolic equations with nonlinear
boundary conditions, (see also [16,17]).

Under nonlinear dissipative feedbacks on the boundary, Nouria [18] proved a poly-
nomial stability for regular initial data and exponential stability for some analytic initial
data of a square Euler-Bernoulli plate. For the used methodology, one can see [19,20]
where the stabilities are investigated in the cases bounded and unbounded feedbacks
for some evolution equations. Recently, Celebi and Kalantarov [21] established a Phrag-
mén-Lindelof type theorems for a linear wave equation under nonlinear boundary con-
ditions. In our study, we establish Phragmén-Lindel6f type theorems for equation (1.1)
with nonlinear dissipative feedback terms on the boundary. Our study is inspired by
the results of [21].

For the proof of our results, we will use the following Lemma.

Lemma [22]Let w be a monotone increasing function with w(0) = 0 and lim,_,..y(z) =
oo, Then ¢(z) >0 satisfying ¢(z) < w(¢'(2)), z >0, tends to +oo when z — +oo.
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(i) If w(z) < 2 for some ¢ and m >1 for z > z;, then
m

liminfz m— 1 ¢(z) > 0.
Z—>+00

(ii) If w(z) < cz for some ¢ and z > zy, then

lir_r)l}or.}fgo(z) exp (—i) > 0.

2 Spatial estimates
With the solutions of (1.1-1.4) with k;(x’, £) = 0, i = 1, 2 is naturally associated an
energy function

T T
E(r) = / i3, + 11 Vuld, + 1Aul3, + / / Vuf(Vu)dsdy | dt @.1)
0

0 ar,

where ||.||o denotes the usual norm in L*(C2).
A multiplication of equation (1.1) by u, integrating over (), and using (1.3-1.5):

T
d|1 1
o | ol + l1Aullg, + //F(Vu)dsdn +allulg,

0 ar,
+|| V| Iér = — (U, Uy, )T, + (Ui, Uny, )T, + (e e, ), -
Since
(uer U, )T, = = (Ui, U, )T,
we obtain

T
d|1 1
4 | ol + 2||Au||é,+//F(Vu)dscln +alluglg,

(2.2)
0 ar,

"’||Vut||g2r = 2(utxn/ Uacnxﬂ)f‘r + (Utr utx”)r‘r-

Let 0 >0. Multiplying (1.1) by Ju, integrating over Q,, and adding to (2.2), we obtain

d

1 1
@ {2||ut||§, + lI8ullf, +8(uu)g,

T
aé 1)
+, ullg, + 2||Vu||§2r + //F(Vu)dsdn
0 ar, (2.3)

+(a = 8)|ucllgy, +11Vullg, +8llAul|g + af/wf(w)dsdn
0 aT,

= 2t Uy, ), + (U U, )T, + 28 (s Uy, )1, + S (U, ey, ), -
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Integrating (2.3) with respect to ¢ over (0, T) and using (1.5), one can find

T T

1 1 1) asd
Hlllg, + llAullg, + 11Vullg, + ) llullg,

+8(u, ur)g, +oz/r / Vuf(Vu)dsdn

0 al'n

T T T
+(a—8)/||u[||5221dt+8/IIAuIIérdt+/||Vut||érdt 2.0
0 0 0 '

T T

+8/T/ / Vuf(Vu)dsdndt§/[2(umn,uxnxn)ﬂ + (U, v, )T ] dt

0 'y 0

0
T
+/ [268 (ux,, thy,x, )Tz + 8(u, gy, )T ] dt.
0

On exploiting (2.1) and the inequality — (}1) ||ut||ér — 82 IIuIIg2r < §(u, u)q, the esti-
mate (2.4) takes the form

T
O'ilE(T) =< f [(utxnr ux,,x,,)rr + (utr utx,,)rr] dt
0 T (2.5)
+ [ [(ty, i, )T + (u e, )T ] dt,
0

by choosing 8 = 9, 1 =min{1, 7}, o = max{; , 52] }. Now we find upper bounds for

the right hand side of (2.5). Using the Young’s and Schwartz inequalities, we have

T T T
1 1
[ Gy de < ) vz des ) [aug as 26)
0 0 0
T T T
1 2 1 2
(ut, utxn)rrdt S 2 ||ut||rrdt+ 2 ||Vut||1-r dt, (27)
0 0 0
T T
/(uxn’uxnxn)rrdtf/||uxn||l‘r||uxnxn||l‘,dt. (2.8)
0 0

By the Poincaré inequality, it is not difficult to see
2
ot <2 19wy + DI | [ da | 29)

D
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Inserting (2.9) into (2.8), we get

T
/ (uxn’ uxnxn)rr dt
0 (2.10)

_1 1
5/ Ao 2IAullp, + |Te| 2 /V’udA [|ths,x, |1, AL,
0 I

where A’ and V' are Laplacian and gradient operators in R* ", respectively, || is the
area of I'; and A, is the Poincaré constant. Now, we recall the inequality

1

2
12
/vdA§ rzoflvlds+ ; /lelsz ) (2.11)
D oD D

from [13] where 12 = supp|¥'|? and I = [}, |x'|*dA. Using (2.11) and the Hdélder’s

inequality to estimate the boundary integral ‘ Ir V’udA‘ in (2.10), we obtain

T
/(“xnr”xnxn)r,dt
0
. 1 B (2.12)
5/ MiIAullr, + 72 My /|V/u|2”dA it I,
0 r.

