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Abstract

The electrogravitational instability of a dielectric oscillating streaming fluid cylinder
surrounded by tenuous medium of negligible motion pervaded by transverse varying
electric field has been investigated for all the perturbation modes. The model is
governed by Mathieu second-order integro-differential equation. Some limiting cases
are recovering from the present general one. The self-gravitating force is
destabilizing only in the axisymmetric perturbation for long wavelengths, while, the
axial electric field interior, the fluid has strong destabilizing effect for all short and
long wavelengths. The transverse field is strongly stabilizing. In the case of non-
axisymmetric perturbation, the self-gravitating force is stabilizing for short and long
waves, while the electric field has stabilizing effect on short waves.
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1. Introduction
The stability of self-gravitating fluid cylinder has been studied, for the first time, by

Chandrasekhar and Fermi [1]. Later on, Chandrasekhar [2] made several extensions as

the fluid cylinder is acted by different forces. Radwan [3,4] studied the stability of an

ideal hollow jet. Radwan [4] considered that the fluids are penetrated by constant and

uniform electric fields. The stability of different cylindrical models under the action of

self-gravitating force in addition to other forces has been elaborated by Radwan and

Hasan [5,6]. Radwan and Hasan [5] studied the gravitational stability of a fluid cylinder

under transverse time-dependent electric field for axisymmetric perturbations. Hasan

[7,8] has discussed the stability of oscillating streaming fluid cylinder subject to com-

bined effect of the capillary, self-gravitating, and electrodynamic forces for all axisym-

metric and non-axisymmetric perturbation modes. Hasan [7,8] studied the instability

of a full fluid cylinder surrounded by self-gravitating tenuous medium pervaded by

transverse varying electric field under the combined effect of the capillary, self-gravitat-

ing, and electric forces for all the modes of perturbations.

There are many applications of electrohydrodynamic and magnetohydrodynamic sta-

bility in several fields of science such as
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1. Geophysics: the fluid of the core of the Earth and other theorized to be a huge

MHD dynamo that generates the Earth’s magnetic field because of the motion of

the liquid iron.

2. Astrophysics: MHD applies quite well to astrophysics since 99% of baryonic mat-

ter content of the universe is made of plasma, including stars, the interplanetary

medium, nebulae and jets, stability of spiral arm of galaxy, etc. Many astrophysical

systems are not in local thermal equilibrium, and therefore require an additional

kinematic treatment to describe all the phenomena within the system.

3. Engineering applications: there are many forms in engineering sciences including

oil and gas extraction process if it surrounded by electric field or magnetic field, gas

and steam turbines, MHD power generation systems and magneto-flow meters, etc.

In this article, we aim to investigate the stability of oscillating streaming self-gravitat-

ing dielectric incompressible fluid cylinder surrounded by tenuous medium of negligi-

ble motion pervaded by transverse varying electric field for all the axisymmetric and

non-axisymmetric perturbation modes.

2. Mathematical formulation
Consider a self-gravitating fluid cylinder surrounded by a self-gravitating medium of

negligible motion. The cylinder of (radius R0) dielectric constant ε(i) while the sur-

rounding medium is being with dielectric constant ε(e). Fluid is assumed to be incom-

pressible, inviscid, self-gravitating, and pervaded by applied longitudinal electric field.

E(i)0 = ( 0, 0, E0 ) (1)

The surrounding tenuous medium (being of negligible motion), self-gravitating, and

penetrated by transverse varying electric field

E(e)0 =
(
0, β E0R0 r

−1, 0
)

(2)

where E0 is the intensity of the electric field in the fluid while b is some parameters

satisfy certain conditions. The components of E(i)0 and E(e)0 are considered along the

utilizing cylindrical coordinates (r, �, z) system with z-axis coinciding with the axis of

the fluid cylinder. The fluid of the cylinder streams with a periodic velocity

u0 = (0, 0, U cosωt ) (3)

where ω is constant and U is the speed at time t = 0.

The components of electric fields E(i)0 and E(e)0
are being along (r,�,z) with the z-axis

coinciding with the axis of the fluid cylinder (as shown in Figure 1).

