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Abstract

The existence results of multiple monotone and convex positive solutions for some
fourth-order multi-point boundary value problems are established. The nonlinearities
in the problems studied depend on all order derivatives. The analysis relies on a
fixed point theorem in a cone. The explicit expressions and properties of associated
Green’s functions are also given.
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1 Introduction
Boundary value problems for second and higher order nonlinear differential equations

play a very important role in both theory and applications. For example, the deforma-

tions of an elastic beam in the equilibrium state can be described as a boundary value

problem of some fourth-order differential equations. Owing to its importance in appli-

cation, the existence of positive solutions for nonlinear second and higher order

boundary value problems has been studied by many authors. We refer to recent contri-

butions of Ma [1-3], He and Ge [4], Guo and Ge [5], Avery et al. [6,7], Henderson [8],

Eloe and Henderson [9], Yang et al. [10], Webb and Infante [11,12], and Agarwal and

O’Regan [13]. For survey of known results and additional references, we refer the

reader to the monographs by Agarwal [14] and Agarwal et al. [15].

When it comes to positive solutions for nonlinear fourth-order ordinary differential

equations, two point boundary value problems are studied extensively, see [16-24]. Few

papers deal with the multi-point cases. Furthermore, for nonlinear fourth-order equa-

tions, only the situation that the nonlinear term does not depend on the first, second

and third order derivatives are considered, see [16-23]. Few paper deals with the situa-

tion that lower order derivatives are involved in the nonlinear term explicitly. In fact,

the derivatives are of great importance in the problem in some cases. For example, in

the linear elastic beam equation (Euler-Bernoulli equation)

(EIu′′(t))′′ = f (t), t ∈ (0, L),

where u(t) is the deformation function, L is the length of the beam, f(t) is the load

density, E is the Young’s modulus of elasticity and I is the moment of inertia of the

cross-section of the beam. In this problem, the physical meaning of the derivatives of

the function u(t) is as follows: u(4)(t) is the load density stiffness, u’’’(t) is the shear
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force stiffness, u’’(t) is the bending moment stiffness and the u’(t) is the slope. If the

payload depends on the shear force stiffness, bending moment stiffness or the slope,

the derivatives of the unknown function are involved in the nonlinear term explicitly.

In this paper, we are interested in the positive solution for fourth-order nonlinear

differential equation

x(4)(t) = f (t, x(t), x′(t), x′′(t), x′′′(t)), t ∈ [0, 1], (1:1)

subject to multi-point boundary condition

x′′′(1) = 0, x′′(1) = 0, x′(0) = 0, x(1) =
m−2∑
i=1

βix(ξi) (1:2)

or

x′′′(1) = 0, x′′(1) = 0, x′(1) = 0, x(0) =
m−2∑
i=1

βix(ξi) (1:3)

where 0 < ξ1 < ξ2 < ... <ξm-2 < 1, bi >0, 1 = 1, 2, ..., m - 2,
∑m−2

i=1 βi > 1, and f Î C([0, 1] ×

R4, [0, +∞)).

One can see that all lower order derivatives are involved in the nonlinear term expli-

citly and the BCs are the m-point cases. In this sense, the problems studied in this

paper are more general than before. In the paper, multiple monotone and convex posi-

tive solutions for problems (1.1), (1.2) and (1.1), (1.3) are established. The results pre-

sented extend the study for fourth-order boundary value problems of nonlinear

ordinary differential equations.

This paper is organized as follows. In Section 2, we present some preliminaries and

lemmas. Section 3 is devoted to the existence of at least three convex and increasing

positive solutions for problem (1.1), (1.2). In Section 4, we prove that there exist at

least three convex and decreasing positive solutions for problem (1.1), (1.3).

2 Preliminaries and lemmas
In this section, some preliminaries and lemmas used later are presented.

Definition 2.1 The map a is said to be a nonnegative continuous convex functional

on cone P of a real Banach space E provided that a : P ® [0, +∞) is continuous and

α(tx + (1 − t)y) ≤ tα(x) + (1 − t)α(y) for all x, y ∈ P and t ∈ [0, 1].

