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Abstract

This article presents an improved spectral-homotopy analysis method (ISHAM) for
solving nonlinear differential equations. The implementation of this new technique is
shown by solving the Falkner-Skan and magnetohydrodynamic boundary layer
problems. The results obtained are compared to numerical solutions in the literature
and MATLAB’s bvp4c solver. The results show that the ISHAM converges faster and
gives accurate results.
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Introduction
Boundary layer flow problems have wide applications in fluid mechanics. In this article,

we propose an improved spectral-homotopy analysis method (ISHAM) for solving gen-

eral boundary layer problems. Three boundary layer problems are considered and

solved in this study using the novel technique. The first problem considered is the

classical two-point nonlinear boundary value Blasius problem which models viscous

fluid flow over a semi-infinite flat plate. Although solutions for this problem had been

obtained as far back as 1908 by Blasius [1], the problem is still of great interest to

many researchers as can be seen from the several recent studies [2-5].

The second problem considered in this article is the third-order nonlinear Falkner-

Skan equation. The Falkner-Skan boundary layer equation has been studied by several

researchers from as early as 1931 [6]. More recent studies of the solutions of the The

Falkner-Skan equation include those of Harries et al. [7], Pade [8] and Pantokratoras

[9]. The third problem considered is magnetohy-drodynamic (MHD) boundary layer

flow. Such boundary layer problems arise in the study of the flow of electrically con-

ducting fluids such as liquid metal. Owing to its many applications such as power gen-

erators, flow meters, and the cooling of reactors, MHD flow has been studied by many

researchers, for example [10,11].

Owing to the nonlinearity of equations that describe most engineering and science

phenomena, many authors traditionally resort to numerical methods such as finite dif-

ference methods [12], Runge-Kutta methods [13], finite element methods [14] and

spectral methods [4] to solve the governing equations. However, in recent years, sev-

eral analytical or semi-analytical methods have been proposed and used to find solu-

tions to most nonlinear equations. These methods include the Adomian
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decomposition method [15-17], differential transform method [18], variational iteration

method [19], homotopy analysis method (HAM) [20-23], and the spectral-homotopy

analysis (SHAM) (see Motsa et al. [24,25]) which sought to remove some of the per-

ceived limitations of the HAM. More recently, successive linearization method [26-28],

has been used successfully to solve nonlinear equations that govern the flow of fluids

in bounded domains.

In this article, boundary layer equations are solved using the ISHAM. The ISHAM is

a modified version of the SHAM [24,25]. One strength of the SHAM is that it removes

restrictions of the HAM such as the requirement for the solution to conform to the

so-called rule of solution expression and the rule of coefficient ergodicity. Also, the

SHAM inherits the strengths of the HAM, for example, it does not depend on the

existence of a small parameter in the equation to be solved, it avoids discretization,

and the solution obtained is in terms of an auxiliary parameter ħ which can conveni-

ently be chosen to determine the convergence rate of the solution.

Mathematical formulation
We consider the general nonlinear third-order boundary value problem

f ′′′ + c1f f
′′ + c2(f ′)2 + c3f

′ + c4 = 0, (2:1)

subject to the boundary conditions

f (0) = b1, f ′(0) = b2, f ′(∞) = b3, (2:2)

where ci, bj (i = 1, ..., 4 j = 1, 2, 3) are constants.

Equation 2.1 can be solved easily using methods such as the HAM and the SHAM.

In each of these methods, an initial approximation f0(h) is sought, which satisfies the

boundary conditions. The speed of convergence of the method depends on whether f0
(h) is a good approximation of f (h) or not. The approach proposed here seeks to find

an optimal initial approximation f0 that would lead to faster convergence of the

method to the true solution. We thus first seek to improve the initial approximation

that is used later in the SHAM to solve the governing nonlinear equation.

