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Abstract

A nonlinear wave equation of Kirchhoff type with memory condition at the
boundary in a bounded domain is considered. We establish a general decay result
which includes the usual exponential and polynomial decay rates. Furthermore, our
results allow certain relaxation functions which are not necessarily of exponential and
polynomial decay. This improves earlier results in the literature.
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1 Introduction
In this article, we study the asymptotic behavior of the energy function related to a

nonlinear wave equation of Kirchhoff type subject to memory condition at the bound-

ary as follows:

utt − M
(||∇u||22

)
�u + l(t)h(∇u) − �ut + a(x)f (u) = 0 in � × (0,∞), (1:1)

u = 0 on �0 × (0,∞), (1:2)

u +
∫ t

0
g(t − s)

(
M

(||∇u(s)||22
) ∂u

∂ν
(s) +

∂ut
∂ν

(s)
)
ds = 0 on �1 × (0,∞), (1:3)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in �, (1:4)

where Ω is a bounded domain with smooth boundary ∂Ω = Γ0 ∪ Γ1. The partition Γ0
and Γ1 are closed and disjoint, with meas(Γ0) >0, ν represents the unit normal vector

directed towards the exterior of Ω, u is the transverse displacement, and g is the

relaxation function considered positive and nonincreasing belonging to W1,2 (Ω).

From the physical point of view, we know that the memory effect described in inte-

gral equation (1.3) can be caused by the interaction with another viscoelastic element.

In fact, the boundary condition (1.3) signifies that Ω is composed of a material which

is clamped in a rigid body in the portion Γ0 of its boundary and is clamped in a body

with viscoelastic properties in the portion of Γ1.

When Γ1 = j, problem (1.1) has its origin in describing the nonlinear vibrations of

an elastic string. More precisely, we have
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ρh
∂2u
∂t2

=

{
p0 +

Eh
2L

∫ L

0

(
∂u
∂x

)2

dx

}
∂2u
∂x2

+ f (1:5)

for 0 < × < L, t ≥ 0; where u is the lateral deflection, x the space coordinate, t the

time, E the Young modulus, r the mass density, h the cross section area, L the length,

p0 the initial axial tension and f the external force. Kirchhoff [1] was the first one who

introduced (1.5) to study the oscillations of stretched strings and plates, so that (1.5) is

called the wave equation of Kirchhoff type after him. In this direction, problem (1.1)

with ∂Ω = Γ0 and l(t) = 0 has been investigated by many authors in recent years, and

many results concerning existence, nonexistence and asymptotic behavior have been

established, see [2-13].

On the other hand, regarding the viscoelastic wave equations with memory term act-

ing in the boundary or in the domain, there are numerous results related to asymptotic

behavior of solutions. For example, in the case where M(s) = 1, Cavalcanti et al. [14]

investigated the existence and uniform decay of strong solutions of wave equation (1.1)

with a nonlinear boundary damping of memory type and a nonlinear boundary source

when l(t) = 0. Cavalcanti and Guesmia [15] considered the following system:

utt − �u + F(x, t, u,∇u) = 0 in � × (0,∞), (1:6)

u = 0 on �0 × (0,∞), (1:7)

u +
∫ t

0
g(t − s)

∂u
∂ν

(s)ds = 0 on �1 × (0,∞), (1:8)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in �, (1:9)

where Ω is a bounded domain with smooth boundary ∂Ω = Γ0 ∪ Γ1. They obtained

the general decay result which depends on the relaxation function g. In particular, if

the relaxation function g decays exponentially (or polynomially), then the solution also

decays exponentially (or polynomially) and with the same decay rate. Moreover, when

u0 = 0 on Γ1, they obtained exponential or polynomial decay of solutions, even if the

relaxation function g does not converge to 0 at ∞. Later, Messaoudi and Soufyane [16]

generalized this result to the case of a system of Timoshenko type. They established

general decay rate results, from which the usual exponential and polynomial decay

rates are only special cases. Recently, Messaoudi and Soufyane [17] studied the follow-

ing problem:

utt − �u + f (u) = 0

in a bounded domain with boundary conditions (1.7)-(1.9). They improved the

results of [15] by applying the multiplier techniques. Indeed, they obtained not only a

general decay result, but their works also allowed certain relaxation functions which

are not necessarily of exponential or polynomial decay. For other related works, we

refer the reader to [18-20] and references therein.

