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Abstract

In this paper, we consider the system of nonlinear viscoelastic equations

Uy — AU+ ftgl(t —1)Au(r)dr — Aug = f1(u,v), (x,t) € 2 x(0,T),
0

vy — Av + ftgz(t —)Av(t)dr — Av, = fo(u,v), (x,t) € 2x (0,T)

with initial and Dirichlet boundary conditions. We prove that, under suitable
assumptions on the functions g, f; (i = 1, 2) and certain initial data in the stable set,
the decay rate of the solution energy is exponential. Conversely, for certain initial
data in the unstable set, there are solutions with positive initial energy that blow up
in finite time.

2000 Mathematics Subject Classifications: 35L05; 35L55; 35L70.
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1. Introduction

In this article, we study the following system of viscoelastic equations:

ug — Au+ [y g1 (t — t)Au(t)dr — Au, = f1(4,v), (x,t) € 2 x (0,T),
vy — Av+ [y gt — t)Av(t)dt — Avy = fo(u,v), (x,1) € Q x (0,T),

u(x,t) =v(x, t) =0, x€dQx(0,7), (L.1)
u(x, 0) = uo(x), ui(x, 0) =up(x), x e,
v(x,0) =vo(x), v(x,0)=wv1(x), X €,

where Q is a bounded domain in R” with a smooth boundary 9Q, and g,() : R, > R
o fils ) RZ 5 R (i=1,2) are given functions to be specified later. Here, u and v
denote the transverse displacements of waves. This problem arises in the theory of vis-
coelastic and describes the interaction of two scalar fields, we can refer to Cavalcanti
et al. [1], Messaoudi and Tatar [2], Renardy et al. [3].

To motivate this study, let us recall some results regarding single viscoelastic wave
equation. Cavalcanti et al. [4] studied the following equation:

t
Uy — Au +/ g(t — o)Au(z)dr +a(x)us + [u]u=0, in Q x (0,00)
0
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for a : QO — R”, a function, which may be null on a part of the domain Q. Under the
conditions that a(x) = ag > 0 on Q; € Q, with Q; satisfying some geometry restric-
tions and

—&8(t) <g(t) < —&g(t), t>0,

the authors established an exponential rate of decay. This latter result has been
improved by Cavalcanti and Oquendo [5] and Berrimi and Messaoudi [6]. In their
study, Cavalcanti and Oquendo [5] considered the situation where the internal dissipa-
tion acts on a part of Q and the viscoelastic dissipation acts on the other part. They
established both exponential and polynomial decay results under the conditions on g
and its derivatives up to the third order, whereas Berrimi and Messaoudi [6] allowed
the internal dissipation to be nonlinear. They also showed that the dissipation induced
by the integral term is strong enough to stabilize the system and established an expo-
nential decay for the solution energy provided that g satisfies a relation of the form

g(1) < —£g(t), t=o.

Cavalcanti et al. [1] also studied, in a bounded domain, the following equation:
t
lue|Pugy — Au — Ay +/ g1(t — t)Au(r)dr — yAu, =0,
0

p > 0, and proved a global existence result for ¥ > 0 and an exponential decay for y >
0. This result has been extended by Messaoudi and Tatar [2,7] to the situation where y
= 0 and exponential and polynomial decay results in the absence, as well as in the pre-
sence, of a source term have been established. Recently, Messaoudi [8,9] considered

t
Uy — Au +/ g1(t —1t)Au(r)dr =blul"u, (xt) € 2 x (0,00),
0

for b = 0 and b = 1 and for a wider class of relaxation functions. He established a
more general decay result, for which the usual exponential and polynomial decay
results are just special cases.

For the finite time blow-up of a solution, the single viscoelastic wave equation of the

form
Uy — AU+ /[g(t — 1)Au(t)dr + h(u,) = f(u) (1.2)
0

in Q x (0, «) with initial and boundary conditions has extensively been studied. See
in this regard, Kafini and Messaoudi [10], Messaoudi [11,12], Song and Zhong [13],
Wang [14]. For instance, Messaoudi [11] studied (1.2) for h(u,) = a|ut|m‘2ut and flu) =
b|u|?*u and proved a blow-up result for solutions with negative initial energy if p >m
> 2 and a global result for 2 < p < m. This result has been later improved by Mes-
saoudi [12] to accommodate certain solutions with positive initial energy. Song and
Zhong [13] considered (1.2) for h(u,) = -Au, and flu) = |u|?*u and proved a blow-up
result for solutions with positive initial energy using the ideas of the “potential well”
theory introduced by Payne and Sattinger [15].
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This study is also motivated by the research of the well-known Klein-Gordon system