The basic equations for investigating the problem under consideration are being the

combination of the ordinary hydrodynamic equations, Maxwell equations concerning

the electromagnetic theory, and Newtonian self-gravitating equations concerning the

self-gravitating matter (see [2,7-10]).

For the problem under consideration, these equations are given as follows.

ρ

(
∂u
∂t

+
(
u · ∇)

u
)(i)

= −∇P(i) + ρ∇V(i) +
1
2

∇ (
ε(i) (

E(i) · E(i))) (4)
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∇ · u(i) = 0 (5)

∇ · (εE)(i,e) = 0 (6)

∇ ∧ (
ε(i,e)E(i,e)) = 0 (7)

∇2V(i) = −4π ρ G (8)

∇2V(e) = 0 (9)

where r, u , and P are the fluid density, velocity vector, and kinetic pressure, respec-

tively, and E(i) and V(i) are the electric field intensity and self-gravitating potential of

the fluid while E(e) and V(e) are these of tenuous medium surrounding the fluid cylin-

der, and G is the gravitational constant.

r

oR

Z

Fluid Cylinder 

10, ,0e
o oE R r

0,0,i
o oE E

Figure 1 Sketch for gravitational dielectric fluid cylinder.

Hasan Boundary Value Problems 2011, 2011:31
http://www.boundaryvalueproblems.com/content/2011/1/31

Page 3 of 14



Since the motion of the fluid is irrotational, incompressible motion, the fundamental

equations may be written as

∇2φ(i) = 0 (10)

∇2ψ(i) = 0 (11)

∇2ψ(e) = 0 (12)

where j and ψ are the potential of the velocity of the fluid and electrical potential.

3. Equilibrium state
In this case, the basic equations are given in the form

∇2V(i)
0 = −4π ρ G (13)

∇2V(e)
0 = 0 (14)

∇2φ
(i)
0 = 0 (15)

where the subscript 0 here and henceforth indicates unperturbed quantities.

Equations 12-14 are solved and moreover the solutions are matched across the fluid

cylinder interface at r = R0. The non-singular solution in the unperturbed state is,

finally, given as

V(i)
0 = −π Gρ r2 (16)

V(e)
0 = −πGρR2

0

[
1 + 2 ln

(
r
R0

)]
(17)

4. Linearization
For a small wave disturbance across the boundary interface of the fluid, the surface

deflection at time t is assumed to be of the form as

r = R0 + η̃, (18)

with

η̃ = η (t) exp ( i (k z +mϕ) ) (19)

Consequently, any physical quantity Q(r,�,z;t) may be expressed as

Q (r,ϕ, z, t) = Q0 (r) + η̃ (z,ϕ, t) (20)

where h(t) is the amplitude of the perturbation at an instant time t, k, any real num-

ber, is the longitudinal wave number along z-direction while m, an integer, is the azi-

muthal wave number.

The non-singular solutions of the linearized perturbation equations give j,V, and ψ

as follows:
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φ
(i)
1 = A1 (t) Im (kr) exp

[
i (kz +mϕ)

]
, (21)

V(i)
1 = B1 (t) Im ( k r ) exp

[
i ( k z +mϕ )

]
, (22)

V(e)
1 = B2 (t)Km ( k r ) exp

[
i ( k z +mϕ )

]
(23)

ψ
(i)
1 = C1 (t) Im ( k r ) exp

[
i ( k z +mϕ )

]
(24)

ψ
(e)
1 = C2 (t) Km ( k r ) exp

[
i ( k z +mϕ )

]
, (25)

where A1(t), B1(t), B2(t), C1(t), and C2(t) are arbitrary functions of integrations to be

determined, while Im(kr) and Km(kr) are the modified Bessel functions of the first and

second kind of order m.

5. Boundary conditions
The non-singular solutions of the linearized perturbation equation given by the sys-

tems (21)-(25) and the solutions (16)-(17) of the unperturbed systems (12)-(14) must

satisfy certain boundary conditions. Under the present circumstances, these appropri-

ate boundary conditions could be applied as follows.