Definition 2.2 The map b is said to be a nonnegative continuous concave functional

on cone P of a real Banach space E provided that b : P ® [0, +∞) is continuous and

β(tx + (1 − t)y) ≥ tβ(x) + (1 − t)β(y), for all x, y ∈ P and t ∈ [0, 1].

Let g, θ be nonnegative continuous convex functionals on P, a be a nonnegative con-

tinuous concave functional on P and ψ be a nonnegative continuous functional on P.

Then for positive numbers a, b, c and d, we define the following convex sets:

P(γ , d) = {x ∈ P | γ (x) < d},
P(γ , α, b, d) = {x ∈ P | b ≤ α(x), γ (x) ≤ d},
P(γ , θ , α, b, c, d) = {x ∈ P | b ≤ α(x), θ(x) ≤ c, γ (x) ≤ d}
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and a closed set

R(γ , ψ , a, d) = {x ∈ P | a ≤ ψ(x), γ (x) ≤ d}.

Lemma 2.1 [25] Let P be a cone in Banach space E. Let g, θ be nonnegative continu-

ous convex functionals on P, a be a nonnegative continuous concave functional and ψ

be a nonnegative continuous functional on P satisfying

ψ(λx) ≤ λψ(x), for 0 ≤ λ ≤ 1,

such that for some positive numbers l and d,

α(x) ≤ ψ(x), ‖ x ‖≤ lγ (x)

for all x ∈ P(γ , d). Suppose T : P(γ , d) → P(γ , d) is completely continuous and there

exist positive numbers a, b, c with a < b such that

(S1) {x Î P (g, θ, a, b, c, d)|a(x) > b} ≠ ∅ and a(Tx) > b for x Î P (g, θ, a, b, c, d);
(S2) a(Tx) > b for x Î P (g, a, b, d) with θ(Tx) > c;

(S3) 0 ∉ R(g, ψ, a, d) and ψ(Tx) < a for x Î R(g, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P(γ , d) such that:

γ (xi) ≤ d, i = 1, 2, 3; b < α(x1); a < ψ(x2), α(x2) < b; ψ(x3) < a.

3 Positive solutions for problem (1.1), (1.2)
We begin with the fourth-order m-point boundary value problem

x(4)(t) = y(t), t ∈ [0, 1], (3:1)

x′′′(1) = 0, x′′(1) = 0, x′(0) = 0, x(1) =
m−2∑
i=1

βix(ξi), (3:2)

where 0 <ξ1 <ξ2 < ... <ξm-2 < 1, bi > 0, i = 1, 2, ..., m - 2.

The following assumption will stand throughout this section:

(H1) f ∈ C([0, 1] × R4, [0, +∞)),
m−2∑
i=1

βi > 1,
m−2∑
i=1

βiξi < 1.

Lemma 3.1 Denote ξ0 = 0, ξm -1 = 1, b0 = bm -1 = 0, and y(t) Î C[0, 1]. Problem

(3.1), (3.2) has the unique solution

x(t) =
∫ 1

0
G(t, s)y(s) ds,

where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
6
t3 +

1
2
st2 +

1
6
s3 +

i−1∑
k=0

βk

(
1
6

ξ3k − 1
2

ξ2k s − 1
6
s3

)
+
1
2

(
1 −

m−2∑
k=i

βkξk

)
s2

m−1∑
k=0

βk − 1

, t ≤ s,

1
2
s2t +

i−1∑
k=0

βk

(
1
6

ξ3k − 1
2

ξ2k s − 1
6
s3

)
+
1
2

(
1 −

m−2∑
k=i

βkξk

)
s2

m−1∑
k=0

βk − 1

, t ≥ s,
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for ξi-1 ≤ s ≤ ξi, i = 1, 2, ..., m -1.