We assume that the solution f(h) may be expanded as an infinite sum:

f (η) = fi(η) +
i−1∑
n=0

fn(η), i = 1, 2, 3, . . . (2:3)

where fi’s are unknown functions whose solutions are obtained using the SHAM at

the ith iteration and fn, (n ≥ 1) are known from previous iterations. The algorithm

starts with the initial approximation f0(h) which is chosen to satisfy the boundary con-

ditions (2.2). An appropriate initial guess is

f0(η) = b3η − (b2 − b3)e−η + b1 + b2 − b3. (2:4)

Substituting (2.3) in the governing equation (2.1-2.2) gives

f ′′′
i + a1,i−1f

′′
i + a2,i−1f

′
i + a3,i−1fi + c1f

′′
i fi + c2(f ′

i )
2 = ri−1, (2:5)

subject to the boundary conditions

fi(0) = 0, f ′
i (0) = 0, f ′

i (∞) = 0, (2:6)
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where the coefficient parameters ak,i-1, (k = 1, ..., 3) and ri-1 are defined as

a1,i−1 = c1
i−1∑
n=0

fn, a2,i−1 = 2c2
i−1∑
n=0

f ′
n + c3, a3,i−1 = c1

i−1∑
n=0

f ′′
n , (2:7)

ri−1 = −
⎡
⎣ i−1∑

n=0

f ′′′
n + c1

i−1∑
n=0

f ′′
n

i−1∑
n=0

fn + c2

(
i−1∑
n=0

f ′
n

)2

+ c3
i−1∑
n=0

f ′
n + c4

⎤
⎦ . (2:8)

Starting from the initial approximation (2.4), the subsequent solutions fi (i ≥ 1) are

obtained by recursively solving Equation 2.5 using the SHAM, [24,25]. To find the

solutions of Equation 2.5, we begin by defining the following linear operator:

L[Fi(η; q)] = ∂3Fi
∂η3

+ a1,i−1
∂2Fi
∂η2

+ a2,i−1
∂Fi
∂η

+ a3,i−1Fi. (2:9)

where q Î 0[1] is the embedding parameter, and Fi(h; q) is an unknown function.

The zeroth-order deformation equation is given by

(1 − q)L[Fi(η; q) − fi,0(η)] = qh̄
{N [Fi(η; q)] − ri−1

}
. (2:10)

where ħ is the non-zero convergence controlling auxiliary parameter and N is a

nonlinear operator given by

N [Fi(η; q)] =
∂3Fi
∂η3

+ a1,i−1
∂2Fi
∂η2

+ a2,i−1
∂Fi
∂η

+ a3,i−1Fi + c1Fi
∂2Fi
∂η2

+ c2

[
∂Fi
∂η

]2

.(2:11)

Differentiating (2.10) m times with respect to q and then setting q = 0, and finally

dividing the resulting equations by m! yield the mth-order deformation equations:

L[fi,m(η) − χmfi,m−1] = h̄

(
f ′′′
i,m−1 + a1,i−1f ′′

i,m−1 + a2,i−1f ′
i,m−1 + a3,i−1fi,m−1

+c1
m−1∑
j=0

fi,jf
′′
i,m−1−j + c2

m−1∑
j=0

f ′
i,jf

′
i,m−1−j − (1 − χm)ri−1

)
,

(2:12)

subject to the boundary conditions

fi,m(0) = f ′
i,m(0) = f ′

i,m(∞) = 0, (2:13)

where

χm =
{
0, m ≤ 1
1, m > 1

. (2:14)

The initial approximation fi,0 that is used in the higher-order equations (2.12) is

obtained on solving the linear part of Equation 2.5 which is given by

f ′′′
i,0 + a1,i−1f

′′
i,0 + a2,i−1f

′
i,0 + a3,i−1fi,0 = ri−1, (2:15)

subject to the boundary conditions:

fi,0(0) = f ′
i,0(0) = f ′

i,0(∞) = 0. (2:16)
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Since the coefficient parameters and the right-hand side of Equation 2.15 for i = 1, 2,

3, ... are known (from previous iterations), the equation can easily be solved using

numerical methods such as finite differences, finite elements, Runge-Kutta-based

shooting methods or collocation methods. In this article, Equation 2.15 are solved

using the Chebyshev spectral collocation method. The method (see, for example,

[29-31]), is based on the Chebyshev polynomials defined on the interval [-1, 1] by

Tk(ξ) = cos[kcos−1(ξ)]. (2:17)

To implement the method, the physical region [0, ∞) is transformed into the region

[-1, 1] using the domain truncation technique whereby the problem is solved in the

interval [0, L] instead of [0, ∞). This leads to the mapping

η

L
=

ξ + 1
2

− 1 ≤ ξ ≤ 1, (2:18)

where L is the scaling parameter used to invoke the boundary condition at infinity.

