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Introduction
In this article, we study the global existence and the blow-up of non-Newtonian poly-
tropic filtration systems with nonlinear boundary conditions

(u?)[:Amiui (i=1,...,n), xeQ, t>0,
n i
Vmiui-v=]l__{u;1” (i=1,...,n), x€dR, t>0, (1.1)

ui(x,0) =ujp(x) >0 (i=1,...,n), xeQ,

where

N
Aty = div(I V™ Vi) = (IVu]™ )
i1

o Vi = (V] Mty V™ i),

Q c RV is a bounded domain with smooth boundary 9Q, v is the outward normal
vector on the boundary 9, and the constants k;, m; > 0, m; > 0, i, j = 1,..., 15 ujp(x) (i
= 1,.., n) are positive C! functions, satisfying the compatibility conditions.

The particular feature of the equations in (1.1) is their power- and gradient-depen-
dent diffusibility. Such equations arise in some physical models, such as population
dynamics, chemical reactions, heat transfer, and so on. In particular, equations in (1.1)
may be used to describe the nonstationary flows in a porous medium of fluids with a
power dependence of the tangential stress on the velocity of displacement under poly-
tropic conditions. In this case, the equations in (1.1) are called the non-Newtonian
polytropic filtration equations which have been intensively studied (see [1-4] and the
references therein). For the Neuman problem (1.1), the local existence of solutions in
time have been established; see the monograph [4].
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We note that most previous works deal with special cases of (1.1) (see [5-13]). For
example, Sun and Wang [7] studied system (1.1) with n = 1 (the single-equation case)
and showed that all positive (weak) solutions of (1.1) exist globally if and only if m1;; <

ki when k; < my; and exist globally if and only if my; < mlﬂ(fﬁl)

when k; >m;. In [13],

Wang studied the case n = 2 of (1.1) in one dimension. Recently, Li et al. [5] extended
the results of [13] into more general N-dimensional domain.

On the other hand, for systems involving more than two equations when m; = 1(i =
1,..., n), the special case k; = 1(i = 1,..., n) (heat equations) is concerned by Wang and
Wang [9], and the case k; < 1(i = 1,..., n) (porous medium equations) is discussed in
[12]. In both studies, they obtained the necessary and sufficient conditions to the glo-
bal existence of solutions. The fast-slow diffusion equations (there exists i(i = 1,..., n)
such that k; > 1) is studied by Qi et al. [6], and they obtained the necessary and suffi-
cient blow up conditions for the special case QO = B(0) (the ball centered at the origin
in RN with radius R). However, for the general domain Q, they only gave some suffi-
cient conditions to the global existence and the blow-up of solutions.

The aim of this article is to study the long-time behavior of solutions to systems (1.1)
and provide a simple criterion of the classification of global existence and nonexistence
of solutions for general powers k; m,, indices m;;, and number 7.

Define

b; = min{k;, milki+1) 1 bij = b,‘S,‘j, i,j =1,.,n,

mi+1

B= (bij)nxm M= (mij)nxm A=B-M.

Our main result is

Theorem. All positive solutions of (1.1) exist globally if and only if all of the principal
minor determinants of A are non-negative.

Remark. The conclusion of Theorem covers the results of [5-13]. Moreover, this
article provides the necessary and sufficient conditions to the global existence and the
blow-up of solutions in the general domain Q. Therefore, this article improves the
results of [6].

The rest of this article is organized as follows. Some preliminaries will be given in
next section. The above theorem will be proved in Section 3.

Preliminaries
As is well known that degenerate and singular equations need not possess classical
solutions, we give a precise definition of a weak solution to (1.1).

