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Abstract

Based on the method of differential inequalities, by constructing the upper ad lower
solutions suitably, delayed phenomenon of loss of stability of solutions in a second-
order quasi-linear singularly perturbed Dirichlet boundary value problem with a
turning point is found in this paper. An illustrating example is performed to verify
the obtained results.
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§1 Introduction
In real-world applications, there are numerous examples, from biology, chemistry, neu-

rophysiology, fluid dynamics, automation, semiconductor laser, etc., are described in

dynamical systems with singular perturbation. The process evolving more than one

scale in time and/or space is a typical feature of such type of dynamical systems.

The studies of singular perturbation can be traced back to nineteenth century stimu-

lated greatly by celestial mechanics at that time. The Lindstedt-Poincaré method could

be regarded as the first invention to deal with the secular term problems, which is one

of the two broad categories of singularly perturbed problems [1,2]. Another broad cate-

gory of singularly perturbed problems is the boundary layer problems [1,2]. The idea of

boundary layer was proposed by Prandtl in the setting of fluid dynamics and aerody-

namics. Matching principle was an invention of Prandtl to obtain uniformly valid

asymptotic solutions of boundary layer problems.

In the process of developing the theory of singular perturbation, Tikhonov’s limit

theory [3,4] and Fenichel’s geometric theory [5,6] are two seminal works. Both the two

theories tell us that the solutions of singularly perturbed problems tend to the stable

solutions of the corresponding reduced problems with the small parameter approach-

ing to zero under the normally hyperbolic condition. Since then, under this essential

condition of normal hyperbolicity, the theory of singular perturbation finds applica-

tions in many problems including boundary value problems [7], existence of solitons

[8], and biological models [9], etc.
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However, there are many practical situations in which the normal hyperbolicity of

the reduced solutions lose. That is, in geometrical speaking, there exist turning points

on the critical curve. The existence of turning points leads to several new phenomena

in singularly perturbed systems such as exchange of stability and delay of exchange of

stability [10]. In general speaking, both exchange of stability and delay of exchange of

stability have tight relationship with relaxation oscillations and the latter may lead to

canards.

Delay of loss (or exchange) of stability is a typical characteristic of canards detected

first in singularly perturbed systems before 30 years ago by the technique of nonstan-

dard analysis [11]. Eckhaus [12] applied standard asymptotic analysis and found the

canard phenomenon too. From then on, canard has been studied extensively and sev-

eral methods including matching asymptotic expansion and blow-up, etc., have been

developed. Nowadays, it has been well known that canards are not the exotic objects,

but occur frequently in a great deal of real-world applications including chemical reac-

tions [13] and neuron dynamics [14] and so on.

An easy and interesting example for explaining canard solutions was provided by

O’Malley in [15,16],

εy′ = xy, y(−1) = y0,

which is a first-order linear singularly perturbed initial value problem, in which x = 0

is the turning point. Shchepakina et al. [17] gave also several systems for illustrating

canards. However, as far as the authors know, there are rare contributions concerning

canards in nonlinear singularly perturbed boundary value problems. In fact, the solu-

tion of a second-order linear two-point boundary value problem as follows, contained

in the monograph of Kevorkian and Cole [1], is a canard,

εy′′ − xy′ + y = 0,−1 ≤ x ≤ 1; 0 < ε � 1,

y(−1) = 1, y(1) = 2,

in which, x = 0 is the turning point. This canard was approximated by matching

asymptotic expansion with the aid of the variational approach.

In this paper, based on the method of differential inequalities, by constructing the

upper and lower solutions suitably, delayed phenomenon of loss of stability of solu-

tions in the following second-order quasi-linear Dirichlet boundary value problem with

a turning point is studied in details,

εy′′ + yy′ + y = 0, a ≤ x ≤ b; 0 < ε � 1, (1)

y(a) = A, (2)

y(b) = B, (3)

in which, the prime denotes the derivative with respect to x, 0 <ε ≪ 1 is a small

parameter, a, b, A, and B are constants with a < 0 <b and

a + b = 0, A + B = 0. (4)

In other words, existence of canard solutions in boundary value problem (1-3) is

obtained in this paper.
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The paper is arranged as follows. In the next section, the asymptotic solution of (1-3)

is constructed formally. The uniform validity and the error of the asymptotic solution

are given in Section 3, which form the main results of the present paper. By the dyna-

mical behavior of the asymptotic solution, we know that the solution of (1-3) approxi-

mated by this asymptotic solution has the feature of delay of loss of stability, i.e., it is a

canard. In Section 4, an illustrating example is provided for verifying the correctness of

the main results in the paper.

