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Abstract

This article studies the vanishing heat conductivity limit for the 2D Cahn-Hilliard-
boussinesqg system in a bounded domain with non-slip boundary condition. The
result has been proved globally in time.
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1 Introduction

Let Q € R? be a bounded, simply connected domain with smooth boundary 0Q, and »
is the unit outward normal vector to 0Q. We consider the following Cahn-Hilliard-
Boussinesq system in Q x (0, «) [1]:

B+ (u- V)u+ Vi — Au= pVe + ey, (1.1)
divu=0, (1.2)
36 +u- V6 = A6, (1.3)
dp+u-Ve = Ap, (1.4)
~Ap+f'(¢) = w1, (1.5)
1=06-0"2_%_0 on 92 x(0,) (1.6)
on ~ an
(u,6,¢)(x, 0) = (uo, 6o, $o)(x), x € 2, (1.7)

where u, 7, 6 and ¢ denote unknown velocity field, pressure scalar, temperature of
the fluid and the order parameter, respectively. ¢ >0 is the heat conductivity coefficient

and e, : = (0, 1)". p is a chemical potential and f(¢) := ;(¢> — 1)? is the double well
potential.
When ¢ = 0, (1.1), (1.2) and (1.3) is the well-known Boussinesq system. In [2] Zhou

and Fan proved a regularity criterion w=curlu € L'(0, T; BY, ) for the 3D Boussinesq

system with partial viscosity. Later, in [3] Zhou and Fan studied the Cauchy problem
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of certain Boussinesq-o equations in 7z dimensions with # = 2 or 3. We establish regu-
larity for the solution under Vu e L'(0,T; B, ). Here B,  denotes the homoge-

neous Besov space. Chae [4] studied the vanishing viscosity limit ¢ — 0 when Q = R2

The aim of this article is to prove a similar result. We will prove that
Theorem 1.1. Let (uo,6p) € HYNH?, ¢y e H*, div ug = 0 in Q and %% = % - ¢
on 0Q). Then, there exists a positive constant C independent of ¢ such that

| uellieor:H2) < C |l OellieoH2) < C,

1.8
| Pellreormty < Gl 3¢(tie, Oc, d) 12 (0,1:12) < C, (1.8)
or any T > 0, which implies
for any p
(e, Be, ¢c) — (u,6,9) strongly in L*(0,T;H') when & — 0. (1.9

Here, (1, 0, @) is the solution of the problem (1.1)-(1.7) with ¢ = 0.

2 Proof of Theorem 1.1
Since (1.9) follows easily from (1.8) by the Aubin-Lions compactness principle, we only
need to prove the a priori estimates (1.8). From now on, we will drop the subscript &
and throughout this section C will be a constant independent of &.

First, by the maximum principle, it follows from (1.2), (1.3), and (1.6) that

I OllL=(o,rie) = Il Boll~ < C. (2.1)

Testing (1.3) by #, using (1.2) and (1.6), we see that

1d
/92dx+sf|ve|2dx=o,
2dt

whence
Ve |l 0l < C. (2.2)

Testing (1.1) and (1.4) by u and g, respectively, using (1.2), (1.6), (2.1), and summing
up the result, we find that

d

dt

= /9€zudx =10l hulle = C 1l ulliz,

/;uz o 199F +f(¢>)dx+/ | Vule | Vu2dx

which gives

| ¢llreor.ay < C, (2.3)
Il wllzeo,rr2)+ | ullrzeo,r:my < G, (2.4)
I Vielrzo 12y < C. (2.5)

Testing (1.4) by ¢, using (1.2), (1.5) and (1.6), we infer that
1d 2 29, _ 3
2dt_/¢ dx+f|A¢| dx—/(d) ¢)Apdx

= —3/4)2 | V¢|2dx—/¢A¢dx§ —/d)Ad)dx

1 1
Ag|? 2dx,
52/| ¢|dx+2f¢dx

Page 2 of 6



Jiang and Fan Boundary Value Problems 2011, 2011:54 Page 3 of 6
http://www.boundaryvalueproblems.com/content/2011/1/54

which leads to
| ¢llr201:12) < C. (2.6)
We will use the following Gagliardo-Nirenberg inequality:

¢ lI7x< Cll ¢lles | Sl (2.7)

It follows from (2.6), (2.7), (2.5), (2.3) and (1.5) that

T
/ /| VA$|*dxdt
0

=/0T/|V(f/(¢)—u)|2dxdt

T T
< c/ /| w|2dxdt+c/ /| V(¢® — ¢)>dxdt

0 0

T 4 2
<C+C ¢ | Vo|-dxdt
[, J#ive o5
T

<CHCIVH Iagrry [ 16 s

T
sC+c/ 1612 1l & 12 dt
0

T
<CHCIO P [ 16 Iudi=C
0

which yields
| éll201m3) < C (2.9
| Pliso) < C, (2.10)
| Vollizo,rixy < C. (2.11)