Proof Let G(t, s) be the Green’s function of problem x(4)(t) = 0 with boundary condi-

tion (3.2). We can suppose

G(t, s) =
{
a3t3 + a2t2 + a1t + a0, t ≤ s, ξi−1 ≤ s ≤ ξi, i = 1, 2, . . . ,m − 1,
b3t3 + b2t2 + b1t + b0, t ≥ s, ξi−1 ≤ s ≤ ξi, i = 1, 2, . . . ,m − 1.

Considering the definition and properties of Green’s function together with the

boundary condition (3.2), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3s3 + a2s2 + a1s + a0 = b3s3 + b2s2 + b1s + b0,
3a3s2 + 2a2s + a1 = 3b3s2 + 2b2s + b1,
6a3s + 2a2 = 6b3s + 2b2,
6a3 − 6b3 = −1,
6b3 = 0, 6b3 + 2b2 = 0,
a1 = 0,

b3 + b2 + b1 + b0 =
i=1∑
k=0

βk(a3ξ3k + a2ξ2k + a1ξk + a0) +
m−2∑
k=i

βk(b3ξ3k + b2ξ2k + b1ξk + b0).

A straightforward calculation shows that

a3 = −1
6
, a2 =

s
2
, a1 = 0, a0 =

i−1∑
k=0

βk

(
1
6

ξ3k − 1
2

ξ2k s − 1
6
s3

)
+
1
2

(
1 −

m−2∑
k=i

βkξk

)
s2

m−1∑
k=0

βk − 1

+
1
6
s3,

b3 = b2 = 0, b1 =
s2

2
, b0 =

i−1∑
k=0

βk

(
1
6

ξ3k − 1
2

ξ2k s − 1
6
s3

)
+
1
2

(
1 −

m−2∑
k=i

βkξk

)
s2

m−1∑
k=0

βk − 1

These give the explicit expression of the Green’s function and the proof of Lemma

3.1 is completed.

Lemma 3.2 One can see that G(t, s) ≥ 0, t, s Î [0, 1].

Proof For ξi-1 ≤ s ≤ ξi, i = 1, 2, ..., m - 1,

∂G(t, s)
∂t

=

⎧⎪⎨
⎪⎩

1
2
t(2s − t), t ≤ s, ξi−1 ≤ s ≤ ξi,

1
2
s2, t ≥ s, ξi−1 ≤ s ≤ ξi.

Then ∂G(t,s)
∂ t ≥ 0, 0 ≤ t, s ≤ 1. Thus G(t, s) is increasing on t. By a simple computa-

tion, we see

G(0, s) =
1
6
s3 +

i−1∑
k=0

βk

(
1
6

ξ3k − 1
2

ξ2k s − 1
6
s3

)
+
1
2

(
1 −

m−2∑
k=i

βkξk

)
s2

m−1∑
k=0

βk − 1

≥ 0.

These ensures that G(t, s) ≥ 0, t, s Î [0, 1].

Lemma 3.3 Suppose x(t) Î C3[0, 1] and

x′′′(1) = 0, x′′(1) = 0, x′(0) = 0, x(1) =
m−2∑
i=1

βix(ξi).
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Furthermore x(4)(t) ≥ 0 and there exist t0 such that x(4)(t0) >0. Then x(t) has the fol-

lowing properties:

(1) min
0≤t≤1

|x(t)| ≥ δ max
0≤t≤1

|x(t)|,

(2) max
0≤t≤1

|x(t)| ≤ γ max
0≤t≤1

|x′(t)|,

(3) max
0≤t≤1

|x′(t)| ≤ max
0≤t≤1

|x′′(t)| max
0≤t≤1

|x′′(t)| ≤ max
0≤t≤1

|x′′′(t)|,

where δ =
(
1 − ∑m−2

i=1 βiξi

)
/
∑m−2

i=1 βi(1 − ξi), γ =
∑m−2

i=1 βi(1 − ξi)/(
∑m−2

i=1 βi − 1) are

positive constants.