We use the popular Gauss-Lobatto collocation points [29,31] to define the Chebyshev

nodes in [-1, 1], namely:

ξj = cos
π j
N

− 1 ≤ ξ ≤ 1, j = 0, 1, 2, . . . ,N, (2:19)

where N is the number of collocation points. The variable fi,0 is approximated by the

interpolating polynomial in terms of its values at each of the collocation points by

employing the truncated Chebyshev series of the form:

fi,0(ξ) =
N∑
k=0

fi,0(ξk)Tk(ξj), j = 0, 1, . . . ,N. (2:20)

where Tk is the kth Chebyshev polynomial. Derivatives of the variables at the colloca-

tion points may be represented by

dsfi,0
dηs

=
N∑
k=0

Ds
jkfi,0(ξk), j = 0, 1, . . . ,N, (2:21)

where s is the order of differentiation and D = 2
LD, with D being the Chebyshev

spectral differentiation matrix (see, for example [29,31]) whose entries are defined as

Djk =
cj
ck

(−1)j+k

ξj − ξk
j �= k; j, k = 0, 1, . . . ,N,

Dkk = − ξk

2(1 − ξ2k )
k = 1, 2, . . . ,N − 1,

D00 =
2N2 + 1

6
= −DNN.

(2:22)

Substituting Equations 2.20-2.21 in 2.15-2.16 gives

Ai−1Fi,0 = Ri−1, (2:23)

subject to

fi,0(ξN) = 0,
N∑
k=0

DNkfi,0(ξk) = 0,
N∑
k=0

D0kfi,0(ξk) = 0, (2:24)
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where

Ai−1 = D3 + a1,i−1D2 + a2,i−1D + a3,i−1, (2:25)

Fi,0 =
[
fi,0(ξ0), fi,0(ξ1), . . . , fi,0(ξN)

]T , (2:26)

Ri−1 =
[
ri−1(ξ0), ri−1(ξ1), . . . , ri−1(ξN)

]T , . (2:27)

In the above definitions, T stands for transpose and ak,i-1(k = 1, 2, 3) denotes a diag-

onal matrix of size (N + 1) × (N + 1). The boundary condition fi (ξN ) = 0 is imple-

mented by deleting last row and last column of Ai-1, and deleting the last rows of Fi,0
and Ri-1. The derivative boundary conditions in (2.24) are then imposed on the result-

ing first row and last row of Ai-1 and setting the first and last rows of Fi,0 and Ri-1 to

be zero. The solutions for fi.0(ξ) are then obtained from soloving

Fi,0 = A−1
i−1Ri−1. (2:28)

In a similar manner, applying the Chebyshev spectral transformation on the higher

order deformation equations (2.12)-(2.13) gives

AFi,m = (χm + h̄)AFi,m−1 − h̄(1 − χm)Ri−1 + h̄Pi,m−1 (2:29)

subject to the boundary conditions

fi,m(ξN) = 0,
N∑
k=0

DN kfi,m(ξk) = 0,
N∑
k=0

D0kfi,m(ξk) = 0, (2:30)

where Ai-1 and Ri-1, are as defined in (2.25) and (2.27), respectively, and

Fi,m = [fi,m(ξ0), fi,m(ξ1), . . . , fi,m(ξN)]T , (2:31)

Pi,m−1 = c1
m−1∑
j=0

Fi,j(D2Fi,m−1−j) + c2
m−1∑
j=0

(DFi,j)(DFi,m−1−j). (2:32)