Testing (1.4) by A%, using (1.5), (2.4), (2.3), (2.10) and (2.11), we derive

1d 2 242
2dt[|A¢|dx+/|A¢|dx
=—/u-V¢~A2¢dx+/A(¢3—¢)~A2¢dx

<l ullz | Volire I| A%pll2+ | A(@> — )iz I| A%l
<C|l Vol || A%l

+C(Il & N7l Aplliz+ Il pllr= | Vol | Volliz+ || Aglli2) || A%l
<Cl Voli~ I| A%l

+C(Il ¢ <1l Agllz+ | @l I| Volie+ | Agllr2) | A2l
1
=, A5 +Cl VP i +Cll @ lIi=ll Ag I3

+ClI VY Il ¢ IF + Cll A 72,
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which implies
| ¢llro,r;2y+ I @llr2(0,rmey < C. (2.12)

Testing (1.1) by -Au + Vi, using (1.2), (1.6), (2.12), (2.1) and (2.4), we reach

1d

2dt/|vu|2dx+/(—Au+Vn)2dx
= / (uVeo +0e; —u-Vu)(—Au + Vr)dx
< (I wllzz | Volize+ I Olliz+ Il ullps || Vaullga) | —Au+ V|l
< C(Il Vol + 1+ | w1271 V(1,2 12 12

12 o Va2 Aull2) | —Au+ V|

1
<C| Vo |I}x +C+C | Vu I} +) | —Au+Vr |12,

which yields

Il ullpeco, ;) + I Ullr2eo,1:H2y < C. (2.13)
Here, we have used the Gagliardo-Nirenberg inequalities:

lulifs< C Il ulliz || Vull2,

I Vi I2< C Il Vaullz || g,
and the H>-theory of the Stokes system:

I ullpe+ | Tl = C Il —Au+ V|| (2.14)
Similarly to (2.13), we have

Il deullr20,112) < C. (2.15)
(1.1), (1.2), (1.6) and (1.7) can be rewritten as

ou— Au+Vmr =g:=uVep+0e; —u-Vu, in Q x (0, 00),
u=0, on 9Q x (0, 00),
u(x, 0) = uo(x).
Using (2.12), (2.1), (2.13), and the regularity theory of Stokes system, we have

I deulizomery+ I ullzomwzey < C I 8llz2(0,1:12)
< Cll ullzo,rey I V@lie(o,riiry + C Il €llie(o,1;0) (2.16)
+ C || ullpo(o,re20y || Vitllizo, 120y < G,

for any 2 < p <eo.
(2.16) gives

I Vullrzeo,r,1%) < C. (2.17)
It follows from (1.3) and (1.6) that
A6 =0 on 92 x (0, 00). (2.18)

Applying A to (1.3), testing by A8, using (1.2), (1.6), (2.16), (2.17) and (2.18), we
obtain
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1d
2de

= _/ (A(u-VE) —uVAO)AOdx

/|A0|2dx+s/|VA9|2dx

< C(II Aulls | VOllLs+ || Vull= || A0I2) || AO]IL2
< C(Il Aullps+ Il Vulli=) | A0 |17,

which implies

| 010,112y + V& Il Oll2 0,3y < C. (2.19)
It follows from (1.3), (1.6), (2.19) and (2.13) that

Il 8:0lL(0,1;12) < C. (2.20)
Taking o, to (1.4) and (1.5), testing by 9,0, using (1.2), (1.6), (2.12), and (2.15), we

have
van [1aoras [1a0grax
= —/Blu V- Bl¢dx+/A(3¢281¢ — 39) - dpdx

= —/ ou-Vo - 3t¢dx+/ (3¢231¢ - 3t¢)Aat¢dx
< I duull2 | Volire 1| 0l + (I 3¢ Il +1) [l 9l | Adgpllr2

1
= ol | VOl Il 0l + Il Adip I7: +C 1l 3o 172,

which gives
Il 8:pllro,r;e2y+ Il 3Pllr20,m;H2) < C. (2.21)

By the regularity theory of elliptic equation, it follows from (1.4), (1.5), (1.6), (2.21),
(2.13) and (2.12) that

Il ll=(orhty < C Il Adllr~o,r2) < C I o = f' (@) lr~(0,1:2)
< C | pliz=r2) + CIllf' (@), 1:12)
< C | Aul=r2y + C Il f(@)ll(o,1:12)
<Cll 3¢ +u-Voli=oriz)+ Cll f(®) =)
< C |l 3Pllr=o112) + C Il ullL=(orisy | VOli=o1:L9)
+ C Il f(P)llr=(o,r1r2) < C.

(2.22)

Taking o, to (1.1), testing by d,u, using (1.2), (1.6), (2.17), (2.22), (2.21) and (1.5), we
conclude that

1d 5 5
2dt/|8tu|dx+/|V8tu|dx

= — / 3tu -Vu- atud.x+ / (8t,u . V¢ + U Vat(b + 3t962) atudx

< IVl 11 e I1F2 + (Il Butllze | Vlizm+ Il el | VOdliz+ Il 8,01112) Il dpuel 2
< | Vaulles | 9t 17 + C(I Adeplliz+ 1l 3(¢° — @)+ || VAl + 1) || dyull2,
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which implies
Il Seutllre=(o,r:ezy+ I deutllr2o,m;mry < C. (2.23)

Using (2.23), (2.22), (2.1), (2.13), (1.1), (1.2), (1.6) and the H>-theory of the Stokes

system, we arrive at
Il wllpee(o,r;m2) < C.

This completes the proof.
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