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Abstract

In this work, we consider the system:⎧⎨
⎩

−�pu = λ[g(x)a(u) + f (v)] in �

−�qv = λ[g(x)b(v) + h(u)] in �

u = v = 0 on ∂� ,

where Ω is a bounded region in RN with smooth boundary ∂Ω, Δp is the p-Laplacian
operator defined by Δpu = div (|∇u|p-2∇u), p, q > 1 and g (x) is a C1 sign-changing
the weight function, that maybe negative near the boundary. f, h, a, b are C1 non-
decreasing functions satisfying a(0) ≥ 0, b(0) ≥ 0. Using the method of sub-super
solutions, we prove the existence of weak solution.

1 Content
In this paper, we study the existence of positive weak solution for the following system:⎧⎨

⎩
−�pu = λ[g(x)a(u) + f (v)] in �

−�qv = λ[g(x)b(v) + h(u)] in �

u = v = 0 on ∂� ,
(1)

where Ω is a bounded region in RN with smooth boundary ∂Ω, Δp is the p-Laplacian

operator defined by Δpu = div(|∇u|p-2 ∇u), p, q > 1 and g(x) is a C1 sign-changing the

weight function, that maybe negative near the boundary. f, h, a, b are C1 non-decreas-

ing functions satisfying a(0) ≥ 0, b(0) ≥ 0.

This paper is motivated by results in [1-5]. We shall show the system (1) with sign-

changing weight functions has at least one solution.

2 Preliminaries
In this article, we use the following hypotheses:

(Al)
lim

f

⎛
⎝M(h(s))

1
q−1

⎞
⎠

sp−1 = 0
as s ® ∞, ∀M > 0

(A2) lim f (s) = lim h (s) = ∞ as s ® ∞.

(A3) lim a(s)
sp−1 = lim b(s)

sq−1 = 0 as s ® ∞.

Let lp, lq be the first eigenvalue of -Δp, -Δq with Dirichlet boundary conditions and

�p, �q be the corresponding positive eigenfunctions with ||�p||∞ = ||�q||∞ = 1.
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Let m, δ, g, μp, μq > 0 be such that{
|∇ϕp|p − λpϕp ≥ m in�δ

ϕp ≥ μp on� − �δ

(2)

and { |∇ϕq |q − λqϕq ≥ m in �δ

ϕp ≥ μp on � − �δ.
(3)

�δ = {x ∈ �; d(x, ∂�) ≤ δ}.

We assume that the weight function g(x) take negative values in Ωδ, but it requires

to be strictly positive in Ω-Ωδ. To be precise, we assume that there exist positive con-

stants b and h such that g(x) ≥-b on �δ and g(x) ≥ h on Ω-Ωδ. Let s0 ≥ 0 such that

ha(s) + f (s) > 0, hb(s) + h(s) > 0 for s >s0 and

f0 = max{0, −f (0)}, h0 = max{0, −h(0)}.

For g such that gr-1 t > s0; t = min {ap, aq}, r = min{p, q} we define

A = max

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γλp

ηa

⎛
⎜⎜⎜⎜⎝γ

1
p − 1

αp

⎞
⎟⎟⎟⎟⎠+f

⎛
⎜⎜⎜⎜⎝γ

1
q − 1

αq

⎞
⎟⎟⎟⎟⎠

, γλq

ηb

⎛
⎜⎜⎜⎜⎝γ

1
q − 1

αq

⎞
⎟⎟⎟⎟⎠+h

⎛
⎜⎜⎜⎜⎝γ

1
p − 1

αp

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B = min

⎡
⎢⎢⎢⎢⎢⎢⎣

mγ

βa

⎛
⎜⎜⎝γ

1

p − 1

⎞
⎟⎟⎠+f0

, mγ

βb

⎛
⎜⎜⎝γ

1

q − 1

⎞
⎟⎟⎠+h0

⎤
⎥⎥⎥⎥⎥⎥⎦

where αp =
p−1
p μp

p
p−1 and αq =

q−1
q μq

q
q−1.

We use the following lemma to prove our main results.

Lemma 1.1 [6]. Suppose there exist sub and supersolutions (ψ1, ψ2) and (z1, z2)

respectively of (1) such that (ψ1, ψ2) ≤ (z1, z2). then (1) has a solution (u, v) such that

(u, v) Î [(ψ1, ψ2), (z1, z2)].

3 Main result
Theorem 3.1Suppose that (A1)-(A3) hold, then for every l Î [A, B], system (1) has at

least one positive solution.