Conversely, in the case where M is not a constant function, Santos [21] considered

utt − μ(t)uxx = 0, (x, t) ∈ (0, 1) × R+,

u(0, t) = 0, u(1, t) = −
∫ t

0
g(t − s)μ(s)ux(1, s)ds, ∀t > 0,

u(0) = u0, ut(0) = u1, x ∈ (0, 1),
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where μ(t) is a nonincreasing function satisfying μ(t) ≥ μ0 >0. By denoting k the

resolvent kernel of g’, he showed that the solution decays exponentially (or polynomi-

ally) to zero provided k decays exponentially (or polynomially) to zero. Later on, Santos

et al. [22] generalized this result to a nonlinear n-dimensional equation of Kirchhoff

type of the form

utt − M
(||∇u||22

)
�u − �ut + f (u) = 0 (1:10)

in a bounded domain with boundary conditions (1.2)-(1.3). In that article, they

proved that the energy decays with the same rate of decay of the relaxation function.

This latter result improved an earlier one by Park et al. [23], where the authors consid-

ered (1.10) in a bounded domain with nonlinear boundary damping and memory term

and M(s) = 1 + s and f = 0.

We note that stability of problems with the nonlinear term h(∇u) requires a careful

treatment because we do not have any information about the influence of the integral∫
�
h(∇u)utdx about the sign of the derivative E’(t). Although the subject is important,

there are few mathematical results in the presence of the nonlinearity given by h(∇u),
see [24-26]. In light of this and previous articles [17,22], it is interesting to investigate

whether we still have the similar general decay result as in [17] for nondissipative dis-

tributed system (1.1) with the memory-type damping acting on a part of the boundary.

Hence, the main purpose of this article is to answer the above question for system

(1.1)-(1.4). Consequently, by following the arguments close to the one in [17] with

necessary modification required the nature of our problem, we establish a general

decay result which includes the usual exponential and polynomial decay rates. Further-

more, our results allow a larger class of relax functions which are not necessarily of

exponential and polynomial decay. Therefore, this improves earlier results in the litera-

ture [22,27].

In order to obtain our results, we consider system (1.1)-(1.4), under some assump-

tions on a(x), l(t), M and f. Precisely, we state the general assumptions:

(A1) a(x): Ω ® R+ is a function.

(A2) f Î C1(R) is a function and satisfies

uf (u) ≥ βF(u) ≥ 0 for β > 2, (1:11)

where F(u) =
∫ u
0 f (s)ds with

F(u) ≤ d|u|p for all u ∈ R,

d >0 and 1 ≤ p ≤ n
n−2.

(A3) M is a C1 function on [0, ∞) satisfying

M(λ) ≥ m0 > 0 and M(λ)λ ≥ M̂(λ) for all λ ≥ 0, (1:12)

Where M̂(λ) =
∫ λ

0 M(s)ds .

(A4) h : Rn ® R is a C1 function such that ∇h is bounded and there exists b1 >0

such that

|h(ξ)| ≤ β1|ξ | for all ξ ∈ Rn, (1:13)
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and l(t) is a positive and nonincreasing function.

The remainder of this article is organized as follows. In Section 2, we introduce some

notations, present Lemma 2.1 to describe more general relations between the relaxa-

tion function g and the corresponding resolvent kernel k and state the existence result

to system (1.1)-(1.4). In Section 3, we give the proof of our main result Theorem 3.5.

2 Preliminaries
In this section, we introduce some notations and establish the existence of solutions of

the problem (1.1)-(1.4). In what follows, let ||·||p denote the usual Lp (Ω) norm

|| · ||Lp(�), for 1 ≤ p ≤ ∞. We define the convolution product operator by

(g ∗ u)(t) =
∫ t

0
g(t − s)u(s)ds, (2:1)

and set

(g ◦ φ)(t) =
∫ t

0
g(t − s)||φ(t) − φ(s)||22ds, (2:2)

(g♦φ)(t) =
∫ t

0
g(t − s)(φ(t) − φ(s))ds. (2:3)

Using Hölder’s inequality, we observe that

|g♦φ(t)|2 ≤
∫ t

0
|g(s)|ds(|g| ◦ φ)(t). (2:4)

Next, we shall use Equation 1.3 to estimate the boundary term

M
(||∇u(s)||22

)
∂u
∂ν

+ ∂ut
∂ν
. Differentiating (1.3), we obtain

M
(||∇u(t)||22

) ∂u
∂ν

(t) +
∂ut
∂ν

(t) +
1

g(0)

∫ t

0
g′(t − s)

(
M

(||∇u(s)||22
) ∂u

∂ν
(s) +

∂ut
∂ν

(s)
)
ds

= − 1
g(0)

ut.