Remark 1. If the solution of boundary value problem (1-3) changes sign in the inter-

val (a, b), then it is said that boundary value problem (1-3) has a turning point.

Remark 2. Although there have been many works concentrating on singularly per-

turbed problems with turning points, however, as far as the authors know, it seems so

far that rare works are concerning with canard solutions in quasi-linear singularly per-

turbed boundary value problems.

§2 Construction of the asymptotic solution
Set ε = 0 in Equation (1), we obtain the reduced equation

yy′ + y = 0, (5)

which has a family of solutions

u(x) = −x + C, (6)

where C is a constant of integration to be determined and a particular solution up(x)

≡ 0.

Obviously, the trivial solution up(x) ≡ 0 is lack of attraction. Hence, in general, it is

not reasonable to expect that there exist the solutions of (1-3) to be attracted by this

particular solution.

On the other hand, by direct linear stability analysis, it can be seen that the solutions

defined in (6) are attracted for x <C and repelled for x >C. Hence, x = C is viewed as a

turning point, where a <C <b is assumed. However, in the next section, utilizing the

method of upper and lower solutions, we will prove that there exists at least one solu-

tion of (1-3) tending to one of the family of solutions (6) on the whole interval (a, b)

with ε ® 0. This is the delayed phenomenon of loss of stability of solutions occurring

particularly in singularly perturbed systems with turning points.

The solutions defined in (6) can be regarded as the outer solutions. Generally, they

cannot satisfy the boundary conditions (2) and (3). Consequently, there will be two

boundary layers at the ended points of the interval. Hence, for obtaining the uniformly

valid asymptotic solution, corrections must be performed at the regions of boundary

layers.

Introduce a fast time scale,

τ1 =
x − a

ε
∈ [0, +∞),

by which, Equation (1) and boundary condition (2) can, respectively, be transformed

into the following forms,

d2y

dτ 2
1
+ y

dy
dτ1

+ εy = 0 (7)
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and

y(0) = A. (8)

Making ε ® 0 in (7) yields

d2y

dτ 2
1
+ y

dy
dτ1

= 0 (9)

which is solvable. The solution of Equation (9) satisfying condition (8), denoted by

VL(τ1), can be regarded as the zero-order approximation to the solution of (7) and (8).

In other words, VL(τ1) is a zero-order approximation to the left boundary layer. Of

course, at present, this zero-order approximation contains a constant to be determined

by matching.

Let
dVL

dτ1
= P, then

d2VL

dτ 2
1

=
dP
dτ1

= P
dP
dVL

. Accordingly, Equation (9) is reduced to

P
dP
dVL

+ PVL = 0 (10)

admitting P ≡ 0 which is discarded, and

dP
dVL

= −VL, (11)

which finally yields

P = −V2
L

2
+ C1,

i.e.,

dVL

dτ1
= −V2

L

2
+ C1, (12)

where C1 is a nonzero constant of integration.

Denote 2C1 = a21, in which a1 Î R. Hence, C1 > 0 is meant. Consequently, Equation

(12) can be rewritten as

dVL

V2
L − a21

= −1
2
dτ1. (13)

Integrating both sides of Equation (13) yields

VL − a1
VL + a1

= ±M1e−a1τ1 ,

where M1 > 0 is a constant of integration. There are two cases to be discussed.

Case I: |VL| > |a1|. In this case, we have

VL(τ1) = a1
1 +M1e−a1τ1

1 − M1e−a1τ1
= a1

1 + e−a1(τ1+d1)

1 − e−a1(τ1+d1)
= a1

e
a1
1 (τ1+d1) + e−

a1
2 (τ1+d1)

e
a1
1 (τ1+d1) − e−

a1
2 (τ1+d1)

,

= a1 coth
[a1
2
(τ1 + d1)

]
,
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which is a hyperbolic coth function with

V ′
L(τ1) = −2a21

ε

M1e−a1τ1

(1 − M1e−a1τ1 )2
= − a21

2ε
csch2

[a1
2
(τ1 + d1)

]
< 0, (14)

in which, d1 is a constant determined by

M1 = e−a1d1 . (15)

Case II: |VL| < |a1|. In this case,

VL(τ1) = a1
1 − M1e−a1τ1

1 +M1e−a1τ1
= a1 tanh

[a1
2
(τ1 + d1)

]
.