Definition. Let T > 0 and Qr = Q x (0, T]. A vector function (ui(x, t),.., u,(x, t)) is
called a weak upper (or lower) solution to (1.1) in Qr if

(D). w(x,t)(i=1,..., n) € L®(0, T; Wh®(2)) n W2(0, T; L(2)) N C(Qr)

(ii). (u1(x, 0),e.ey u(x, 0)) 2 (<) (U10(%)y0rrs Unno(X));

(iii). for any positive functions y;(i = 1,.., n) € LY0, T; W *(Q)) n L*(Q7), we have

S o, 1) Wi+ Vi - Vil ddt = (<) [ [ Hl WUyidsdt (i=1,...,n).
H

In particular, (uy(x, t),..., u,(x, t)) is called a weak solution of (1.1) if it is both a weak
upper and a lower solution. For every T < oo, if (uy(x, t),..., u,(x, t)) is a solution of (1.1)
in Qg then we say that (uy(x, £),..., u,(x, t)) is global.



Du and Li Boundary Value Problems 2011, 2011:2 Page 3 of 11
http://www.boundaryvalueproblems.com/content/2011/1/2

Lemma 2.1 (Comparison Principle.) Assume that u;o(i = 1,..., n) are positive
CY(Q)functions and (uy,..., u,) is any weak solution of (1.1). Also assume that (uy,..., U,)

> (J,..., 0) > 0 and (U1, ..., Uy)are the lower and upper solutions of (1.1) in Qy; respec-
tively,  with  nonlinear  boundary  flux (% 1_[?=1 l!;n”' ek H?:l E‘;""j Jand

1T 1];"”, RN ﬁ;""j), where O<i<l<Ai Then we have

(U, oo tin) > (U1, ... Up) > (yl,...,yn)m Qr.

When n = 2, the proof of Lemma 2.1 is given in [5]. When #n > 2, the proof is
similar.

For convenience, we denote 0 < A < 1 < A, which are fixed constants, and let
8 = minj<j<p{mingu;o(x)} > 0.

In the following, we describe three lemmas, which can be obtained directly from
Lemmas 2.7-2.9 in [6].

Lemma 2.2 Suppose all the principal minor determinants of A are non-negative. If A
is irreducible, then for any positive constant c, there exists & = (0ly,..., a,) T such that A
o >0 and o; >c (i = 1,.., n).

Lemma 2.3 Suppose that all the lower-order principal minor determinants of A are
non-negative and A is irreducible. For any positive constant C, there exist large positive
constants L,(i = 1,..., n) such that

n
[[t'=c (=1...,n).
j=1

Lemma 2.4 Suppose that all the lower-order principal minor determinants of A are
non-negative and |A| < 0. Then, A is irreducible and, for any positive constant C, there
exists & = (0., @) 5, with o; > 0 (i = 1,..., n) such that

n
Hlill{ki, mi(kit 1) }Oli — Z m,‘j()l]‘ < —C (l =1,..., n)

mi+1
j=1

Proof of Theorem
First, we note that if A is reducible, then the full system (1.1) can be reduced to several
sub-systems, independent of each other. Therefore, in the following, we assume that A
is irreducible. In addition, we suppose that k; - my < ky - my < - - - k,, - m,,.

Let ¢, (x)(i = 1,...,n) be the first eigenfunction of

—ApPm; = My (x) in Q, @ (x)=0 on 9IQ (3.1)

with the first eigenvalue Am, normalized by ||¢m, (X)|loc = 1, then Am; > 0, @y, (x) > 0
in Q and @, (x) € Wé’m”l N C(R) and 8('0;" (%) < 0 on 0Q) (see [14-16]).
v

Thus, there exist some positive constants A, Bm, Cn, and Dy, such that

Ay, <

A0m: -
- (p’a"‘ () <Buw, Vo (x)] >Cu, x€32 |V (x)] <Dy, xe€Q.(3.2)
v
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We also have |Voy, (x)| > Ey, provided x € {x € Q: dist(x, 9Q) < &y, } with E,, = C;'f
and some positive constant €m. For the fixed €m, there exists a positive constant Fy,
such that @y, (x) > Fy, if x € {x € Q : dist(x, 0Q2) > &, }.

Proof of the sufficiency. We divide this proof into three different cases.