Uy — AU+ mqu + kjuv? =0,
Vg — AV + mav + kaulv =0,

which arises in the study of quantum field theory [16]. See also Medeiros and Mir-
anda [17], Zhang [18] for some generalizations of this system and references therein.
As far as we know, the problem (1.1) with the viscoelastic effect described by the
memory terms has not been well studied. Recently, Han and Wang [19] considered the

following problem

Uy — Au+ [3g1(t — 1) Au(t)de + [u " u = fi(w,v),  (xt) € 2 x (0,T),
v — Av+ [y &t — D) Av(t)dr + vl v = fo(u ), (xt) € 2 x (0,T),

u(x,t) =v(x,t) =0, x€d x (0,T),
u(x,0) =up(x), u(x 0)=u(x), X €,
v(x,0) =vo(x), ve(x, 0)=v1(x), xeq,

where Q) is a bounded domain with smooth boundary 0Q in R”, n = 1, 2, 3. Under
suitable assumptions on the functions g;, f; (i = 1, 2), the initial data and the para-
meters in the equations, they established several results concerning local existence, glo-
bal existence, uniqueness, and finite time blow-up (the initial energy E(0) < 0)
property. This latter blow-up result has been improved by Messaoudi and Said-Houari
[20], to certain solutions with positive initial energy. Liu [21] studied the following sys-

tem

lug|Puy — Au — y1 Aug + f(fgl(t —1)Au(r)dt +f(u,v) =0, (xt) € 2x(0,T),
v Pve — Av — yaAvy + [y 2t — T)Av(t)dT + k(u,v) =0, (x,t) € 2 x (0,T),

u(x, t) =v(x,t) =0, x€dR x(0,T),
u(x, 0) =up(x), u(x,0) =ui(x), x€eQ,
v(x,0) = vo(x), v(x 0)=1v1(x), X €,

where Q is a bounded domain with smooth boundary 9Q in R”, 3, 75 > 0 are con-
stants and p is a real number such that 0 <p < 2/(n - 2)if n 23 0orp>0ifn =1, 2.
Under suitable assumptions on the functions g(s), x(s), flu, v), k(u, v), they used the
perturbed energy method to show that the dissipations given by the viscoelastic terms
are strong enough to ensure exponential or polynomial decay of the solutions energy,
depending on the decay rate of the relaxation functions g(s) and /(s). For the problem
(1.1) in R”, we mention the work of Kafini and Messaoudi [10].

Motivated by the above research, we consider in this study the coupled system (1.1).
We prove that, under suitable assumptions on the functions g, f; (i = 1, 2) and certain
initial data in the stable set, the decay rate of the solution energy is exponential. Con-
versely, for certain initial data in the unstable set, there are solutions with positive
initial energy that blow up in finite time.

This article is organized as follows. In Section 2, we present some assumptions and
definitions needed for this study. Section 3 is devoted to the proof of the uniform

decay result. In Section 4, we prove the blow-up result.

2. Preliminaries
First, let us introduce some notation used throughout this article. We denote by || - ||,
the L%(Q) norm for 1 < g < « and by ||V - ||, the Dirichlet norm in H(£2) which is
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equivalent to the H'(Q)norm. Moreover, we set
(0. = [ ol (s

as the usual L*(Q) inner product.
Concerning the functions fi(u, v) and fo(u, v), we take

fi(w,v) = [alu + v)2P*D) (u + v) + blulPulv|(P+D)],
fo(u,v) = [alu + v*®*D (u + v) + blu| P2 |v|Py],

where a, b > 0 are constants and p satisfies

p>—1, ifn=1,2,

—1<p=<1, ifn=3. @D

One can easily verify that
ufy (u,v) + vfa(u,v) = 2(p + 2)F(u,v), Y(u,v) € R?,

where

F(u,v) = 5 [alu + v>P*2) 4+ 2b|uv|P*?].

1
(p+2)
For the relaxation functions g;(¢) (i = 1, 2), we assume
(G1) gi(t) : R, —> R, belong to C'(R,) and satisfy

gi(t)>0, g <0, fort>0

and

1-— / &i(s)ds = ki > 0.
0

(G2) max {5~ g1 (s)ds, [y~ ga(s)ds} < 4(1(2 ;)1(27(2 ;)23 U

We next state the local existence and the uniqueness of the solution of problem
(1.1), whose proof can be found in Han and Wang [19] (Theorem 2.1) with slight
modification, so we will omit its proof. In the proof, the authors adopted the technique
of Agre and Rammaha [22] which consists of constructing approximations by the
Faedo-Galerkin procedure without imposing the usual smallness conditions on the
initial data to handle the source terms. Unfortunately, due to the strong nonlinearities
on f; and f,, the techniques used by Han and Wang [19] and Agre and Rammaha [22]
allowed them to prove the local existence result only for n < 3. We note that the local
existence result in the case of n > 3 is still open. For related results, we also refer the
reader to Said-Houari and Messaoudi [23] and Messaoudi and Said-Houari [20]. So
throughout this article, we have assumed that n < 3.

Theorem 2.1. Assume that (2.1) and (G1) hold, and that (ug, u1) € Hy(Q) x L*(Q),
(vo,v1) € H(l)(Q) x L*(K2). Then problem (1.1) has a unique local solution

u, ve C([0,T); H(RQ)), uy, v € C(|0, T); L*(R)) N L*([0, T); Hy(R))
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for some T > 0. If T < oo, then

lim (s [ Vu(0)115 + e (D113 + k2l [VU()115 + [0 (1) 13) = 00. (2.2)

Finally, we define

100 = (1 _/0 g1(7)do)||Vu(t)|]3 + (1 —/0 32(’)‘1’) DECl (2.3)

+1(g1 0 Vu)(t) + (g2 o V) (£)] — 2(p + 2) /Q F(u, v)dx,

10=, (1= [ s@ac) iwaoiz+ (1= [ e ) ivuor]

; (2.4)
+ (810 Vu)(1) + (820 V0)(1)] —f F(u, v)dsx,
Q

such functionals we could refer to Muifioz Rivera [24,25]. We also define the energy

function as follows
1
E() =, (HNue (D113 + 1w (D)113) +1(2), (2.5)

where

(g 0 w)(0) = / gi(t — 7)llw(t) — w(z)|3dx.