Direct calculations show that

VL′(τ1) =
2a21
ε

M1e−a1τ1

(1 +M1e−a1τ1 )2
=

a21
2ε

sech2
[a1
2
(τ1 + d1)

]
> 0, (16)

where d1 is defined in Equation (15).

Obviously, it follows from Equations (14) and (16) that the function VL(τ1) given in

cases I and II is, respectively, the monotone decreasing and increasing functions.

Matching between the outer solutions and the left boundary layer correction requires

that

VL(+∞) = u(a).

Thus, if a1 < 0, since

lim
τ1→+∞ a1 coth

[a1
2
(τ1 + d1)

]
= lim

τ1→+∞ a1 tanh
[a1
2
(τ1 + d1)

]
= −a1,

then

−a1 = u(a) = −a + C > 0.

If a1 > 0, since

lim
τ1→+∞ a1 coth

[a1
2
(τ1 + d1)

]
= lim

τ1→+∞ a1 tanh
[a1
2
(τ1 + d1)

]
= a1,

then

a1 = u(a) = −a + C > 0.

Now, it can be seen that both the a1 < 0 and a1 > 0 cases are possible for matching.

Therefore, without loss of generality, the a1 > 0 case can be adopted. Consequently, we

have the hyperbolic coth function

VL(τ1) = u(a)
1 +M1e−u(a)τ1

1 − M1e−u(a)τ1
= u(a) coth

[
u(a)
2

(τ1 + d1)
]

(17)

and the hyperbolic tanh function

VL(τ1) = u(a)
1 − M1e−u(a)τ1

1 +M1e−u(a)τ1
= u(a) tanh

[
u(a)
2

(τ1 + d1)
]
. (18)

Both of them are possible to be the left boundary layer correction.
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By setting τ1 = 0 in Equations (17) and (18) and taking Equation (8) into account, we

obtain from (17) and (18), respectively, that

A = u(a)
1 +M1

1 − M1
(19)

and

A = u(a)
1 − M1

1 +M1
, (20)

by which, the constant M1 is determined, i.e., equivalently, the constant d1 in (15) is

determined. Till now, VL(τ1) defined in (17) and (18) have been determined completely.

Similarly, matching between the outer solutions and the right boundary layer correc-

tion requires that

VR(−∞) = u(b).

In the same way, two boundary layer functions possible to be the corrections on the

right turn out to be

VR(τ2) = u(b)
1 +M2e−u(b)τ2

1 − M2e−u(b)τ2
= u(b) coth

[
u(b)
2

(τ2 + d2)
]

(21)

and

VR(τ2) = u(b)
1 − M2e−u(b)τ2

1 +M2e−u(b)τ2
= u(b) tanh

[
u(b)
2

(τ2 + d2)
]
, (22)

in which, u(b) = -b + C < 0,

τ2 =
x − b

ε
∈ (−∞, 0]

is another fast time scale, and d2 is a constant to be determined by the following

equality

M2 = e−u(b)d2 .

Similarly, the function VR(τ2) defined in Equations (21) and (22) is, respectively, the

monotone decreasing and increasing functions.

Finally, like the deductions of (19) and (20), we have, respectively, that

B = u(b)
1 +M2

1 − M2
(23)

and

B = u(b)
1 − M2

1 +M2
(24)

by which, the constant M2, i.e., the constant d2 is determined. Consequently, the

function VR(τ2) in Equations (21) and (22) is completely known.

Now, it has been clearly known that, near the left- and right-ended points of the

interval, there both have two candidates, possible to be the boundary layer corrections.

Which pair of the hyperbolic functions in Equations (17-18) and (21-22) is chosen
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depending on the practical situations like the boundary conditions. In the following of

the paper, we will show that the hyperbolic coth functions defined in Equations (17)

and (21) must be selected to be the left and right boundary layer corrections,

respectively.

Consequently, so far the formally asymptotic solution is given by

yasy(x, ε) = u(x) + VL(τ1) + VR(τ2), (25)

in which, u(t), VL(τ1), and VR(τ2) are defined in Equations (6, 17), and (21), respec-

tively, and the constant C in Equation (6) will be determined later. In the following

section, based on the theory of differential inequalities, by constructing the upper and

lower solutions suitably, we will prove that this asymptotic solution is uniformly valid

with certain order. Consequently, by the dynamical behavior of the asymptotic solution

(25), delay loss of stability of solution in (1-3) can be seen, i.e., existence of canard

solutions in (1-3) is known and this canard is approximated uniformly by the asympto-

tic solution (25).