Proof Since x(4)(t) ≥ 0, t Î [0, 1], then x’’’(t) is increasing on [0, 1]. Considering x’’’(1) =

0, we have x’’’(t) ≤ 0, t Î [0, 1]. Thus x’’(t) is decreasing on [0, 1]. Considering this together

with the boundary condition x’’(1) = 0, we conclude that x’’(t) ≥ 0. Then x(t) is convex on

[0, 1]. Taking into account that x’(0) = 0, we get that

max
0≤t≤1

x(t) = x(1), min
0≤t≤1

x(t) = x(0).

(1) From the concavity of x(t), we have

ξi(x(1) − x(0)) ≥ x(ξi) − x(0).

Multiplying both sides with bi and considering the boundary condition, we have(
1 −

m−2∑
i=1

βiξi

)
x(1) ≤

m−2∑
i=1

βi(1 − ξi)x(0). (3:3)

Thus

min
0≤t≤1

|x(t)| ≥ δ max
0≤t≤1

|x(t)|.

(2) Considering the mean-value theorem together with the concavity of x(t), we have

x(1) − x(ξi) ≤ (1 − ξi)x′(1). (3:4)

Multiplying both sides with bi and considering the boundary condition, we have(
m−2∑
i=1

βi − 1

)
x(1) ≤

m−2∑
i=1

βi(1 − ξi)x′(1), (3:5)

which yields that x(1) ≤ ∑m−2
i=1 βi(1 − ξi)/(

∑m−2
i=1 βi − 1)|x′(1)| = γ max

0≤t≤1
|x′(t)|.

(3) For x′(t) = x′(0) +
∫ t
0 x

′′(s)ds and x’(0) = 0, we get

|x′(t)| = |
∫ t

0
x′′(s) ds| ≤

∫ 1

0
|x′′(s)| ds.

For x′′(t) = x′′(1) − ∫ 1
t x′′′(s)ds and x”(1) = 0, we get

|x′′(t)| = |
∫ 1

t
x′′′(s) ds| ≤

∫ 1

0
|x′′′(s)| ds.

Consequently

max
0≤t≤1

|x′(t)| ≤ max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′(t)| ≤ max
0≤t≤1

|x′′′(t)|.
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These give the proof of Lemma 3.3.

Remark Lemma 3.3 ensures that

max{max
0≤t≤1

|x(t)|, max
0≤t≤1

|x′(t)|, max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′′(t)|} ≤ γ max
0≤t≤1

|x′′′(t)|.

Let Banach space E = C3[0, 1] be endowed with the norm

‖ x ‖ = max{max
0≤t≤1

|x(t)|, max
0≤t≤1

|x′(t)|, max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′′(t)|}, x ∈ E.

Define the cone P ⊂ E by

P = {x ∈ E | x(t) ≥ 0, x′′′(1) = 0, x′′(1) = 0, x′(0) = 0, x(1) =
m−2∑
i=1

βix(ξi), x (t) is convex on [0,1]}.

Let the nonnegative continuous concave functional a, the nonnegative continuous

convex functionals g, θ and the nonnegative continuous functional ψ be defined on the

cone by

γ (x) = max
0≤t≤1

|x′′′(t)|, θ(x) = ψ(x) = max
0≤t≤1

|x(t)|, α(x) = min
0≤t≤1

|x(t)|.

By Lemma 3.3, the functionals defined above satisfy

δθ(x) ≤ α(x) ≤ θ(x) = ψ(x), ‖ x ‖≤ γ γ (x). (3:6)

Denote

m =
∫ 1

0
G(0, s)ds, N =

∫ 1

0
G(1, s) ds, λ = min{m, δγ }.

Assume that there exist constants 0 < a, b, d with a < b < ld such that

(A1) f (t, u, v, w, p) ≤ d, (t, u, v, w, p) ∈ [0, 1] × [0, γ d] × [0, d] × [0, d] × [−d, 0],
(A2) f (t, u, v, w, p) > b

/
m, (t, u, v, w, p) ∈ [0, 1] × [b, b

/
δ] × [0, d] × [0, d] × [−d, 0],

(A3) f (t, u, v, w, p) < a
/
N, (t, u, v, w, p) ∈ [0, 1] × [0, a] × [0, d] × [0, d] × [−d, 0].