3. Global existence and energy decay
In this section, we deal with the uniform exponential decay of the energy for system
(1.1) by using the perturbed energy method. Before we state and prove our main result,
we need the following lemmas.

Lemma 3.1. Assume (2.1) and (G1) hold. Let (u, v) be the solution of the system (1.1),
then the energy functional is a decreasing function, that is

B (@) = IVl ~ IVa(OIB + (8 ou)() + ) (g5 0¥)(0)

1 1 (3.1)
- 2gl(t)IIVu(t)llﬁ - 2gz(t)llvv(t)llﬁ <0.
Moreover, the following energy inequality holds:
t
E(1) +/ (IVu (D)3 + 1IVu(7)|13)dr < E(s), forO<s<t<T. (3.2)

Lemma 3.2. Let (2.1) hold. Then, there exists n > 0 such that for any
(u,v) € Hy(RQ) x Hy(2), we have

2(p+2)
2(p+2)

p+2

[t + ]| + 20luvllyl; < n(kalIVu(D)l3 + kallVu()]13)P2. (33)

Proof. The proof is almost the same that of Said-Houari [26], so we omit it here. O
To prove our result and for the sake of simplicity, we take a = b = 1 and introduce
the following:

Page 5 of 19
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! 2 1 1 )
B =n20+2), o*=B"Ps1, E;= — a*?, (3.4)
2 2(p+2)

where 7 is the optimal constant in (3.3). The following lemma will play an essential
role in the proof of our main result, and it is similar to a lemma used first by Vitillaro
[27], to study a class of a single wave equation, which introduces a potential well.

Lemma 3.3. Let (2.1) and (G1) hold. Let (u, v) be the solution of the system (1.1).
Assume further that E(0) <E, and

(| Vuoll3 + | Vwol13)'? < o, (3.5)
Then
(R [IVu()113 + kallVU(D)]12 + (g1 0 Vu)(t) + (g2 0 VV)(1)/? <a*, forte[0,T). (3.6)

Proof. We first note that, by (2.5), (3.3) and the definition of B, we have

E(t) > ;(k1||Vu(t)||§ + k|| Vu(0)[13 + (g1 0 Vu)(t) + (g2 0 Vv)(1))

2(p+2 +2
_ 2(p+2)(||u+u||2§§+2§ + 2lul)3)

1
= 2(klllw(t)llﬁ + kol IVu(0)115 + (810 Vuu)(1) + (82 © Vv)(1)) 3.7)
B2(p+2)
S 2(p+2)
1 ) B2(p+2)
> o —
-2 2(p+2)

(R lIVu(e)113 + kal|Vo(t)113)7+
o?) = g(a),

where o = (ki |[Vu(t)||2 + kol V()] + (g1 0 Vu)(t) + (g2 0 Vv)(t))V2 It is not hard

to verify that g is increasing for 0 <o <o, decreasing for o >a*, gla) — - < as o0 —
+00, and

BZ(p+2)

S 2(p+2)

where o is given in (3.4). Now we establish (3.6) by contradiction. Suppose (3.6)
does not hold, then it follows from the continuity of (u(t), v(¢)) that there exists ¢y €
(0, T) such that

g(a*) _ ;a*z a*2(p+2) _ E1’

(ku ||V u(to)|1? + Fal|Vu(to)l12 + (g1 0 Vu)(to) + (82 0 Vv)(t0))? = o*.
By (3.7), we observe that
E(to) = g ((klnw(to)ng + k2l IVU(t0) 12 + (81 0 Vi)(to) + (82 0 Vu)(to))1/2) = g(a*) = E,.

This is impossible since E() < E(0) <E; for all £ € [0, T). Hence (3.6) is established. O

The following integral inequality plays an important role in our proof of the energy
decay of the solutions to problem (1.1).

Lemma 3.4. [28]Assume that the function ¢ : R* U {0} —> R™ U {0} is a non-increas-
ing function and that there exists a constant ¢ > 0 such that

/t " p(s)ds < cp(1)

Page 6 of 19
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for every t € [0, o). Then
¢(1) = ¢(0) exp(1 — t/c)

for every t > c.
Theorem 3.5. Let (2.1) and (G1) hold. If the initial data (uo, u,) € H[I)(Q) X LZ(Q),
(vo, v1) € HY(RQ) x L*(Q)satisfy E(0) <E, and

(k111 Vuoll3 + kalIVuol3)'? < o, (3.8)

where the constants o, E, are defined in (3.4), then the corresponding solution to (1.1)
globally exists, i.e. T = oo. Moreover, if the initial energy E(0) and k such that
2)

2(p +
(p+1)

where k = min{k,, ky}, then the energy decay is

5(1—k)(p+2)

E(O)" - 2k(p + 1)