Case 1. (k; <m; (i = 1,..., n)). Let

(ki—m)ait
ui(x, t) = Pie"log [ (1 — gm,(x))e ™ +Q; (i=1,....,n), (3.3)

where Q; satisfies Q;log Q; > z(mr;!__k") (i=1,...,n) and constants P, ¢; (i = 1,..., n)
remain to be determined. Since Q;logQ; > z(mr;;ki), by performing direct calculations,

we have
i o (li—miJosit ki
(i) > kP e | log((1 — gm,(x))e ™ +Q)

ki—1
ki ot (st
+ ko P e | log((1 — g, (x))e ™ +Qi)
i (k,-fmi)ait
X i;imi (1 —om(x))e m

(ki—m;)a;t

(I —gm(x)e ™ +Q;

i ki Rt (ki—m;)ait ki
5 Pieit log((1 — ¢m(x))e ™ +Q)

kia; L hioes ]
> lzlpie,eklalt(logQi)kll

k
=

(P T ) ) ) e
mithi = Z (ki—m;)ait i - Qi

A\ gme Q) |

X

in Q x R". By setting ¢, = Cy, if m; > 1, C; = Dy, if m; < 1, we have one the bound-

ary that

Plcni™ A,

Vi -v > LM S ket o1, n),
(1 + Qi) !
n n
[ 1" <[] log(1+ Q)ymiexm ™t (i=1,...,n).
j=1 j=1
we have

if

m; mi—1
P Cm; Ami

_n
(1+Q))™ s l_{ (Pj log(1 + Qj))mij (i=1,...,n) (3.4)
i j=

Page 4 of 11
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and
n
kiaj > Y mye (i=1,...,n). (3.5)
=1

Note that k; <m;(i = 1,..., n). From Lemmas 2.2 and 2.3, we know that inequalities
(3.4) and (3.5) hold for suitable choices of P;, a; (i = 1,..., n). Moreover, if we choose
P;, a; to be large enough such that

b
20, P

Pilog Qi > luiolleer @i >, i 1
1 ng = || 10||OO 1= kiQil(logQi)kl

then u;(x, 0) > uj, (ﬂf")t > Apii (i=1,...,n) Therefore, we have proved that
(141, ..., up) is a global upper solution of the system (1.1). The global existence of solu-
tions to the problem (1.1) follows from the comparison principle.

Case 2. (k; = m; (i = 1,..., n)). Let

1 (kffmi)aft ém,j _ 1
i 1) = e [ M+ Amelome ™ oMy mo L1714 (i=1,...,m),  (3.6)

where A; = Ameﬁ:j_1 it m; > 1, A = AmiDmﬁ_l if m; < 1, ¥m, Am, Bm, C, are defined

in (3.1) and (3.2), o;(i = 1,..., n) are positive constants that remain to be determined,

and
3 T Shmen ) -
M = maxizicall, ltolloc),  Li=2m2 m M m A " max{1, 20wl
Since  -ye? > et for  any y > 0, we know that
Ve (Ri—m;)oit .
—Ligom,e(klm:ﬁll)we‘L"‘/)'"fe mi+1 > gt Thus, for (x, £) € Q x R*, a simple computa-
tion shows that
(ki—m;)etit n 1 ki
1 T 2im1 Mij

—ki o = _L; mi+1 —14 m
(ufl)t = kioi et | M+ Amig7home T (oM) m LTTA ™

—ma n ki—1
1 (Ri—m;)ait Zj:lmii 1

o - _L: m;+1 _ “m
+ kit [ M 4+ AmigLigme M) m L lAi i

1 Z,L mij 1 ki — m)o (ki—m;)ait
x Ami(2M) mi LA™ (ki 1)al(—Li<pmi)e mi+l g™
m; + 1

> ;k,-a,-eki“f‘.