Proof of Theorem 3.1 We shall verify that (ψ1, ψ2) is a sub solution of (1.1) where

ψ1 = γ
1

p−1 p−1
p ϕp

p
p−1

ψ2 = γ
1

q−1 q−1
q ϕq

q
q−1 .
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Let W ∈ H0
1 (�) with w ≥ 0. Then∫

�

|∇ψ1|p−2∇ψ1∇wdx = γ

∫
�

(λpϕp
p − |∇ϕp|p)wdx (4)

Now, on �δ by (2),(3) we have

γ (λpϕp
p − |∇ϕp|p) ≤ −mγ

Since l ≤ B then

λ ≤ mγ

βa(γ
1

p−1 ) + f0

.

thus

γ (λpϕp
p − |∇ϕp|p) ≤ −mγ

≤ λ

(
−βa (γ

1
p−1 ) − f0

)

≤ λ

(
g(x)a (γ

1
p−1 ) − f0

)
λ

(
g(x) a

(
p−1
p γ

1
p−1 ϕp

1
p−1

)

+ f
(

q−1
q γ

1
q−1 ϕq

1
q−1

))

then by (4)∫
�δ

|∇ψ1|p−2∇ψ1∇wdx ≤
∫

�δ

λ

(
g(x) a

(
p−1
p γ

1
p−1 ϕp

p
p−1

)

+ f
(

q−1
q γ

1
q−1 ϕq

q
q−1

))
wdx

A similar argument shows that∫
�δ

|∇ψ2|q−2∇ψ2∇wdx ≤
∫

�δ

λ

(
g(x) b

(
q−1
q γ

1
q−1 ϕq

1
q−1

)

+ h
(

p−1
p γ

1
p−1 ϕp

1
p−1

))
wdx

Next, on � − �δ . Since l ≥ A, then

λ ≥ γ λp

ηa
(

γ
1

p−1αp

)
+ f

(
γ

1
q−1αq

)

so we have

γ (λpϕp
p − |∇ϕp|p) ≤ γ λp

≤ λ

[
ηa

(
γ

1
p−1 αp

)
+ f

(
γ

1
q−1 αq

)]
≤ λ[g(x)a(ψ1) + f (ψ2)], � − �δ
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Then by (4) on we have

−�pψ1 ≤ λ[g(x)a(ψ1) + f (ψ2)] on � − �δ

A similar argument shows that

−�qψ2 ≤ λ[g(x)b(ψ2) + h(ψ1)]

We suppose that �p and �q be solutions of{
−�pκp = 1 in �

κp = 0 on ∂�{
−�qκq = 1 in �

κq = 0 on ∂�

respectively, and μ’p = ||�p||�, ||�q||� = μ’q.

Let

(z1, z2) =

⎛
⎝ c

μ′
p
λ

1
p−1 κp,

[
2h

(
cλ

1
q−1

)] 1
q−1

λ
1

q−1 κq

⎞
⎠ .

Let W ∈ H0
1(�) with w ≥ 0.

For sufficient C large

μ′
p
p−1

⎡
⎣||g||∞a

(
Cλ

1
p−1

)
+ f

((
2h(Cλ

1
p−1

)) 1
q−1

λ
1

q−1 μ′
q

)⎤
⎦

Cp−1
≤ 1

then

∫
|∇z1|p−2∇z1∇wdx = λ

(
C
μ′

p

)p−1 ∫
wdx

≥ λ

∫ ⎡
⎣||g||∞a (Cλ

1
p−1 ) + f

⎛
⎝(2h (Cλ

1
p−1 ))

1
q−1

λ
1

q−1 μ′
q

⎞
⎠

⎤
⎦ dx

≥ λ

∫ ⎡
⎣g(x) a (Cλ

1
p−1 κp

μ′
p
) + f

⎛
⎝(2h (Cλ

1
p−1 ))

1
q−1

λ
1

q−1 κq

⎞
⎠

⎤
⎦dx

=
∫

[g(x) a (z1) + f (z2)]wdx

Similarly, choosing C large so that

||g||∞
⎛
⎝b

(
2h

(
Cλ

1
p−1

)) 1
q−1

λ
1

q−1 μ′
q

⎞
⎠

h

(
Cλ

1
p−1

) ≤ 1
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then ∫
|∇z2|q−2∇z2∇wdx = 2λh

(
Cλ

1
p−1

) ∫
wdx

≥ λ

∫ [||g||∞b(z2) + h(z1)
]
wdx.

Hence by Lemma (1.1), there exist a positive solution (u, v) of (1) such that (ψ1, ψ2)

≤ (u, v) ≤ (z1, z2).
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