1—n(

E(t) < E(0)exp(1 —aC ')

for every t > aC™, where C is some positive constant.
Proof. In order to get T = o, by (2.2), it suffices to show that

e (D113 + v (O113 + FallVu()13 + kalVo(£)]13
is bounded independently of ¢. Since E(0) <E; and
(k1| Vuoll3 + kal[Vuoll3)'? < e,
it follows from Lemma 3.3 that
T [IVu(0)[153+ ka | IVU(O)I[5 < Ral V() |5+ Ral I Vu(0) 115+ (10Vue)(6)+(820V0)(2) < &2,

which implies that

I(t) = ki |[Vu(@)113 + al[VU(O)113 + [(g1 0 Vu)(t) + (2 0 VV)(£)] — 2(p +2) /QF(u, v)dx

> VU2 + ol [V(0)]2 - z(p+z)/QF(u,v)dx

=l IVu()I3 + kol V(D13 = (llu+vll50) + 211wl }):3)

> k| [Vu(0)l5 + kol V(I3 = n(kal|Vu(o)ll3 + ka2l Vu(0)]15)"** = 0, fort € [0,T),

where we have used (3.3). Furthermore, by (2.3) and (2.4), we get

0= (; -~ 2pr 2)) [(1 B /()le(s)ds)IIVu(t)lli + (1 —/Olgz(s)ds) ||W(t)||§]
’ <; - 2(p1+ 2)> [(81 0 Vu)(1) + (820 VD) (1)] + 1(t)
= 2fp++12)

1
2(p+2)

[ lIVu(0)113 + Rl IVU(O)I13 + (810 Vu)(£) + (g2 0 Vo)(1)] + ) !

(+ 2)I(t) >0,

from which, the definition of E(¢) and E(¢) < E(0), we deduce that

2(p+2) _ 2(p+2) - 2(p +2)
[l [IVu(0)13 + kol [VU(0)113] < (h+1) J(t) < b+ 1) E(1) < 0+ 1) E(0), (3.9)
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for t € [0, T). So it follows from (16) and Lemma 3.1 that

p+1

2p+2) [~ lIVu(O)I13 + k2| VV(D)15] + ;(”ut(t)”% + 1w (0)113) < J(1) + ;(HMU)H% + v (0)I13)

= E(t) <E(0) <E;, Vte [0, T),
which implies
Hue(O)113 + v (D113 + k| Vu(e)13 + k2 || Vu(£)113 < CEx,

where C is a positive constant depending only on p.

Next we want to derive the decay rate of energy function for problem (1.1). By mul-
tiplying the first equation of system (1.1) by # and the second equation of system (1.1)
by v, integrating over Q x [t;, t,] (0 < ¢, < £,), using integration by parts and summing

up, we have

t 15}
/u[(t)u(t)dxlz —/ |\ut(t)||§dt+/ v (t)v(t)dx| —/ TAGIELE
Q 4 Q 3]
b

= —/LZ(Vu(t), Vut(t))dt—/LZ(Vv(t),VUz(t))dt—/ ||Vu(t)||§dt_/LZ V()] 12de
- :fg/olgl(t—t)Au(f)dtu(ﬂdxdt—Ltz/Qfotgz(t—t)Av(t)dw(t)dxdt
+2(P+2)/; /QF(u,v)dxdt,
which implies
2/[] E(t)df—z(P+1)‘/h fQF(u,v)dxdt
- = [ w(ouast = [ wowtoast; +2 f o)1+ 2 [ (o1

+lz(g1OVu)(t)dt+lz(g2OVV)(t)dt_/tZ/O g1 (t)dr||Vu(t)| 2dt (3.10)
—/tz /Otgz(r)drIIW(t)llidt - /LZ(Vu(t), Vu,(t))dt — /tz(Vv(t), Y, (t))dt
_/Lz/ /Lgl(t—‘[)Au(f)dl’u(t)dxd[_/lz/ /tgz(t_T)AV(T)dTU(t)dxdt,

t QJOo f o Jo

For the 11th term on the right-hand side of (3.10), one has

,2/9/(;gl(t—r)Au(r)dru(t)dx=2 L/Ogl(tff)vu(f)v”(t)drdx

t ¢ (3.11)
- [ 1= 0)0Tu)1B + 1V e — [ 1= )V = Vu(o) ).
Similarly,
-2 Igz(t — 1) Av(t)dru(t)dx
fgfo (3.12)

- /0 g2t — D) (IVUOI + 1Vo(2) [ B)dr — /0 ga(t — D)(IV0(t) — Vo(2)I12)dr.

Page 8 of 19
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Combining (3.10), (3.11) with (3.12), we have
t 5]
2/ E(t)dt —2(p + 1)/ /F(u, v)dxdt
4L t Q
ty [5)
- [ w(ouoast; - [ w@uodsts 2 [ i [ i)
t t
1 ty 1 ty 1 ty t
+ (g1 o Vu)(t)dt + / (g2 o Vo)(t)dt — / /gl(r)dr||Vu(t)||§dt
2/, 2 Jy 2 ), Jo
t t t 5]
—;/ /gz(r)dtHVv(t)ll%dt—/ (Vu(r), Vul(t))dt—/ (Vu(t), Vu(t))de
1 Y0 1 1
1 tlz t [ 1 t L ‘
+ / /gl(t—r)||w(r)||§drdt+ / fgz(t—r)wu(r)ngdrdt (3.13)
2y Jo 2 )y Jo
t 15}
< [ wCuast; - [ w2 [ u@Ba2 i
t 4
1 ty 1 ty ty
*, (g1 0 Vu)(t)dt + 2/ (gzon)(t)dt—/ (Vu(t), Vu(t))de
n I3} 2}
5] ty t
—/ (Vv(t),Vvt(t))dH;/ /gl(t—t)HVu(r)ll%dtdt
1 1 0
1t o t
+ / /gz(t—r)||v];(r)||§drdt.
2 Jy Jo