In addition, we have

mi(ki—mi)ait (kiimi)ail

_ = n I M —L:m: m;i+1
A ili < A, (2M)Zi AT Qi ile  mist - grhimigme

(ki—m;)oit
# ALim; (2M) X5 M AT it Limiome ML g ]

< Ak, + LimiDI 1) (2M) 2 M AT e,
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Noting ¢, =0 (i=1,2,...,n) on 9Q, we have on the boundary that

Zmu m;(ki—m;)ait
Vil v > A(2M)T e mi+l

n
n

e > my Zm,,a}t
[T = ™™
j=1

Then, we have

Vi,

g:=
II
=
Nt

mili—Der &
Sl = 2omie (i=1,...,n). (3.7)
j=1

From Lemma 2.2, we know that inequalities (3.7) hold for suitable choices of a,(i =
1,.., n). Moreover, if we choose oo; to be large enough such that

ati = 24 (o, + Limi DI 1) (2M) 5 ™ (liA) 7,

then (afi)[ > Ap,tii (i=1,...,n) Therefore, we have shown that (uy,...,u,) is an
upper solution of (1.1) and exists globally. Therefore, (u1,...,u,) < (é11,...,Uy), and
hence the solution (uy,..., u,,) of (1.1) exists globally.

Case 3. (k; <m; (i = 1,..., 8); k; = m; (i = s + 1,.., n)). Let uj(x,t) (i=1,...,s) be as in
(3.3) and

(k'_mi)ql

1
i+l ki+1

i(x, £) = et | M; + Ami g Liome (2M;)mi+1 L” 1A "l (i=s+1,...,n),

where ¢m,, and A; are as in case 2. By Lemma 2.3, we choose P; > (log Q)™"||uo]|- (i
= 1,.., s) and M; > max{l, ||u||~} (i =s + 1,.., n) such that

Pml xx ]Am
P H (Pjlog(1 + Q)™ l‘[ @M)™ (i=1,...,s),
j=s+1 (38)

m(k+1) n

A(2M;) mEl > H(p log(1+Q))™ [T @M)™ (i=s+1,...,n).

j=1 j=s+1
Set

1 kel Rimmi 1

L; _)\mlzmHM"’”l A. i max{l, z(k"_mi)} (i=s+1,...,n).

mi+1
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By similar arguments, in cases 1 and 2, we have on the boundary that

mj—
P leyt A‘ i Skiait (l= 1’”"5)’

_ m,‘(ki+1) m,'(kifl)a,'t
Vi - v > A(2M;) mi+l ¢ mitl (i=s+1,...,n),

n

n N
[Ta" < [T(Elogx+ Q™ [T @M)™ermat (i=1,....n).

j=1 j=1 jes+l

Therefore employing (3.8), we see that
Vi -v = A[]u" (i=1,...,n)
j=1

if we knew

k,’O[,' > Z]Zl m,-jotj(i = 1, o ,S)/ milki— 1o > Z]}‘il mijaj (l =S5+ 1, Je ey 1’1) (3.9)

mi+1

We deduce from Lemma 2.2 that (3.9) holds for suitable choices of «; (i = 1,..., n).
Moreover, we can choose ¢; large enough to assure that

m; —k;

2, P}

%2 omogayit (1= 1reeer8),

B m;(ki+1)
o = 20(Am, + LimiDpit ) (2M;) mist (RiA) T (i=s+1,..., 1),

Then, as in the calculations of cases 1 and 2, we have (ﬁfi)t >Api; (i=1,...,0)
We prove that (i, ..., 1,) is an upper solution of (1.1), so (uy,..., u,) exists globally.

Proof of the necessity.

Without loss of generality, we first assume that all the lower-order principal minor
determinants of A are non-negative, and |A| < 0, for, if not, there exists some /th-
order (1 </ <n) principal minor determinant detA, , ; of A = (a;),.x, which is negative.
Without loss of generality, we may consider that

ann ... adq]

ayp ... 4yl
Alxi =

an ... ay

and all of the sth-order (1 <s <[ - 1) principal minor determinants detA; , s of A; . ;
are non-negative. Then, we consider the following problem:

W), = Apwi (i=1,...,1), XeQ, t>0,
n n 2
Vit - v = 82" [T (i=1,...,1), x € 992, t > 0, (3.10)
j=1 )
wi(x,0) =up(x) (i=1,...,1), x € Q.