(i) Kinematic conditions

The normal component of the velocity vector must be compatible with the velocity of

the boundary perturbed surface of the fluid at the level r = R0. This condition, yield

(
∂

∂t
+U cosωt

∂

∂z

)
η̃ =

∂φ
(i)
1

∂r
(26)

By the use of Equations 18, 19, and 21 for the condition (26), after straight forward

calculations, we get

A1 (t) =
1

kI′m(x)
(∂t + ikU) η (27)

where x = k R0 is, dimensionless, the longitudinal wave number.

(ii) Self-gravitating conditions

The gravitational potential V = V0 + εV1 + ... and its derivative must be continuous

across the perturbed boundary fluid surface at r = R0. These conditions are given as

(
V1 + η̃

∂V0

∂r

)(i)

=
(
V1 + η̃

∂V0

∂r

)(e)

, (28)

(
∂V1

∂r
+ η̃

∂2V0

∂r2

)(i)

=
(

∂V1

∂r
+ η̃

∂2V0

∂r2

)(e)

. (29)
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By utilizing Equations 18, 19, 22, and 23 for the conditions (28) and (29), we get

B1 (t) =
4π G
k

(ρ x Km (x) η) (30)

B2 (t) =
4π G
k

(ρ x Im (x) η) (31)

(iii) Electrodynamic condition

The normal component of the electric displacement current and the electric potential

ψ perturbed boundary surface at the initial position r = R0. These conditions could be

written in the form

(
ψ1 + η̃

∂ψ0

∂r

)(i)

=
(

ψ1 + η̃
∂ψ0

∂r

)(e)

(32)

N.(ε(i)E(i) − ε(e)E(e)) = 0 (33)

E = E0 + η
∂E0
∂r

+ E1 (34)

While Ns is, the outward unit vector normal to the interface (18) at r = R0, given by

Ns = ∇F (r,ϕ, z; t)
/|∇F (r,ϕ, z; t)| (35)

F (r,ϕ, z; t) = r − Ro − η̃ (36)

So that

N0 = (1, 0, 0) , N1 =
(
0,

−im
R0

,−ik
)

η̃ (37)

Upon applying these conditions, we get

C1 (t) =
−iE0ε(i)η

ξ1

(
1 +mβ − mβ

R0

)
(38)

C2 (t) =
−iE0ε(i)η

ξ1

(
Im (x)
Km (x)

) (
1 +mβ − mβ

R0

)
(39)

where the quantity ξ1 is given in Appendix 1.

(iv) The dynamical stress condition

The normal component of the total stress across the surface of the coaxial fluid cylin-

der must be continuous at the initial position at r = R0. This condition is given as fol-

lows

ρ

(
∂φ

(i)
1

∂t
+U0

∂φ
(i)
1

∂z
− V(i)

1 − η̃
∂V(i)

0

∂r

)
+E0

(
ε(i) ∂ψ

(i)
1

∂z
− ε(e) 1

R0

∂

∂r

(
βR0

r

)
ψ

(e)
1

)
−η̃

∂

∂r
(E0 · E0)(e) = 0 (40)
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By substituting for φ
(i)
1 , V(i)

1 ,V(i)
o , ψ

(i)
1 ,ψ(e)

1 and η̃ , after some algebraic calcula-

tions, we finally obtain

d2η
d t2

+ 2 i kUo cos ωt
dη
d t

+
(
Gβ11 − i kωUo sin ωt − k2U2

o cos
2ωt + E2oβ12

)
η = 0 (41)

where the quantity b11 and b12 is given in Appendix I.

In order to eliminate the first derivative term, we may use the substitution

η (t) = η∗ (t) e
−

⎛
⎝ ikU0

ω
sinωt

⎞
⎠ (42)

Equation 41 can be expressed as follows

d2η∗

dt2
+

(
Gβ11 + E20β12

)
η∗ = 0 (43)

Equation 43 is an integro-differential equation governing the surface displacement h*
(t). By means of this relation, we may identify the (in-) stability states and also the self-

gravitating and electrodynamic forces influences on the stability of the present model.