§3 A lemma and the main results
To prove the main results of the current paper, the following lemma is needed.

Lemma 1 [18] Consider second-order nonlinear boundary value problems with

Dirichlet boundary conditions,
{
y′′ = f (x, y, y′), x ∈ (a, b)
y(a) = A, y(b) = B

in which a, b, A, and B are constants.

For this boundary value problem, if the following conditions hold,

(1) there exist the upper and lower solutions, i.e., there are functions b(x), a(x) Î C2

[a, b] with b(x) ≥ a(x) such that

β ′′ ≤ f (x,β ,β ′), x ∈ (a, b),

β(a) ≥ A, β(b) ≥ B

and

α′′ ≥ f (x,α,α′), x ∈ (a, b),

α(a) ≤ A, α(b) ≤ B,

(2) the function f(x, y, y’) satisfies the Nagumo condition with respect to b(t) and a
(t), then there exists at least one solution y(x) Î C2[a, b] with the following estimate:

α(x) ≤ y(x) ≤ β(x), x ∈ [a, b].

Based on Lemma 1, we turn to prove the following theorems.

Theorem 1 There exists at least one solution of boundary value problem (1-3) such

that
∣∣y(x, ε) − yasy(x, ε)

∣∣ ≤ γ ε, x ∈ [a, b], (26)

where g is a positive constant, yasy(x, ε) is given by Equation (25) in which

u(x) = −x,

i.e., C = 0 in Equation (6) is determined.
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By Theorem 1 and the dynamical behavior of yasy(x, ε), the following Theorem 2 can

be concluded directly.

Theorem 2 There exist at least one solution of boundary value problem (1-3) with

the following asymptotic behavior:

lim
ε→0

y(x, ε) = −x, x ∈ (a, b).

Theorems 1 and 2 together mean Theorem 3 as follows.

Theorem 3 Boundary value problem (1-3) has at least one canard solution, whose

zero-order approximation is given by Equation (25).

Proof of Theorem 1 Define the upper and lower solutions as follows:

β(x, ε) = u(x) + VL(τ1) + VR(τ2) + x4γ ε (27)

and

α(x, ε) = u(x) + VL(τ1) + VR(τ2) − x4γ ε, (28)

in which, g is a positive constant.

Since the right-hand side function in Equation (1) satisfies the Nagumo condition,

thus, to obtain Theorem 1, it is left to verify that the upper and lower solutions (31)

and (32) satisfy the condition (1) in Lemma 1.

Firstly, we prove the following inequality:

εβ ′′ + ββ ′ + β ≤ 0. (29)

In fact,

εβ ′′ + ββ ′ + β

= ε

(
V̈L

ε2
+
V̈R

ε2
+ 12x2γ ε

)
+ (u(x) + VL + VR + x4γ ε)

(
u′(x) +

V̇L

ε
+
V̇R

ε
+ 4x3γ ε

)

+u(x) + VL + VR + x4γ ε

= 12x2γ ε2 +
(
u(x) + VR + x4γ ε

) V̇L

ε
+

(
u(x) + VL + x4γ ε

) V̇R

ε

+4x3γ ε
(
u(x) + VL + VR + x4γ ε

)
=
1
ε

[(
u(x) + VR + x4γ ε

)
V̇L + (u(x) + VL + x4γ ε)V̇R

+ 4x3γ ε2
(
u(x) + VL + VR + x4γ ε

)
+ 12x2γ ε3

]
,

(30)

in which as well as in the following of the paper, the prime and the dot always

denote the derivations with respect to the slow scale x and the fast scales τ1, τ2,

respectively.

We want to prove that the quantity defined in Equation (30) is not positive. The

proof is completed by dividing the interval [a, b] into five parts.

Part I. x Î [a, a + δ1), where δ1 > 0 is a sufficiently small constant independent of ε.