1
where pf, = 272 4 21”12/2, M, = JrLGP=D/2Pp,=1/2,, =112 such that r = sup, r,, A = inf,
m

Ao I =sup, I, L = sup, L, and m = inf, || in which L, is the area of dI',. From (1.6)
the inequality (2.12) yields

T
/ (U, Uy, ), U
0

1 (2.13)
T

T
2p
§M1/||Au||12~tdt+[v12/ /V/uf(v’u)dA [t x, ||, dt.
0

0 oI,
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Consequently
1 1
2p 2
/ V'uf (V'u)ds / ui . dA
r; T
p+1
1 p 2p
p+1 p+1
= / V'uf (V'u)ds /ufﬂx”dA
I, .
p+1
2p
nP / ’ ’ p 2
V'uf(V'u)ds + / u; . dA ,
L+p u(+p) J
ar; I
where the Young’s inequality
—g 70-9) —&
@Bl = (ay)| Byl e <eay+(1—e)pyl—¢,

for 0 < ¢ <1, u= Pp}'l and ¥ = ¢ have been used. Therefore,

2117
/ V'uf (V'u)ds /ufﬂxndA
‘ rf T
- (2.14)
2
< | N(p) / V'uf (V'u)ds + / up  dA ,
I, r,
where
p1
pr
N(p) = -
(1+p)
By using (2.13) and (2.14), we get
T T
/ (uxn/ anxn)r, dt <M / ||Au||12“r de
0 0
pel (2.15)

T 2p
+M2N(p)/ /V/uf(v’u)d5+/u§nxndA de,
o\

I. I:
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- p+1 o
where N(p) = [N(p)] - From (2.15), it is easy to see

T T
/(uxn,uxnxn)r, dthlfllAuH%, dt
0 0

p+1
2p

T T
+M,CN(p) //Vuf(Vu)dsdt+/||Au||%tdt ,
0

0 oI,

where C is a positive constant.

Next, we exploit Poincaré inequality to estimate

T T T
—1
el 1
/(u,um)r, dt < 5 /||Au||%z dt + 2/||Vut||%rdt, (2.17)
0 0 0

where p is the Poincaré constant.
Now, from the inequalities (2.5-2.7), (2.16), and (2.17), one can find

T
o 3 1 ot
E(r)§/|:2||ut||12~1+2o||Vut||12~T+a<2+M1+ 5 )||Au||%r]dt
0

+/T/Vuf(Vu)dsdt+oM2CN(p) /T/VUf(Vu)det
0 T, 0 I,

p+1
2p

T
2 2 2
+/[||Vut||r, de+ || Aul, + [l 2] de
0

Upon inserting (2.1) into the right hand side of (2.18), we may write an inequality in
the form

5 pfl - p+1
E(r) <o (2 FMy )E’(r) +oM,CN(p) [E(2)] 2 . (2.19)

1
At this point, by the inequality (2.19), the function V(2) =z + Zp;p satisfies in the

hypothesis of the Lemma. Therefore, we have proved the following theorem.
Theorem 1 Let u(x, t) be a nontrivial solution of (1.1) - (1.4) with hyx’, t) =0, i = 1,
2 under the conditions (1.5) and (1.6). Then

_ p+1 1
lim infE(t)r "7 >0, pe(_,1)
T—+00 2
and

lim infE(r)exp(—Z) >0, pell,+00),

where

5 p! -
¢ = max 0<2+M1+ ) ),UMQCN(p) .
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Theorem 2 Consider the equation (1.1) subject to the conditions u(x’, 0, t) = hy(x, £)

and 5 (x',0,1) = hy(x, t)for &' € To. If E(+e0) is finite, then

T—>+00

T T T

lim / |[uel|%, d + / V| |5 de + / [|Aul|z dt | = 0. (2.20)
0 0 0

proof By the same manner followed in theorem 1, it is easy to find the inequality

T T T T
1
(a=9) [t des [ 10wl ders [1aui de< ) [ d
0 0 0 0

T T
3 6 1
+(2 +2>/||Vut||%rdt+[l+8(l w7t 2A;2)]/I|Au|llz~rdt,
0 0

where A, is the Poincaré constant. Choosing é € (0, @), 1 = min{a -9, J, 1} and

-1

y m {3 S S(1+a;! 1,\’2)}
= axy_+ , 1+ + + ,
v 272 T

we obtain
E(r) < —7E(7), (2.21)

where

T T T
E(r)=/||u[||122rdt+/||Vut||122rdt+/||Au||,2zrdt.
0 0 0

Thus, (2.20) follows from (2.21). =
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