Note that § = minj<j<,{mingujo(x)} > 0. If we can prove that the solution (wy,..., w))
of (3.10) blows up in finite time, then (wy,... w;, d,..., 6) is a lower solution of (1.1) that
blows up in finite time. Therefore, the solution of (1.1) blows up in finite time.

We will complete the proof of the necessity of our theorem in three different cases.

Page 7 of 11
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Case 1. (k; <m; (i = 1,..., n)). Let

1
u=Y" and Yi=ah''m(x)+(b-c) " (i=1,...,n), (3.11)

1
N = mi+ L (mi—ki)a;i—1
where h(x) = 37,0, x + Nd + 1, d = max{|x[|x € Q}, , = n, Vi T, the o
mi—k; !
are as given in Lemma 2.4 and satisfy a; > miiki,
1+m;

11
b = max;<i<p{1, (;87) %}, a=minii<, {b’y‘(ZNd +1) m

1 n .
m; ~m; Zj:l mijctj

](2Nd+1)) bomi (3.12)

1
PRTh m;)piN 227!
A m

mi+1
m; mi—1 1 \Mi !
amp (1 + mi) N 2 |

¢ = minj<j<n{ kv
171

By direct computation for (x,t) €  x (0, ’C’), we have
1
W")e = cipiyi Yy (0 — ct)" 0D, V= api(1+ L)Y TRm (x)(1,.. 1),
1 1

N Coomi=1
Amiyi=2j=l ((ap,-(n,;i))’"w 2yl Uh(x))

Xj
1 yyming M m;(pi—1)
= (ap(1+ YN Y]
m; 1 yymi+l mirl g, 1 mi(pi—1)—1
o= DR (a4 )N R ()Y,
mi+1 A pi—1)—F: 0
= (api(1+ YN 2 ypr et

> W) (i=1,...,n).

For (x,1) € 32 x (0, ?), we have

<
s
=
<
A

mi
< (api(1+ 5 ))"™N 2 (2Nd + 1)2" D (b — cr)~mlo= D

m;
(api(1+ )" N2 (2Nd + 1)2"™ D (b — ety (i = 1, n),
n n n "
Hyf"ii = HY;"M > H (b—ct)” LM% (i=1,...,n).
-1 j=1

Thus, by (3.12) and Lemma 2.4, we have

<
3

N

<
IA
1>

=

I

™ oi=1,...,n).

-

[
—_
-

We confirm that (..., 4,,) is a lower solution of (1.1), which blows up in finite time.
We know by the comparison principle that the solution (uy,..., u,) blows up in finite
time.

Case 2. (k; 2 m; (i = 1,..., n)). Let dy, = Cy, if m; < 1, dyy, = Dy, if m; > 1. for k; > m; (i
= 1,.., n), set

Page 8 of 11



Du and Li Boundary Value Problems 2011, 2011:2
http://www.boundaryvalueproblems.com/content/2011/1/2

—agm; (x)

— 1 b—ct)Pi
U= (bfct)“ie( "

where o,(i = 1,..., n) are to determined later and

1
ki—m;)er+1 o
ﬁi = ( ' mi:_)ftﬁ ’ b = maxlfifn{lr 8 i }r

1 L] =2 mie
a=mini<i<y 1, A7 (Bydm ) ™b m ,

’

kict;

ma™ it E, " Aom; (ki — m;)a™* 1 Ep*
Fict; ‘

¢ =minj<j<p [

By a direct computation, for x € Q, 0 <¢ <c¢/b, we obtain that

—akipm, (x)
¢ (—ca)fi akificom; (x)
(b—ct)i% (b—ct)Pi*!

—akigm, (x)
(") = kijce (=" (b — ct)~(et) —
1

—aki@y; (x)
< kiaice (=) (b — cp)~(et)),
—am;em, (x) —am;ep, (x)
At = Ag@"igmiie (b—ct)”i . miami+te (b=ct)ff \Vwmi\"‘f”.