Theorem 3.1 Under assumptions (A1)-(A3), problem (1.1), (1.2) has at least three

positive solutions x1, x2, x3 satisfying

max
0≤t≤1

|x′′′
i(t)| ≤ d, i = 1, 2, 3; b < min

0≤t≤1
|x1(t)|;

a < max
0≤t≤1

|x2(t)|, min
0≤t≤1

|x2(t)| < b;

max
0≤t≤1

|x3(t)| ≤ a.

Proof Problem (1.1, 1.2) has a solution x = x(t) if and only if x solves the operator

equation

x(t) =
∫ 1

0
G(t, s)f (s, x(s), x′(s), x′′(s), x′′′(s))ds = (Tx)(t).

Then

(Tx)′′′(t) = −
∫ 1

t
f (s, x, x′, x′′, x′′′)ds.

For x ∈ P(γ , d), considering Lemma 3.3 and assumption (A1), we have f(t, x(t), x’(t),

x’’(t), x’’’(t)) ≤ d. Thus
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γ (Tx) = |(Tx)′′′(0)| = |−
∫ 1

0
f (s, x, x′, x′′, x′′′)ds| =

∫ 1

0
|f (s, x, x′, x′′, x′′′)|ds ≤ d.

Hence T : P(γ , d) → P(γ , d). An application of the Arzela-Ascoli theorem yields that

T is a completely continuous operator. The fact that the constant function x(t) = b/δ

Î P(g, θ, a, b, c, d) and a(b/δ) > b implies that

{x ∈ P(γ , θ ,α, b, c, d)|α(x) > b} 	= ∅.

For x Î P(g, θ, a, b, c, d), we have b ≤ x(t) ≤ b/δ and |x’’’(t)| < d. From assumption

(A2), we see

f (t, x, x′, x′′, x′′′) > b
/
m.

Hence, by definition of a and the cone P, we can get

α(Tx) = (Tx)(0) =
∫ 1

0
G(0, s)f (s, x, x′, x′′, x′′′)ds ≥ b

m

∫ 1

0
G(0, s)ds >

b
m
m = b,

which means a(Tx) > b, ∀x Î P(g, θ, a, b, b/δ, d). This ensures that condition (S1) of

Lemma 2.1 is fulfilled.

Second, with (3.4) and b < ld, we have

α(Tx) ≥ δθ(Tx) > δ × b
δ
= b

for all x Î P(g, a, b, d) with θ(Tx) > b
δ
.

Thus, condition (S2) of Lemma 2.1 holds. Finally we show that (S3) also holds. We

see ψ(0) = 0 < a and 0 ∉ R(g, ψ, a, d). Suppose that x Î R(g, ψ, a, d) with ψ(x) = a,

then by the assumption of (A3),

ψ(Tx) = max
0≤t≤1

|(Tx)(t)| =
∫ 1

0
G(1, s)f (s, x, x′, x′′, x′′′)ds <

a
N

∫ 1

0
G(1, s)ds = a,

which ensures that condition (S3) of Lemma 2.1 is fulfilled. Thus, an application of

Lemma 2.1 implies that the fourth-order m-point boundary value problem (1.1, 1.2)

has at least three positive convex increasing solutions x1, x2, x3 with the properties that

max
0≤t≤1

|x′′′
i (t)| ≤ d, i = 1, 2, 3; b < min

0≤t≤1
|x1(t)|;

a < max
0≤t≤1

|x2(t)|, min
0≤t≤1

|x2(t)| < b;

max
0≤t≤1

|x3(t)| ≤ a.