Assume the function k is the resolvent kernel of the relaxation function g, then

k +
1

g(0)
k ∗ g′ = − 1

g(0)
g′.

Applying Volterra’s inverse operator yields

M
(||∇u(t)||22

) ∂u
∂ν

(t) +
∂ut
∂ν

(t) = − 1
g(0)

(ut + k ∗ ut),

which implies that

M
(||∇u(t)||22

) ∂u
∂ν

(t) +
∂ut
∂ν

(t)

= −τ {ut + k(0)u − k(t)u0 + k′ ∗ u} on �1 × (0,∞),
(2:5)

where τ = 1
g(0) . Reciprocally, taking u0 = 0 on Γ1, identity (2.5) implies (1.3). As we

are interested in relaxation functions of more general decay and the resolvent k
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appeared in Equation 2.5, we want to know if the resolvent k has the same property

with the relaxation function g involved in (1.3). The following lemma answers this

question. Let h be a relaxation function and k its resolvent kernel, that is

k(t) = h(t) + (k ∗ h)(t).

Lemma 2.1. [15,17,22]If h : [0, ∞) ® R+ is continuous, then k is also a positive con-

tinuous function. Moreover,

(1) If there exists a positive constant c0 such that

h(t) ≤ c0e−
∫ t
0 γ (s)ds,

where g : [0, ∞) ® R+, is a nonincreasing function satisfying, for some positive con-

stant ε <1,

c1 =
∫ ∞
0 e−

∫ t
0 (1−∈)γ (s)dsdt <

1
c0
.

Then, k satisfies

k(t) ≤ c0
1 − c0c1

e−
∫ t
0 εγ (s)ds.

(2) Suppose that

h(t) ≤ c0
(1 + t)p

for c0 < p - 1. Then, there exists a positive constant ε <1 such that

k(t) ≤ β

(1 + t)εp
,

where b >0 is a constant.

Based on this lemma, we will use (2.5) instead of (1.3), i.e., we can consider system

(1.1)-(1.4) as follows:

utt − M
(||∇u||22

)
�u + l(t)h(∇u) − �ut + a(x)f (u) = 0 in � × (0,∞),

u = 0 on �0 × (0,∞),

M
(||∇u(t)||22

) ∂u

∂ν
(t) +

∂ut
∂ν

(t) = −τ {ut + k(0)u − k(t)u0 + k′ ∗ u} on �1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in �.

We notice that, due to the condition (1.2), the solution of system (1.1)-(1.4) must

belong to the following space:

V = {v ∈ H1(�); v = 0 on �0},

which endowed with the norm ||∇·||2 is a Hilbert space. Now, we are ready to give

the well-posedness of system (1.1)-(1.4).

Theorem 2.2. Let k Î W2,1 (R+) ∩ W1,∞ (R+), (u0, u1) Î (H2 (Ω) ∩ V)2 and satisfy the

compatibility condition

M
(||∇u0||22

) ∂u0
∂ν

+
∂u1
∂ν

+ τu1 = 0 on �1.
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Assume further that (A1)-(A4) hold. Then, there exists a unique solution u of system

(1.1)-(1.4) such that

u ∈ L∞(0,∞;H2(�) ∩ V), ut ∈ L∞(0,∞;V),

utt ∈ L∞(0,∞; L2(�)).

Proof. Using the Galerkin method and procedures similar to that of [22,28], we can

obtain the result. □

3 Decay of solutions
In this section, we study the asymptotic behavior of the solutions of system (1.1)-(1.4)

when the resolvent kernel k satisfies

k(0) > 0, k(t) ≥ 0, k′(t) ≤ 0, k′′(t) ≥ −γ (t)k′(t), (3:1)

where g : [0, ∞) ® R+ is a function satisfying the following condition:

γ (t) > 0, γ ′(t) ≤ 0 and
∫ ∞

0
γ (s)ds = ∞. (3:2)

To get our result, we further assume that

0 < l(t) ≤ γ (t) for all t ≥ 0. (3:3)

Let x0 be a fixed point in Rn. Set

m = m(x) = x − x0, R(x0) = max
{||m(x)||2; x ∈ �̄

}
and partition the boundary ∂Ω into two sets

�0 = {x ∈ ∂�; m(x) · ν ≤ 0}, �1 = {x ∈ ∂�; m(x) · ν > 0}. (3:4)

Define the first-order energy function of system (1.1)-(1.4) by

E(t) =
1
2

(||ut||22 + M̂
(||∇u||22

))
+

∫
�

a(x)F(u)dx

+
τ

2
k(t)

∫
�1

|u|2d� − τ

2

∫
�1

k′ ◦ ud�.
(3:5)

The following lemma is associated with the property of the convolution operator,

which is used to estimate the energy identity.