In this case, it can be deduced from Equation (17) that

VL(τ1) |x=a = VL(0) = A and V̇L(τ1) |x=a = V̇L(0) = − 2u2(a)M1

(1 − M1)
2 (31)
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which are both constants. Similarly, we can derive from Equation (21) that

VR(a) = u(b)
1 +M2e

−u(b) a−b
ε

1 − M2e
−u(b) a−b

ε

= u(b)+u(b)
2M2e

−u(b) a−b
ε

1 − M2e
−u(b) a−b

ε

= u(b)+O
(
e−u(b) a−b

ε

)
, (32)

in which, for ε sufficiently small, O(e−u(b) a−b
ε ) denotes a quantity that is exponentially

small and negative, and

V̇R(a) = − 2u2(b)M2e
−u(b) a−b

ε(
1 − M2e

−u(b) a−b
ε

)2 , (33)

which is a exponential small quantity too.

Substituting Equations (31-33) into Equation (30) and taking a + b = 0 into account

yields
[(
u(x) + VR + x4γ ε

)
V̇L +

(
u(x) + VL + x4γ ε

)
V̇R

+4x3γ ε2
(
u(x) + VL + VR + x4γ ε

)
+ 12x2γ ε3

] |x=a

= −
[
2C + O

(
e−u(b) a−b

ε

)
+ a4γ ε

]
2u2(a)M1

(1 +M1)
2 − (−a + C + A + a4γ ε

) 2u2(b)M2e
−u(b) a−b

ε(
1 − M2e

−u(b) a−b
ε

)2

+4a3γ ε2
[
2C + A + O

(
e−u(b) a−b

ε

)
+ a4γ ε

]
+ 12a2γ ε3.

(34)

By comparing the order of the four parts in Equation (34), we can find that, for ε

sufficiently small, the sign of Equation (34) is determined by its first part, i.e.,

−
[
2C + O

(
e−u(b) a−b

ε

)
+ a4γ ε

]
2u2(a)M1

(1 − M1)
2 . (35)

Hence, if the constant C in Equation (35) is chosen such that

C ≥ 0, (36)

then

−
[
2C + O

(
e−u(b) a−b

ε

)
+ a4γ ε

]
2u2(a)M1

(1 − M1)
2 < 0.

Consequently, when x = a, the quantity defined in (30) is negative if the inequality

(36) holds and ε is sufficiently small. Hence, there exists a sufficiently small constant δ1
> 0 independent of ε such that the quantity defined in (30) is negative for x Î [a, a +

δ1).

On the contrary, we can see that when the following differential inequality to be

proved,

εα′′ + αα′ + α ≥ 0, (37)

in which, a(x, ε) is defined in Equation (28), it is required that

C ≤ 0. (38)
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Accordingly, the inequalities (36) and (38) together yield

C = 0. (39)

Therefore, in what follows, C = 0 is set in Equation (6). Thus, u(x) = -x turns out to

be the reduced solution.

Part II. x = 0.

In this case, since the boundary values in (2-3) satisfy

A + B = 0,

it then follows from Equations (19) and (23) that

0 = −a
1 +M1

1 − M1
− b

1 +M2

1 − M2
= b

(
1 +M1

1 − M1
− 1 +M2

1 − M2

)
= 2b

M1 − M2

(1 − M1)(1 − M2)
,

in which, a = -b has been noted, which finally implies that

M1 = M2. (40)

Consequently, by setting x = 0 in Equation (30), one gets

1
ε

[(
u(0) + VR

(−b
ε

))
V̇L

(−a
ε

)
+

(
u(0) + VL

(−a
ε

))
V̇R

(−b
ε

)]

=
1
ε

[
VR

(−b
ε

)
V̇L

(−a
ε

)
+ VL

(−a
ε

)
V̇R

(−b
ε

)]

=
1
ε

⎡
⎢⎢⎢⎣−2a2b

1 +M2e
−b2

ε

1 − M2e
−b2

ε

M1e
−a2

ε(
1 +M1e

−a2
ε

)2 − 2ab2
1 +M1e

−a2

ε

1 − M1e
−a2

ε

M2e
−b2

ε(
1 +M2e

−b2
ε

)2

⎤
⎥⎥⎥⎦

= 0,

in which, a = -b and M1 = M2 have been taken into account. Thus, when x = 0, the

inequality (29) holds.

Part III. x Î [a = δ1, 0].

Taking the cases in Parts I and II into account, if the inequality (29) does not hold

uniformly in this region, then there must be at least one point x* Î (a = δ1, 0) such

that

H(x∗, ε) > 0,H′(x∗, ε) = 0 and H′′(x∗, ε) ≤ 0,

in which

H(x, ε) =
1
ε

[(−x + VR + x4γ ε
)
V̇L +

(−x + VL + x4γ ε
)
V̇R

+4x3γ ε2
(−x + VL + VR + x4γ ε

)
+ 12x2γ ε3

]
.