To implement the boundary condition fi,m(ξN ) = 0, we delete the last rows of Pi,m-1

and Ri-1 and delete the last row and the last column of Ai-1 in (2.29). The other

boundary conditions in (2.30) are imposed on the first and the last rows of the modi-

fied Ai-1 matrix on the left side of the equal sign in (2.29). The first and the last rows

of the modified Ai-1 matrix on the right side of the equal sign in (2.29) are then set to

be zero. This results in the following recursive formula for m ≥ 1:

Fi,m = (χm + h̄)A−1
i−1Ãi−1Fm−1 + h̄A−1

i−1[Pi,m−1 − (1 − χm)Ri−1], (2:33)

where Ãi-1 is the modified matrix Ai-1 after incorporating the boundary conditions

(2.30). Thus, starting from the initial approximation, which is obtained from (2.28),

higher-order approximations fi,m(ξ) for m ≥ 1, can be obtained through the recursive

formula (2.33).

The solutions for fi are then generated using the solutions for fi, m as follows:

fi = fi,0 + fi,1 + fi,2 + fi,3 + fi,4 + · · · + fi,m. (2:34)
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The [i, m] approximate solution for f (h) is then obtained by substituting fi (obtained

from 2.34) in equation 2.3.

Results and discussion
Table 1 shows the values of f“ (0) at different orders [i, m] of the ISHAM approxima-

tion for the Blasius boundary layer flow when L = 30, ħ = -1 and N = 80. It is worth

noting here that the numerical solution given by Howarth [32] is f“ (0) = 0.332057,

while the numerical result by the Matlab bvp4c routine is f“ (0) = 0.33205734.

Asaithambi [33] found this number correct to nine decimal positions as 0.332057336.

It is evident that the ISHAM converges to the numerical result at orders [3,1] and

[2,2]. Moreover, Table 1 shows that the ISHAM solution converges to the accurate

solution of Howarth and the bvp4c result faster than the original SHAM results of

which are those given in the first row of Table 1 (for the case when i = 1).

In general, at order [i, m], i is the number of improvements of the initial approxima-

tion f0(h) for f(h), and m is the number of improvements of the initial guess fq,0(h); q
= 1, 2, ..., i, for each application of the ISHAM. Table 2 gives a sense of the conver-

gence rate of the ISHAM when compared with the numerical method for the Blasius

problem at different values of h. In all the instances, convergence of the ISHAM is

achieved at the second order.

Table 3 gives the values of f“ (0) obtained used the ISHAM and the numerical

method for various values of b for the Falkner-Skan boundary layer problem. Full con-

vergence is again achieved at order [2,2] for all the parameter values.

Table 1 Order [i, m] ISHAM approximate results for f“ (0) of the Blasius boundary layer
flow (Example 1) using L = 30, ħ = -1 and N = 80

m 1 2 3 4 10 15

i

1 0.33849743 0.33398878 0.33272105 0.33230382 0.33205863 0.33205736

2 0.33205889 0.33205734 0.33205734 0.33205734 0.33205734 0.33205734

3 0.33205734 0.33205734 0.33205734 0.33205734 0.33205734 0.33205734

4 0.33205734 0.33205734 0.33205734 0.33205734 0.33205734 0.33205734

5 0.33205734 0.33205734 0.33205734 0.33205734 0.33205734 0.33205734

Table 2 Comparison between the [m, m] ISHAM results and the bvp4c numerical results
for the velocity pro le f’ (h) at selected values of h for the Blasius boundary layer flow
(Example 1) using L = 30, ħ = -1 and N = 200

h [1,1] [2,2] [3,3] [4,4] Numerical

0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.4 0.1353503 0.1327642 0.1327642 0.1327642 0.1327642

0.8 0.2699826 0.2647092 0.2647092 0.2647092 0.2647091

1.6 0.5279353 0.5167568 0.5167568 0.5167568 0.5167568

2.0 0.6436159 0.6297657 0.6297657 0.6297657 0.6297657

3.0 0.8609681 0.8460445 0.8460445 0.8460445 0.8460444

4.0 0.9635769 0.9555182 0.9555182 0.9555182 0.9555182

5.0 0.9937558 0.9915420 0.9915420 0.9915420 0.9915419

6.0 0.9992643 0.9989729 0.9989729 0.9989729 0.9989729

8.0 0.9999880 0.9999963 0.9999963 0.9999963 0.9999963

10.0 0.9999991 1.0000000 1.0000000 1.0000000 1.0000000
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For the MHD boundary layer problem, Tables 4 and 5 illustrate the exact and

approximate values of f’ (h) and f“ (0) at different values of h and the magnetic para-

meter M, respectively. The absolute errors in the approximations are also given. The

tables show that the ISHAM converges rapidly with marginal or no errors after order

[2,2].