Now we estimate every term of the right-hand side of the (3.13). First, by Holder’s
inequality and Poincaré’s inequality

1 1 1
(O3 + 5 (@112 + 5 1O+, (113

1
/Qlu(t)ut(t)ldx+/ﬂIv(t)v[(t)ldxf )
=, VU3 + ;Hut(t)n% + gnwmni + ;Hvt(t)n%,

where 4 being the first eigenvalue of the operator - A under homogeneous Dirichlet
boundary conditions. Then, by (3.9), we see that

L|u(t)ut(t)|dx+ /;2 [v(t)vi(t)|dx < c1E(t),
where ¢; is a constant independent on u and v, from which follows that

L Ju(t)uc(1)ldx|i; + L [(e)ui(6)ldxl; < 261E(t1). (3.14)
Since 0 < J (¢) < E (¢), from (3.2) we deduce that

)

/ﬁ IV (9113 + [V(0)I13)dt < E(tr).
Hence, by Poincaré inequality we get

2[2 ||u[(t)||§dt+2/1t2 [lve(0)113dt < 26:E(ty), (3.15)
where ¢, is a constant independent on u and v. In addition, using Young’s inequality

for convolution |[f* g ||, < || f|- ||g]ls with 1/g = 1/r + 1/s -1 and 1 < q, 1, s < oo,
noting that if ¢ = 1, then » = 1 and s = 1, we have

Page 9 of 19
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t t
/ / g1 (t — )| Vu(r)ll5dede = ||gy * [[Vull3]11 < gl ]l 1Vull3]]
5] 0

t &
- f g (1)t / 1Vu(t)| 2dt
5]

5]

153
<(1 —kl)/ [|Vu(t)||3dt,
t

1

and
ty t
f fgz(t—r)||w(r)||§drdt=||gz*||w||%||1 < lIgll Vvl3l
ty 0

- [ st [ ivuoiia

t 5}

5]
=(1- kz)/ IV(0)][3dt.
3]
Hence, combining (3.9), (3.16) with (3.17) we then have

15} t t t
f fgl(t—r)nw(r)ngdrdn/ fg2(t—r)||w(r)||§drdt
4 0 I3 0

t 2l
=(-h) | ||Vu(t)||§dt+(1—kz)/t IVv(8)l15dt
1 1

200 —k)(p+2) (=

Kp+1) ), B

5]
<(1- k)[ (IIVu(®)l13 + [|Vu(t)[13)dt <
h
From (3.9), we also have

15} t [5) t
/ fgl(t—r)||w(t)||§drdt+/ / g (t — )| Vu(t)|[3drdt
3} 0 [ 0

t L
=(-h) | ||Vu(r)||§dt+(1—kz)ft IVu()l13de
1 1

200 —k)(p+2) (™

k(p+1) ; E(t)dt.

<@ —k)[tz(||w(t)||§+||w(t)||§)dts

Combining (3.18) with (3.19), we deduce that

1
2

< /: /Otgl(t—r)(||Vu(r)||§+ IIVu(t)Ilg)tilrdH/t:2 /Olgz(t—r)

41 —-k)(p+2) (=
k(p+1) 4

t 15}
(g1 0 Vu)(t)dt + ; / (g2 0 V) (t)dt
4 5]

(IVu()I13 + [IVu(1)]13)dedt < E(t)dt.

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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Finally, we also have the following estimate

/lz(Vu(t), Vu,(t))dt + /LZ(Vv(t), Vu(t))dt

1 [(2d ,,. 1 [2d )

S RGO RGO .
1 1

=, UIVu@)ll; = [IVu()IB3) + , (V@)1 — [1Vu(a)l13)

< 2(p+2)15(t1) <cE(t).

T k(p+1)
where c3 is a constant independent on # and v. Combining (3.13)-(3.21), we obtain

(1-k)p+2) ("

wen ) E(t)dt. (3.22)

2/;2 E(t)dt —2(p+1) /f /QF(u, v)dxdt < CE(t1) + >

where C is a constant independent on u.
On the other hand, from (3.3) and (3.9), we have

_p+l 2(p+2) (p+2)
2(p+1) /Q Fuwdv= ") (1 0115073) + 20101325

p+1 +
< p+2n(kl||w||§ + Iy || Vw]|3) 0+

5 2n(z(p +2)

(p+1)
gy ) EO

which implies

t B t . B 2(P+ 2) (p+1) t
2L E(t)dt 2(p+1)/n /QF(u,v)dxdt_Q(l n( 1) E(0)) [t E(t)dt. (3.23)

Note that E(0) <E;, we see that

2(p+2)
(p+1)

Thus, combining (3.22) with (3.23), we have

(p+1) 5] — + b2
2 (1 - n(z(;p:lz))E(o)) " )/t.l E(t)dt < CE(t1) + S(Ik(pkz(f) 2) : E(t)dt,

1—n( E(0))**1) > 0.

that is

N (p+1) —R\(p+
2<1_n(2((p+ Dy 510 +2)