4 Positive solutions for problem (1.1), (1.3)
The following assumption will stand throughout this section:

(H2), f ∈ C([0, 1] × R4, [0, +∞)),
m−2∑
i=1

βi > 1,
m−2∑
i=1

βiξi + 1 −
m−2∑
i=1

βi > 0.

Lemma 4.1 Denote ξ0 = 0, ξm-1 = 1, b0 = bm-1 = 0, the Green’s function of problem

x(4)(t) = 0, (4:1)
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x′′′(1) = 0, x′′(1) = 0, x′(1) = 0, x(0) =
m−2∑
i=1

βix(ξi), (4:2)

is

H(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
6
t3 +

1
2
st2 − 1

2
s2t +

i−1∑
k=0

βk

(
1
6

ξ3k − 1
2

ξ2k s +
1
2

ξks2
)
+

m−2∑
k=i

1
6

βks3

m−1∑
k=0

βk − 1

, t ≤ s, ξi−1 ≤ s ≤ ξi,

−1
6
s3 +

i−1∑
k=0

βk

(
1
6

ξ3k − 1
2

ξ2k s +
1
2

ξks2
)
+

m−2∑
k=i

1
6

βks3

m−1∑
k=0

βk − 1

, t ≥ s, ξi−1 ≤ s ≤ ξi,

for i = 1, 2, ..., m - 1.

Proof Suppose that

H(t, s) =
{
a3t3 + a2t2 + a1t + a0 t ≤ s, ξi−1 ≤ s ≤ ξi, i = 1, 2, . . . , m − 1,
b3t3 + b2t2 + b1t + b0 t ≥ s, ξi−1 ≤ s ≤ ξi, i = 1, 2, . . . , m − 1.

Considering the definition and properties of Green’s function together with the

boundary condition (4.2), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3s3 + a2s2 + a1s + a0 = b3s3 + b2s2 + b1s + b0,
3a3s2 + 2a2s + a1 = 3b3s2 + 2b2s + b1,
6a3s + 2a2 = 6b3s + 2b2,
6a3 − 6b3 = −1,
b3 = 0,
6b3 + 2b2 = 0,
3b3 + 2b2 + b1 = 0,

a0 =
i=1∑
k=0

βk(a3ξ3k + a2ξ2k + a1ξk + a0) +
m−2∑
k=i

βk(b3ξ3k + b2ξ2k + b1ξk + b0).

Consequently

a3 = −1
6
, a2 =

1
2
s, a1 = −1

2
s2, b3 = b2 = b1 = 0,

a0 =

i−1∑
k=0

βk

(
1
6

ξ3k − 1
2

ξ2k s +
1
2

ξks2
)
+

m−2∑
k=i

1
6

βks3

m−1∑
k=0

βk − 1

,

b0 =

i−1∑
k=0

βk

(
1
6

ξ3k − 1
2

ξ2k s +
1
2

ξks2
)
+

m−2∑
k=i

1
6

βks3

m−1∑
k=0

βk − 1

− 1
6
s3.

The proof of Lemma 4.1 is completed.

Lemma 4.2 One can see that H(t, s) ≥ 0, t, s Î [0, 1].

Proof For ξi-1 ≤ s ≤ ξi, i = 1, 2, ..., m - 1,

∂H(t, s)
∂t

=

{
−1
2
(t − s)2, t ≤ s, ξi−1 ≤ s ≤ ξi,

0, t ≥ s, ξi−1 ≤ s ≤ ξi.
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Then
∂H(t, s)

∂t
≤ 0, 0 ≤ t, s ≤ 1, which implies that H(t, s) is decreasing on t. The fact

that

H(1, s) =

i−1∑
k=0

βk

(
1
6

ξ3k − 1
2

ξ2k s +
1
2

ξks2
)
+

m−2∑
k=i

1
6

βks3

m−1∑
k=0

βk − 1

− 1
6
s3 ≥ 0

ensures that H(t, s) ≥ 0, t, s Î [0, 1].