However, for ε sufficiently small, since V̇L, V̇R and VL + VR are exponentially small in

this region, thus, it can be shown by direct calculations that

H′(x∗, ε) = ε[−12γ (x∗)3 + O(ε)] > 0,

which is a contradiction.

Part IV. x Î (b - δ2, b], where δ2 > 0 is a sufficiently small constant independent of ε.
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In this region, the proof of the inequality (29) is parallel to Part I completely. Like

the deductions of Equations (31-33), the values of VL(τ1)|x=b, V̇L(τ1)|x=b, VR(τ2)|x=b, and
V̇R(τ2)|x=b can be calculated. Consequently, we can see that, when x = b, the other

parts in Equation (30) are the higher-order small quantities compared with its second

part. Thus, the sign of Equation (30) is determined by its second part, which is a nega-

tive quantity. Accordingly, the inequality (29) is proved.

Part V. x Î (0, b - δ2,], In this region, the proof of the inequality (29) is parallel to

Part III completely.

So far the proof of the differential inequality (29) has been finished for x Î [a, b]. In

the same way, the differential inequality (37) can be proved.

In what follows, we turn to prove the inequalities on the boundaries. For ε suffi-

ciently small, we have

β(a, ε) = u(a) + VL(0) + VR

(
a − b

ε

)
+ a4γ ε

= u(a) + A + u(b) + O
(
e−u(b) a−b

ε

)
+ a4γ ε

= A + O
(
e
b(a−b)

ε

)
+ a4γ ε

≥ A ≥ α(a, ε) = u(a) + VL(0) + VR

(
a − b

ε

)
− a4γ ε

in which, u(a) = -a, u(b) = -b, and a + b = 0 have been used.

Similarly, it can be proved that

β(b, ε) ≥ B ≥ α(b, ε).

Therefore, according to Lemma 1, we have

α(x, ε) ≤ y(x, ε) ≤ β(x, ε), x ∈ [a, b],

and accordingly, Theorem 1 is derived.

Remark 3. From the proof of Theorem 1, we know that the construction of the

upper and lower solutions defined in (27) and (28), respectively, is essential. The error

term x4gε introduced in (27) and (28) seems necessary for discussing the existence of

canard solutions in singularly perturbed problems (1-3).

§ 4 An illustrating example
Consider a second-order quasi-linear singularly perturbed Dirichlet boundary value

problem as follows,

εy′′ + yy′ + y = 0, −1 < x < 1; 0 < ε � 1,

y(−1) = 2,

y(1) = −2

in which, the boundary points and the boundary values satisfy the conditions (4).

According to Theorem 1, the uniformly valid zero-order asymptotic solution of this

boundary value problem is given by
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yasy(x, ε) = −x +
1 +M1e

−1−x
ε

1 − M1e
−1−x

ε

− 1 +M2e
x−1
ε

1 − M2e
x−1
ε

, (41)

in which, M1 and M2 are, respectively, determined by

2 =
1 +M1

1 − M1
,

and

−2 = − 1 +M2

1 − M2
.

Consequently,

M1 = M2 =
1
3

(42)

are derived.

Substituting Equation (42) into (41) yields

yasy(x, ε) = −x +
1 + 1

3e
−1−x

ε

1 − 1
3e

−1−x
ε

− 1 + 1
3 e

x−1
ε

|

1 − 1
3 e

x−1
ε

|
. (43)

The asymptotic solution (43) is simulated in Figure 1 with different values of ε. In

the figure, the solid, dashing, and dotted lines represent, respectively, the reduced solu-

tion, the asymptotic solutions with ε = 0.1 and ε = 0.01. From this figure, we can see

that

(1) delayed phenomenon of loss of stability of solutions really occurs, that is, exis-

tence of canards in this boundary value problem is verified. This canard solution is

approximated by (43) with the accuracy of zero-order;

-1 -0.5 0 0.5 1
x

-2

-1

0

1

2

y
�
x
�

Figure 1 The reduced solution and the asymptotic solutions. Solid line The reduced solution; dashing
line the asymptotic solution with ε = 0.1; dotted line the asymptotic solution with ε = 0.01.
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(2) with ε ® 0, the asymptotic solution approaches more and more to the reduced

solution in the whole interval (a, b). Therefore, the zero-order approximation is suffi-

ciently accurate for the small ε.
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