Conclusion
In this article, we have proposed an ISHAM for solving general nonlinear differential

equations. This novel technique was compared against both numerical approximations

and the MATLAB bvp4c routine for solving Falkner-Skan and MHD boundary layer

problems. The results demonstrate the relatively more rapid convergence of the

ISHAM, and they show that the ISHAM is highly accurate.

Table 3 Order [m, m] ISHAM approximate results for f“ (0) of the Falkner-Skan boundary
layer flow (Example 2) using L = 30, ħ = -1 and N = 80

b [1,1] [2,2] [3,3] [4,4] Numerical

0.4 0.85435667 0.85442123 0.85442123 0.85442123 0.85442123

0.8 1.11956168 1.12026766 1.12026766 1.12026766 1.12026766

1.2 1.33311019 1.33572147 1.33572147 1.33572147 1.33572147

1.6 1.51553054 1.52151400 1.52151400 1.52151400 1.52151400

2.0 1.67637221 1.68721817 1.68721817 1.68721817 1.68721817

Table 4 Order [m, m] ISHAM approximate results for the velocity profile f’ (h) of the
MHD boundary layer flow (Example 3) when M = 10 using L = 10, ħ = -1 and N = 200

h f’ (h) Exact Absolute error

[1,1] [2,2] [3,3] [1,1] [2,2] [3,3]

0.0 1.00000000 1.00000000 1.00000000 1.00000000 0.00000000 0.00000000 0.00000000

0.5 0.19106051 0.19046007 0.19046007 0.19046013 0.00060038 0.00000006 0.00000006

1.0 0.03731355 0.03627506 0.03627506 0.03627506 0.00103849 0.00000000 0.00000000

1.5 0.00795438 0.00690893 0.00690893 0.00690895 0.00104543 0.00000002 0.00000002

2.0 0.00212716 0.00131588 0.00131588 0.00131588 0.00081128 0.00000000 0.00000000

2.5 0.00080280 0.00025062 0.00025062 0.00025062 0.00055218 0.00000000 0.00000000

3.0 0.00040021 0.00004773 0.00004773 0.00004773 0.00035248 0.00000000 0.00000000

3.5 0.00022752 0.00000909 0.00000909 0.00000909 0.00021843 0.00000000 0.00000000

4.0 0.00013536 0.00000173 0.00000173 0.00000173 0.00013363 0.00000000 0.00000000

5.0 0.00004944 0.00000006 0.00000006 0.00000006 0.00004938 0.00000000 0.00000000

6.0 0.00001818 0.00000000 0.00000000 0.00000000 0.00001818 0.00000000 0.00000000

Table 5 Order [m, m] ISHAM approximate results for f“ (h) of the MHD boundary layer
flow (Example 3) for different values of M using L = 10, ħ = -1 and N = 200

M f“ (0) Exact Absolute error

[1,1] [2,2] [1,1] [2,2]

5 -2.44812872 -2.44948974 -2.44948974 0.00136102 0.00000000

10 -3.31554301 -3.31662479 -3.31662479 0.00108178 0.00000000

20 -4.58188947 -4.58257570 -4.58257569 0.00068622 0.00000001

50 -7.14113929 -7.14142843 -7.14142843 0.00028914 0.00000000

100 -10.04974330 -10.04987562 -10.04987562 0.00013232 0.00000000

200 -14.17739008 -14.17744688 -14.17744688 0.00005680 0.00000000

500 -22.38301286 -22.38302928 -22.38302929 0.00001643 0.00000001

1000 -31.63857773 -31.63858404 -31.63858404 0.00000631 0.00000000
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