Lemma 4.3 If x(t) Î C3[0, 1],

x′′′(1) = 0, x′′(1) = 0, x′(1) = 0, x(0) =
m−2∑
i=1

βix(ξi),

and x(4)(t) ≥ 0, there exists t0 such that x(4)(t0) >0, then

(1) min
0≤t≤1

|x(t)| ≥ δ1 max
0≤t≤1

|x(t)|,

(2) max
0≤t≤1

|x(t)| ≤ γ1 max
0≤t≤1

|x′(t)|,

(3) max
0≤t≤1

|x′(t)| ≤ max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′(t)| ≤ max
0≤t≤1

|x′′′(t)|

where δ1 =
(
1 − ∑m−2

i=1 βi(1 − ξi)
)
/
∑m−2

i=1 βiξi, γ1 =
∑m−2

i=1 βiξi/
(∑m−2

i=1 βi − 1
)

are

positive constants.

Proof It follows from the same methods as Lemma 3.3 that x(t) is convex on [0, 1].

Taking into account that x’(1) = 0, one can see that x(t) is decreasing on [0, 1] and

max
0≤t≤1

x(t) = x(0), min
0≤t≤1

x(t) = x(1).

(1) From the concavity of x(t), we have

ξi(x(1) − x(0)) ≥ x(ξi) − x(0).

Multiplying both sides with bi and considering the boundary condition, we have

m−2∑
i=1

βiξix(1) ≥
(
1 −

m−2∑
i=1

βi(1 − ξi)

)
x(0). (4:3)

Thus

min
0≤t≤1

|x(t)| ≥ δ1 max
0≤t≤1

|x(t)|.

(2) Considering the mean-value theorem, we get

(0) − x(ξi) ≤ ξi|x′(0)|.

From the concavity of x similarly with above we know(
m−2∑
i=1

βi − 1

)
x(0) <

m−2∑
i=1

βiξi|x′(0)|. (4:4)

Considering (4.3) together with (4.4) we have x(0) ≤ γ1|x′(0)| = γ1 max
0≤t≤1

|x′(t)|.
(3) For x′(t) = x′(1) − ∫ 1

t x′′(s)ds, x′′(t) = x′′(1) − ∫ 1
t x′′′(s)ds and x’(1) = 0, x’’(1) = 0,

we get
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|x′(t)| = |
∫ 1

t
x′′(s) ds| ≤

∫ 1

0
|x′′(s)| ds, |x′′(t)| = |

∫ 1

t
x′′′(s) ds| ≤

∫ 1

0
|x′′′(s)| ds.

Thus

max
0≤t≤1

|x′(t)| ≤ max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′(t)| ≤ max
0≤t≤1

|x′′′(t)|.

Remark We see that

max{max
0≤t≤1

|x(t)|, max
0≤t≤1

|x′(t)|, max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′′(t)|} ≤ γ1 max
0≤t≤1

|x′′′(t)|.

Let Banach space E = C3[0, 1] be endowed with the norm

‖ x ‖= max{max
0≤t≤1

|x(t)|, max
0≤t≤1

|x′(t)|, max
0≤t≤1

|x′′(t)|, max
0≤t≤1

|x′′′(t)|}, x ∈ E.

Define the cone P ⊂ E by

P1 =

{
x ∈ E | x(t) ≥ 0, x′′′(1) = 0, x′′(1) = 0, x′(1) = 0, x(0) =

m−2∑
i=1

βix(ξi), x(t) is convex on [0, 1]

}
.

Denote

m1 =
∫ 1

0
H(1, s) ds, N1 =

∫ 1

0
H(0, s) ds, λ1 = min{m1, δ1γ1}.

Assume that there exist constants 0 < a, b, d with a < b < l1d such that

(A4) f (t, u, v, w, p) ≤ d, (t, u, v, w, p) ∈ [0, 1] × [0, γ1d] × [−d, 0] × [0, d] × [−d, 0],
(A5) f (t, u, v, w, p) > b

/
m1, (t, u, v, w, p) ∈ [0, 1] × [b, b

/
δ1] × [−d, 0] × [0, d] × [−d, 0],

(A6) f (t, u, v, w, p) < a
/
N1, (t, u, v, w, p) ∈ [0, 1] × [0, a] × [−d, 0] × [0, d] × [−d, 0].