However in order to do so, it is found more convenient to express this relation in the

simple form[
d2

dγ 2
+

(
b − h2cos2γ

)]
η∗ (t) = 0, γ = ωt (44)

where

b =
Gβ11

2
(45)

h2 = −E20β12

ω2
(46)

Equation 44 has the canonical form[
d2

dγ 2
+

(
a − 2q cos 2γ

)]
η∗ (t) = 0 (47)

where

q =
h2

4
, a = b −

(
h2

2

)
(48)

Equation 47 is Mathieu differential equation. The properties of the Mathieu func-

tions are explained and investigated by Melaclan [11]. The solutions of Equation 47,

under appropriate restrictions, could be stable and vice versa. The conditions required

for periodicity of Mathieu functions are mainly dependent on the correlation between

the parameters a and q. However, it is well known, see [11], that (a, q)-plane is divided

essentially into two stable and unstable domains separated by the characteristic curves

of Mathieu functions. Thence, we can state generally that a solution of Mathieu inte-

gro-differential equation is unstable if the point (a, q) say, in the (a, q)-plane lies inter-

nal and unstable domain, otherwise it is stable.
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6. Discussions and limiting cases
The appropriate solutions of Equation 47 are given in terms of what called ordinary

Mathieu functions which, indeed, are periodic in time t with period π and 2π.

Corresponding to extremely small values of q, the first region of instability is

bounded by the curves

a = ± q + 1 (49)

The conditions for oscillation lead to the problem of the boundary regions of

Mathieu functions where Melaclan [11] gives the condition of stability as

∣∣∣�(0) sin2
(πa
2

)∣∣∣
1
2 ≤ 1 (50)

where Δ(0) is the Hill’s determinant.

An approximation criterion for the stability near the neighborhood of the first stable

domains of the Mathieu stability domains given by Morse and Feshbach [12] which is

valid only for small values of h2 or q, i.e., the frequency ω of the electric field is very

large.

This criterion, under the present circumstances, states that the model is ordinary

stable if the restriction

h4 − 16 (1 − b) h2 + 32b (1 − b) ≥ 0 (51)

is satisfied where the equality is corresponding to the marginal stability state. The

inequality (51) is a quadratic relation in h2 and could be written as(
h2 − α1

) (
h2 − α2

) ≥ 0 (52)

where a1 and a2 are, the two roots of the equality of the relation (51), being

α1 = 8 (1 − b) − � (53)

α2 = 8 (1 − b) + � (54)

with

�2 = 32 (1 − b) (2 − 3b) (55)

The electrogravitational stability and instability investigations analysis should be car-

ried out in the following two cases

(i). 0 <b < 2/3

In this case Δ2 is positive and therefore the two roots a1 and a2 of the equality (51)

are real. Now, we will show that both a1 and a2 are positive. If a1 a + ve then a1 must

be negative and this means that

8 (1 − b) ≤ b (56)

or alternatively

64(1 − b)2 ≤ 32 (1 − b) (2 − 3b)
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From which we get

2b ≥ 3b (57)

and this is contradiction, so a1 must be positive and consequently a2 ≥ 0 as well

(noting that a2 >a1). This means that both the quantities (h2 -a1) and (h2 -a2) are

negative and that in turn show that the inequality (51) is identically satisfied.

(ii). 2/3 <b < 1

In this case, in which b < 1 and simultaneously 3b > 2, it is found that Δ2 is negative,

i.e., Δ is imaginary; therefore, the two roots a1 and a2 are complex. We may prove that

the inequality (51) is satisfied as follows.

Let h2 - c and a1,2 = c1 - ic2 where c, c1, and c2 are real, so(
h2 − α1

) (
h2 − α2

)
= [−c − (c1 + ic2)] [−c − (c1 − ic2)]

= c2 + 2cc2 + c21 + c22
= (c + c1)

2 + c22 = +ve

(58)

which is positive definite.