1) 2k(p +1) ) /t E(t)dt < CE(ty). (3.24)

Denote

B 2(p +2) P 51— k) (p+2)
“‘2<1_”((p+1)E(°” T ke 1) )
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We rewrite (3.24)
a/ E(t)dr < CE(t)
t

for every t € [0, o).
Since a > 0 from the assumption conditions, by Lemma 3.4, we obtain the following
energy decay for problem (1.1) as

E(t) < E(0) exp(1 —aC™'t)
for every t > Ca . O

4. Blow-up of solution
In this section, we deal with the blow-up solutions of the system (1.1). Set

91‘ = gi(S)dS, i=1,2. (4.1)

1 o0
ki — /
Cap+2)(p+1) Jo
From the assumption (G2), we have 6; > 0 (i = 1, 2). Similarly Lemma 3.2, we have
Lemma 4.1. Assume (2.1) holds. Then there exists 1, > 0 such that for any
(u,v) € HY(RQ) x HY(2), we have

2(p+2)

A+ 2wl < m (O IVu()lI3 + 6 1IVu(0) 32, (4.2)

e+ vl <

where the constants 6; (i = 1, 2) are defined in (4.1).
To prove our result and for the sake of simplicity, we take a = b = 1 and introduce
the following:

1 p+2

B 1 1 .
A E2=<2_2(p+2))a3' "

Then we have
Lemma 4.2. Let (G1), G(2) and (2.1) hold. Let (u, v) be the solution of the system
(1.1). Assume further that E(0) <E, and

(6111Vuoll3 + 621Viol13)V? > a,, (4.4)

where the constants 0; (i = 1, 2) are defined in (4.1). Then there exists a constant o,
>0 such that

(O IVu(©)13 +0:1IVu(0)113)* = @y, forte (0,T). (4.5)

Proof. We first note that, by (2.5), (4.2) and the definition of B;, we have

1 2 2 1 2(p+2) p+2
E(r) = 2(91||V“(t)||2 + 02| [Vu(1)12) — 2p+2) (Il +vI5,2) + 2luvllp)
1 2 2 %UHZ) 2 2 2
> 2(91 IVu()ll +0211Vu(0)ll3) — 2p+2) (OlIVu()ll; + 621IV(D)I15)7* (4.6)
2(p+2
1,a_ B¢+ §2(0+2)
2 2(p+2) '
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where o = (6;]|Vu(t)||3 + 62| Vu(t)||2) /2 It is not hard to verify that g is increasing

for 0 < <o, decreasing for o >, g(0) — - 0 as & — + o, and

1 B2(p+2) (o2
glaw) = jor = ol =y,
2 2(p+2)

where o is given in (4.3). Since E(0) <E,, there exists o, >a- such that g(a,) = E(0).
Set ag = (91||Vu0||% + 02||Vv0||%)1/2, then by (4.6) we get g(ap) < E(0) = g (1), which
implies that o = o,. Now, to establish (4.5), we suppose by contradiction that

(6111Vu(to)l12 + 6211 Vu(to)113)V? < @y,

for some £, > 0. By the continuity of 6 ||Vu(t)||3 + 62]|Vu(t)||3 we can choose £, such
that

(0111 Vu(to) |13 + 621 Vu(10)[13)'? > .
Again, the use of (4.6) leads to
E(to) > g((0111Vu(to)113 + 6211Vu(to)112) %) > g(e2) = E(0).

This is impossible since E(t) < E(0) for all £ € [0, T). Hence (4.5) is established. O
Theorem 4.3. Assume (G1), (G2) and (2.1) hold. Then any solution of problem (1.1)
with initial data satisfying

(6:11|Vuo| |2 + 6,]|Vwol2)/? > @, and  E(0) < E,

blows up in finite time, where the constants 0; (i = 1, 2) are defined in (4.1) and o,
E, are defined in (4.3).

Proof. Assume by contradiction that the solution (x, v) is global. Then, for any 7' > 0
we consider H(z) : [0, T] — R, defined by

H(t) = ||u(t)|\§+||v(t)\|§+/0l ||Vu(t)||§dr+/0l [IVu(2)|13dT+(T—t) (1| Vol 13+ Vvol13)+B(t +50)%

where B and s, are positive constants to be determined later. A direct computation

yields
H© =2 [ a0+ 2 [ ouds+ 1913 + 199013
— IVuoll5 — 11Vwoll5 + 2B(t +50)
= 2/ u(t)ue(t)dx + 2/ v(t)ve(t)dx + 2/t(Vu(t),Vu[(t))dr
Q Q 0
+2 /I(Vv(r), Vu(7))dz + 2B8(t + s0)
0
and
H'(t) =2 /Q u(t)uy (t)dx + 2 /Q V(v ()dx + 2| u ()15 + 21w ()15
+2(Vu(t), Vue(t)) + 2(Vu(t), V(1)) + 28 fora.e. t € [0, T).