(b,ct)mi(di*fﬂi) (b,ct)mi(di“fﬁmﬁi

1

If x € {x € 2: dist(x, dQ) > &p,}, we have ¢, > Fyy, and thus

—aimigm, (x)
Ama™EMie (b—ct)fi
m,'l;l Z ' '

; (b —ct) m;(ai+p;)

On the other hand, since -ye” > -e’! for any y > 0, we have
—akiy. (x) —am;p, (x)

Bi
Iy et (k1) kicgice  (b—ct)
(yi )t < kiajce (0=)" (b — ct) < (i), (bt

We have by (3.16), (3.18), and (3.19) that (4*)e < Awu (i=1,...,n),

Ifxef{xeQ: dist(x, dQ2) < &y}, then [Veu,| > E;;, and then

—akipm; (x) —akipm, (x)
- miami+lEm§+le (b_ct)ﬁi m,'a"’f”Eﬁf'le (b—ct)ﬁi
ml = (@i+B) 4B = .
i (b _ Ct)ml(al+ﬁl)+ﬂt (b _ Ct)klaﬁl

It follows from (3.16), (3.17), and (3.20) that (uf‘)t < A (i=1,..m)

We have on the boundary that

g (3)
e N G I A (i=1,...
b (b — cty™ei#) (b — cy™ )
ﬁliﬂnli: 1 " (l= 1,2,...,7’1).
i1 (b=

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Page 9 of 11
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Moreover, by (3.14) and Lemma 2.4, we have that

mi(ei + Bi) < 2L myey (i=1,...,n). (3.22)

(3.15), (3.21), and (3.22) imply that le'yi V= Z‘H]Zl y:@,'(i =1,...,1) Therefore,
(#1,..., 1) is a lower solution of (1.1).
For k; = m;(i = 1,..., n), let

_a‘ﬂmi(x)
1
_ 1 b—ct) Mi (3.23)
yi = (b—c eb—c)™i
For k; = m; (i = 1,..., s) and k; >m; (i = s + 1,..., n), let 1;(x, t) as in (3.13) and (3.23).
Using similar arguments as above, we can prove that (u;,..., u,) is a lower solution of

(1.1). Therefore, (u1,..., 4,,) < (4y,..., u,). Consequently, (uy,..., u,) blows up in finite

time.
Case 3. (k; <m; (i = 1,..., 8); k; > m; (i = s + 1,..., n)). Let &(x,t) (i=1,...,5) be as in
(3.11) and
1 _a‘/’mi(x)
u = e =) (j=54+1,...,n),
i (b—ct)™ (i=s+ )

where ;s are to determined later and

1 1

1
ki— 1 /. — _
pi= el (i=541,..,m),  b=max{l, maxicicd(367) %), maxuicicald ),

1 1 72;1:1 mijctj _lem
a = min { ming,; ign{A ™ (Bmld'm”:_l) mp om b ming i {b7(2Nd + 1) ™,

et m =X mye
AN gL 1y) e e

- me M+l
) ) gl Ly N2
¢ =min { min;gigs{ km‘ ,
: mia@ B (=) Pl
M4 1<ign Rt ’ kiati .

. ki | —
Based on arguments in cases 1 and 2, we have (H‘ )t < Amu (i=1,...,n) for
1 1

(x, ) e 2 x (O, ?) Furthermore, for (x,t) € Q2 x (O, IC’), we have

mi
Vigh -V < (api(1+ 1 ))™N2 (2Nd + 1)2mD (b — ar) =k (1= 1, 5),
1

1
mj

Vil v < a™ By dii = (b — ct) @) (=54 1,...,n),
1

n
HH% > (b—ct) X ™% (i=1,...,n).
=1/

Thus,

n
v A[Tu™ (i=1,...,n)
i j=1 1]

Vi,

i

=
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holds if

n
kioi +1 < Zmijaj (i=1,...,9),
j=1

mi(oei+,3i) < Zmijaj (i=S+ 1,,...,n).
j=1

(3.24)

From Lemma 2.4, we know that inequalities (3.24) hold for suitable choices of ¢ (i =
1,..., n). We show that (u,.., 4, is a lower solution of (1.1). Since (uy,..., 4,,) blows up
in finite time, it follows that the solution of (1.1) blows up in finite time.
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