By an appeal to the cases (i) and (ii), we deduce that the model is stable under the

restrictions

0 < b < 1 (59)

This means that the model is stable if there exists a critical value ω0 of the electric

field frequency ω such that ω >ω0 where ω0 is given by

πGρ(i)
(
xI′0 (x)
I0 (x)

) (
I0 (x)K0 (x) − 1

2

)
> 0 (60)

One has to mention here that if ω = 0, b = 0, and E0 = 0 and we suppose that

γ (t) = (const) exp (σ t) (61)

The second-order integro-differential equation of Mathieu equation (41) yields

σ 2 = 4πGρ(i)
(
xI′0 (x)
I0 (x)

)(
I0 (x)K0 (x) − 1

2

)
(62)

where s is the temporal amplification and note by the way that (
4πGρ i)−

1
2 has a

unit of time. The relation (62) is identical to the gravitational dispersion relation

derived for the first time by Chandrasekhar and Fermi [1]. In fact, they [1] have used a

totally different technique rather than that used here. They have used the method of

representing the solenoidal vectors in terms of poloidal and toroidal vector fields for

axisymmetric perturbation.

To determine the effect of ω, it is found more convenient to investigate the eigenva-

lue relation (62) since the right side of it is the same the middle side of (60).

Taking into account the recurrence relation of the modified Bessel’s functions and

their derivatives, we see, for x a 0, that(
xI′0 (x)
I0 (x)

)
> 0 (63)
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and

(I0 (x)K0 (x)) >
1
2
, or (I0 (x)K0 (x)) <

1
2

(64)

based on the values of x.

Now, returning to the relation (62), we deduce that the determining of the sign s2/

(4πGri) is identified if the sign of the quantity

Qo (x) =
(
I0 (x)K0 (x) − 1

2

)
(65)

is identified.

Here, it is found that the quantity Q0 (x) may be positive or negative depending on x

a 0 values. Numerical investigations and analysis of the relation (62) reveal that s2 is

positive for small values of x while it is negative in all other values of x. In more

details, it is unstable in the domain 0 <x < 1.0667 while it is stable in the domains

1.0667 ≤ x < ∞ where the equality is corresponding to the marginal stability state.

From the foregoing discussions, investigations, and analysis, we conclude (on using

(65) for (62)) that the quantity

L2 =
(
xI′0 (x)
I0 (x)

) (
I0 (x)K0 (x) − 1

2

)
, L =

σ

(4πGρ)

1
2

(66)

has the following properties

L2 ≤ 0 in the ranges 1.0667 ≤ x < ∞
L2 > 0 in the range 0 < x < 1.0667

}
(67)

Now, returning to the relation (60) concerning the frequency ω0 of the periodic elec-

tric field

ω2

(4πGρ)
>

[(
xI′0 (x)
I0 (x)

)(
1
2

− I0 (x)K0 (x)

)]
> 0. (68)

Therefore, we deduce that the electrodynamic force (with a periodic time electric

field) has stabilizing influence and could predominate and overcoming the self-gravitat-

ing destabilizing influence of the dielectric fluid cylinder dispersed in a dielectric med-

ium of negligible motion.

However, the self-gravitating destabilizing influence could not be suppressed what-

ever is the greatest value of the magnitude and frequency of the periodic electric field

because the gravitational destabilizing influence will persist.

7. Numerical discussions
If we assume that ω = 0 and consider the condition (61), then the second-order inte-

gro-differential equation of Mathieu equation (47) yields

σ 2

4πGρ
=

(
xI′0 (x)
I0 (x)

)(
I0 (x)K0 (x) − 1

2

)
−M

(
xI′0 (x)
I0 (x)

)[
xI′0 (x)K0 (x)

[I′0 (x)K0 (x) − εI′0 (x)K ′
0 (x)]

− εeβ2
]
= 0 (69)

Hasan Boundary Value Problems 2011, 2011:31
http://www.boundaryvalueproblems.com/content/2011/1/31

Page 10 of 14



where

M =
(
E0
Es

)2

, E2s =
4πG(ρ)2R2

0

ε(i)
(70)

and

ε =
(
ε(e)/ε(i)) (71)

To verify and confirm the foregoing analytical results, the relation (69) has been

inserted in the computer and computed. This has been done for several values of b as

b < 1, b = 1, and b > 1 in the wide domain 0 ≤ x ≤ 0.5. The numerical data of instabil-

ity corresponding
σ

/(
4πGρ i

)1
2 and those of stability corresponding to

ζ
/(

4πGρ i
)1
2

are collected and tabulated and presented graphically (see Figures 2, 3, 4, 5, and 6).