Multiplying the first equation of system (1.1) by # and the second equation of system
(1.1) by v, integrating over (), using integration by parts and summing up, we have

Page 13 of 19



Liang and Gao Boundary Value Problems 2011, 2011:22
http://www.boundaryvalueproblems.com/content/2011/1/22

(U, u(t)) + (vie, v(1)) + (Vu(t), Vue(t)) + (Vu(t), V(1))
= —[|Vu@)Il3 — [IVv(0)]]5 — /Q/O g1(t — v)Au(t)dru(t)dx
t
—[ [ 2 (t — t)Av(t)drv(t)dx + 2(p + 2)/ F(u, v)dx,
QJo Q
which implies
H' (1) = 2lu(0)]13 + 21w (113 — 211Vu()Il3 = 21 Vo113 +4(p + 2)/9F(u, v)dx
- 2‘/;2 /(; &1(t — t)Au(r)dru(t)dx — 2 /Q/(; £ (t — t)Av(t)drv(t)dx + 2.
Therefore, we have
H(OH" (1) — ”;3 H'(¢)?
= 2H(1) (IIM:(I)Ilﬁ + 1w (D113 = V()5 — [IVu(O)]13 + 2(p + 2)/ F(u,v)dx + 2/8)
Q
—2H(¥) (/Q/o g1(t — 1) Au(r)dru(t)dx + /Q/o D(t— T)AU(T)dTU(t)dx)
—2(p+3)(fs2 u(t)ur(t)dx+/;zv(t)ut(t)dx+/(; (Vu(r), Vuy(r))dr
t 2
+/(; (Vv(t), Vy(r))dr + B(t +so)>
= 2H(1) (Hut(t)n% + Oz = IVu(I13 = IVu(0)l13 +2(p + 2) f F(u, v)dx + 2/3)
Q

—2H(t) (/Q /O[gl(t — 7)Au(t)dru(t)dx + /Q /Olgz(t — r)Av(t)dw(t)dx)
+2(p +3) (G(t) = (H(1) — (T = )(IIVuol I3 + I Vw0l 1)) ¥(1)),

where ¥ (¢), G(¢): [0, T] — R, are the functions defined by
W(e) = ()1 + [l ()13 +/ 1Vu(z) B +/ V0, (0)] 3de + B
0 0
and
G(1) - (nu(r)n% (0I5 + /0 |IVu(e)l3de + /O IVu(e) | Bdr + ﬂ(t+50)2) (o)
- (/ u(t)ut(t)dx+f U(t)vt(t)dx+/I(Vu(t),Vut(t))dr
Q Q 0

¢ 2
+/(Vv(r),Vvt(t))dr+f3(t+so)> .
0
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Using the Schwarz inequality, we have
2

( | u(t)ut(t)dx)zfnu(t)n%uul(t)n; ( [ v(t)vl(t)dx) S OLEIOLE
t 2 t t
(/0 (Vu(r),Vut(T))dt) 5/0 ||Vu(r)||§dr/0 ||Vu,(7)|[3dz,

t 2 t t
(/0 (Vu(r),wt(r))dr> 5/0 ||Vu(r)||§alr/0 [V (7)]|3d,
[u(t)ut(t)dx/ v(ve(t)dx < ()2 1ve (@) 2l u ()21 v(E)]]2
Q Q
< illu(t)llillvz(t)lli + illut(t)llillv(t)lli,
B(t+50) /Q w(t)u(0)dx < /BBt + so) ()1l (0) 12

< BB+ ) B+ o)l ()13

and

,3(t+50)/9v(t)vt(t)dx < ;ﬁnv(t)ng + ;,B(Hso)zllvt(t)ll%.

Similarly, we have
/Q“(f)“r(t)dx/(:(vu(f)r Viy(t))de < ;Hu(t)nifot IV (2)l13de + ;nu[(t)n%fot IVu(z)l3de,
[ i [[(vute), vuende < S [ 1w+ s [ v,
/Qv(t)vr(t)dxfot(w(r), Viy(r))dr < inv(r)ni /0 IV (o)l l5d + ;Hvr(t)llﬁfot IVu(z)ll3de,

/Qv(t)v[(t)dx/(:(Vv(r), Vy,(t))dr < ;Hv(t)llgfot [V, (7)||2dT + ;Hvt(t)llg/:\le(r)ll%dr,

and
/(Vu(r), Vul(r))dr/ (Vu(z), Vi (r))dr
0 0

1 t t 1 t t
< /Hw(f)ngdr/ [|Vve(7)|3dT + /lqut(r)H%df/ [|Vu(z)|l3dr,
2 0 0 2 0 0

B(t+50) /(;I(Vu(r),Vut(r))dr < ;ﬁ/ot ||Vu(r)||§dr + ;ﬂ(t+50)2 /o[ ||Vu[(r)||§dr,

i) [ (Vo) Vuoyde < 5 [ Ivo0Rdr + L ptesso) [ IV,
The previous inequalities entail G(£) > 0 for every [0, T]. Using (4.7), we get
HOH" (1) =" ;3 H'(1)? = H(t)L(t) for ae. t € [0,T],
where
L(1) = =2(p + 2) (Il (113 + [l (1)]13) = 211V ()15 = 21IVu(D)]15 + 4(p + 2)/9F(u, v)dx
4(/9/0 gl(ttr)Au(r)dru(t)tdx+/Q/O gz(tfr)Av(r)drv(t)dx)
—2(p+3) (fo HVuL(r)H%dHfO HW(T)II%df>—2(P+1)ﬁ-
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For the fifth term on the right-hand side of (4.9), we have
t t
—/ / g1(t — v)Au(r)dru(t)dx = / it — r)/ Vu(t)Vu(t)dxdr
QJO 0 Q
t t
= [ gi(t— r)/ Vu(t)V (u(z) — u(t))dxde +f g1(t — )| Vu(t)|2de (4.10)
0 Q 0
t t
= / it — r)/ Vu(t)V(u(r) — u(t))dxdr +/ gl(r)||Vu(t)||§dt.
0 Q 0
Similarly,