Theorem 4.1 Under assumptions (A4)-(A6), problem (1.1), (1.3) has at least three

positive solutions x1, x2, x3 with the properties that

max
0≤t≤1

|x′′′
i (t)| ≤ d, i = 1, 2, 3; b < min

0≤t≤1
|x1(t)|; a < max

0≤t≤1
|x2(t)|, min

0≤t≤1
|x2(t)| < b; max

0≤t≤1
|x3(t)| ≤ a.

Proof Problem (1.1), (1.3) has a solution x = x(t) if and only if x solves the operator

equation

x(t) =
∫ 1

0
H(t, s)f (s, x(s), x′(s), x′′(s), x′′′(s)) ds = (T1x)(t).

Then

(T1x)′′′(t) = −
∫ 1

t
f (s, x, x′, x′′, x′′′) ds.

For x ∈ P1(γ , d), considering Lemma 4.3 and assumption (A4), we have

f (t, x(t), x′(t), x′′(t), x′′′(t)) ≤ d.

Thus

γ (T1x) = |(T1x)′′′(0)| = |−
∫ 1

0
f (s, x, x′, x′′, x′′′) ds| =

∫ 1

0
|f (s, x, x′, x′′, x′′′)| ds ≤ d.

Hence T1 : P1(γ , d) → P1(γ , d) and T1 is a completely continuous operator

obviously. The fact
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that the constant function x(t) = b/δ1 Î P1(g, θ, a, b, c, d) and a(b/δ1) > b implies

that

{x ∈ P1(γ , θ , α, b, c, d|α(x) > b)} 	= ∅.

This ensures that condition (S1) of Lemma 2.1 holds.

For x Î P1(g, θ, a, b, c, d), we have b ≤ x(t) ≤ b/δ1 and |x’’’(t)| < d. From assumption

(A4),

f (t, x, x′, x′′, x′′′) > b
/
m1.

Hence, by definition of a and the cone P1, we can get

α(T1x) = (T1x)(1) =
∫ 1

0
H(1, s)f (s, x, x′, x′′, x′′′) ds ≥ b

m1

∫ 1

0
H(1, s) ds >

b
m1

m1 = b,

which means a(T1x) > b, ∀x Î P1(g, θ, a, b, b/δ, d).
Second, with (4.4) and b < l1d, we have

α(T1x) ≥ δ1θ(T1x) > δ1 × b
δ1

= b

for all x Î P1(g, a, b, d) with θ(T1x) > b
δ1
.

Thus, condition (S2) of Lemma 2.1 holds. Finally we show that (S3) also holds. We

see ψ(0) = 0 < a and 0 ∉ R(g, ψ, a, d). Suppose that x Î R(g, ψ, a, d) with ψ(x) = a,

then by the assumption of (A6),

ψ(T1x) = max
0≤t≤1

|(T1x)(t)| =
∫ 1

0
H(0, s)f (s, x, x′, x′′, x′′′) ds <

a
N1

∫ 1

0
H(0, s) ds = a,

which ensures that condition (S3) of Lemma 2.1 is satisfied. Thus, an application of

Lemma 2.1 implies that the fourth-order m-point boundary value problem (1.1), (1.3)

has at least three positive convex decreasing solutions x1, x2, x3 satisfying the condi-

tions that

max
0≤t≤1

|x′′′
i (t)| ≤ d, i = 1, 2, 3; b < min

0≤t≤1
|x1(t)|; a < max

0≤t≤1
|x2(t)|, min

0≤t≤1
|x2(t)| < b; max

0≤t≤1
|x3(t)| ≤ a.
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