There are many features and properties in this numerical presentation as we see in the

following:

(i) For b = 0.5 corresponding to M = 0.1, 0.3, 0.5, 0.7, 1.0, and 1.5 it is found that the

electrogravitational unstable domains are 0 <x < 1.1175, 0 <x <1.19759, 0 <x < 1.27235,

0 <x 1.29599, 0 <x < 1.362741, and 0 <x < 1.3978, the neighboring stable domains are

1.1175 ≤ x < ∞, 1.19759 ≤ x < ∞, 1.27235 ≤ x < ∞, 1.29599 ≤ x < ∞, 1.362741 ≤ x < ∞,

and 1.3978 ≤ x < ∞, where the equalities correspond to the marginal stability states

(see Figure 2).

(ii) For b = 1.0 corresponding to M = 0.1, 0.3, 0.5, 0.7, 1.0, and 1.5 it is found that

the electrogravitational unstable domains are 0 <x < 1.22669, 0 <x < 1.5266, 0 <x <

1.750969, 0 <x < 1.90513, 0 <x < 2.05422, and 0 <x < 2.19341, the neighboring stable

domains are 1.22669 ≤ x < ∞, 1.5266 ≤ x < ∞, 1.750969 ≤ x < ∞, 1.90513 ≤ x < ∞,

2.05422 ≤ x < ∞, and 2.19341 ≤ x < ∞, where the equalities correspond to the marginal

stability states (see Figure 3).

*

x
Figure 2 Electrogravitational stable and unstable domains for b = 0.5.
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(iii) For b = 1.5 corresponding to M = 0.1, 0.3, 0.5, 0.7, 1.0, and 1.5 it is found that the

electrogravitational unstable domains are 0 <x < 1.35924, 0 <x < 1.9735, 0 <x < 2.3982, 0

<x < 2.6563, 0 <x < 2.8835, and 0 <x < 3.0798, the neighboring stable domains are 1.35924

≤ x < ∞, 1.9735 ≤ x < ∞, 2.3982 ≤ x < ∞, 2.6563 ≤ x < ∞, 2.8835 ≤ x < ∞, and 3.0798 ≤ x <

∞, where the equalities correspond to the marginal stability states (see Figure 4).

(iv) For b = 2.5, corresponding to M = 0.1, 0.3, 0.5, 0.7, 1.0, and 1.5 it is found that

the electrogravitational fluid cylinder is completely stable not only for short wave-

lengths, but also for very long wavelengths and the gravitational unstable domains are

completely suppressed (see Figure 5).

(v) For b = 3.0, corresponding to M = 0.1, 0.3, 0.5, 0.7, 1.0 and 1.5 it is found that

the electrogravitational fluid cylinder is completely stable not only for short

*

x
Figure 3 Electrogravitational stable and unstable domains for b = 1.0.

*

x
Figure 4 Electrogravitational stable and unstable domains for b = 1.5.
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wavelengths, but also for very long wavelengths and the gravitational unstable domains

are completely suppressed (see Figure 6).

8. Conclusion
From the presented numerical results, we may deduce the following. For the same

value of M, it is found that the unstable domains are increasing with increasing of b

*

x
Figure 5 Electrogravitational stable domains for b = 2.5.

*

x
Figure 6 Electrogravitational stable domains for b = 3.0.
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values. This means that the influence of electric field has a destabilizing effect for all

short and long wavelengths.

If b > 2.0, then the model is completely stable not only for short wave lengths, but

also for long wave lengths.

Appendix I
ξ1 = ε(i)I′m(x)Km(x) − ε(e)Im(x)K ′

m(x)

β11 =
2πρRokI′m(x) − 4πρxI′m(x)Km(x)

Im (x)

β12 =
k2

(
ε(i)

)2
I′m(x)

ξ1ρ

(
1 +mβ − mβ

Ro

)
+
2β2kI′m(x)
RoρIm(x)

+
iε(i)ε(e)I′m(x)k

ξ1ρ

(
mβ

Ro

)(
1 +mβ − mβ

Ro

)
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