—/ /tgz(t — 1) Av(t)dry(t)dx
Jo

‘ . (4.11)
= / D(t— r)/ Vu(t)V(v(r) — v(t))dxdr +f 2(0)IVu(t)|5dr.
0 Q 0
Combining (4.9), (4.10) with (4.11), we get
L() = =2(p + 2) (I ()13 + v ()113) — 2(1 — /Olgl(f)df)llw(t)llﬁ
—-2(1 - /tgz(r)dr)HVU(t)H% +4(p + 2)[ F(u,v)dx —2(p+1)B
0 @ (4.12)

ez | Lgltt—r) [ v ute) - uisds - 26p+3) / IV (2)] e
+2 [Ca(t =) [ VuOVO() ~ o)dsdr —2(p+3) [ 1vucr)IBdr.
Since
2/()tg1(t—r)/;ZVu(t)V(u(r)—u(t))dxdr
> =2+ 2) [ - o) - vu@iide s, L [a@ivioie) @)
-2+ 2oV -, |, [ @IV,

and

2 | @t-1) | VuO)V(u(r) - v(t))dxdr
/0 /Q (4.14)

=2+ g0 00—, | [ e@IviE,
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inserting (4.13) and (4.14) into (4.12), we have
L0) = =205 + (1015 + 015 + (1 0 Vu)(O)+ 52 © V() +4(p+2) [ Flu )
—2(1- [are L [ ) wuwi-2(1- [ we) v
~ o 2y L 2O =263 ([ 19wy
- [ 1vuika) -2+ 15
> —ap+ 260+ 20+ 1) (1= [CwoaeJvuwiz -, L [ anvuoie
+2(p+1)<1 —f(:gz(r)dr)|\Vv(t)|\% - 2(p1+2) /ﬂlgz(r)lm(t)n%dr
—2(p+3) (/0 IV (©)ll5dr +f0 HVuz(r)H%dr) —2(p+1)B.

Using (3.2) for s = 0, we have

1
2(p+2)

+2(p+1)(1—/0 gz(f)dr>|\W(t)||§— z(plu)/o 82()IVu(1)|3dr

L(t) = —4(p+2)E(0) +2(p + 1) (1 - /(;lgl(r)dr) IVu()l3 - /Orgl(r)HVu(t)ll%dr

+2(p+1)(/0 ||vm(f)\|§dz+/0 ||Vul(t)||§dr>—2(p+1),3

p+1 t 1 t
=a+2) (07 5 (0= [amin-, 3 e )ivuon

rapen (L0 (0= [w@an -, 0 ) ) v

—4(p+2)E(0) —2(p+ 1)B

=46+2) (0"} (= 4y, ey [ 810 IS0 =26+ 0

p+1 1 t
+4(p+2) (2(p+2) <k2 T a1 /0 gz(r)dr)) [IVu()||3 — 4(p + 2)E(0)

> 4(p+2) (2(pp++lz) (Ox 1V + 0211 Vo(1)113) — E(0) - 25p++12)ﬂ> '

Since

(0111 Vuo| |2 +6,]|Vwol2)/? > o, and  E(0) < E,,
by Lemma 4.2, there exists a constant o >0 such that

(O21Vu(D)[13 + B2 Ve(D)]15) " = e, (4.15)
which implies

p+1
2(p+2)

1
EuIVUEIE + GIIVHOIB) 2 0" od > B2 > ().

Thus, we can let 3 satisfy
(p+ 1) < 2(p + 2)(E2 — E(0)),
which implies that there exists d > 0 (independent of T) such that
L(t) =8 forte|0,T]. (4.16)

From (4.15) and the definition of H(¢), there also exists p > 0 (independent of T)
such that
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H(t)=p fortel0,T]. (4.17)

By (4.8), (4.16) and (4.17) it follows that
H(t)H'(t) — P ; 3H’(t)2 >38p forae. te0,T].
Moreover, we let s, satisfy that
Bso +/ uouldx+/ vov1dx > 0,
Q Q

which means A’ (0) > 0. Thus by H” (¢) > 0 we see that H(¢) and H'(t) is strictly
increasing on [0, T7.
Setting () = H(t) ?*"'?, then we have

p

1
Y0 =="" THETPIPH () <o,

and

p+5
Y <P ; Ssoy(opp+1

for all t € [0, 7], which implies that y(¢) reaches O in finite time, say as £ — T*. Since
T* is independent of the initial choice of T, we may assume that 7% <T. This tells us
that

lim H(t) = oc.
[41)1}1* (t) o0
In turn, this implies that
Lim (IIVa(013 + [IVu(1)]13) = oo. (4.18)
Indeed, if

Tim (Ilu(0)113 + [(0)][3) = oo,

then (4.18) immediately follows. On the contrary, if |[u(t)||3 + ||v(t)||3 remains
bounded on [0, T%), then

t t
lim (f ||Vu(r)||§r+f ||Vv(r)||§r)=oo
t—Tx* 0 0

so that again (4.18) is satisfied. This implies a contradiction, i.e. T < 0. O
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