Lemma 3.1. If g, j Î C1(R+), then

(g ∗ φ)φt = − 1
2
g(t)|φ(t)|2 + 1

2
g′ ◦ φ

− 1
2
d
dt

(
g ◦ φ −

(∫ t

0
g(s)ds

)
|φ(t)|2

)
.

(3:6)

Proof. Our conclusion is followed by differentiating the term g ○ j. □
Lemma 3.2. Under the assumptions of (A1)-(A4), the energy function E(t) satisfies

d
dt
E(t) ≤ −τ

2

∫
�1

|ut|2d� +
τ

2
k2(t)

∫
�1

|u0|2d� +
τ

2
k′(t)

∫
�1

|u|2d�

−τ

2

∫
�1

k′′ ◦ ud� −
∫

�

|∇ut|2dx −
∫

�

l(t)h(∇u)utdx.
(3:7)
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Proof. Multiplying Equation 1.1 by ut, and integrating by parts over Ω, we get

d
dt

[
1
2

(||ut||22 + M̂
(||∇u||22

))
+

∫
�

a(x)F(u)dx
]

=
∫

�1

(
M

(||∇u||22
) ∂u

∂ν
+

∂ut
∂ν

)
utd� −

∫
�

|∇ut|2dx −
∫

�

�l(t)h(∇u)utdx.

Exploiting (2.5), (3.6) and the definition of E(t) by (3.5), we have

d
dt
E(t) ≤ −τ

∫
�1

|ut|2d� + τ

∫
�1

k(t)u0utd� +
τ

2
k′(t)

∫
�1

|u|2d�

−τ

2

∫
�1

k′′ ◦ ud� −
∫

�

|∇ut|2dx −
∫

�

l(t)h(∇u)utdx.

Then, using Hölder’s inequality and Young’s inequality, the inequality (3.7) is

obtained. □
Next, we construct a Lyapunov functional which is equivalent to E(t). To do so, for

N >0 large enough, let

L(t) = NE(t) + ψ(t), (3:8)

where

ψ(t) =
∫

�

(
m · ∇u(t) +

(n
2

− θ
)
u
)
utdx (3:9)

for 0 < θ <1.

For the purpose of achieving our main result, we need the following lemmas.

Lemma 3.3. There exist two positive constants a1 and a2 such that the relation

α1E(t) ≤ L(t) ≤ α2E(t)

holds for all t ≥ 0.

Proof. From (3.9) and using Young’s inequality, we get

|ψ(t)| ≤
(
R(x0) + B1

(n
2

− θ
))

||ut||2||∇u||2

≤ 2√
m0

(
R(x0) + B1

(n
2

− θ
))

E(t),

where we have used the fact that ||ut||22 ≤ 2E(t) by (3.5) and

||∇u||22 ≤ 2
m0

E(t) (3:10)

due to M̂(λ) ≥ m0λ > 0 by (A3) and (3.5). Here B1 >0 is the smallest constant such

that

||u||2 ≤ B1||∇u||2, ∀u ∈ V. (3:11)

Thus, from (3.8), we deduce that

|L(t) − NE(t)| = |ψ(t)| ≤ 2√
m0

(
R(x0) + B1

(n
2

− θ
))

E(t).
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Hence, selecting

N >
2√
m0

(
R(x0) + B1

(n
2

− θ
))

, (3:12)

there exist two positive constants a1 and a2 such that the relation

α1E(t) ≤ L(t) ≤ α2E(t)

holds. □
Lemma 3.4. Let (A1)-(A4) and (3.1)-(3.3) hold, with b1 (given by (A4)) small enough

and

lim
t→∞ k(t) = 0. (3:13)

Then, for some t0 large enough, the functional L(t) verifies, along the solution u of

(1.1)-(1.4),

L′(t) ≤ − α

2
E(t) + c4k

2(t)
∫

�1

|u0|2d� − c5

∫
�1

k′ ◦ ud�

+
∫

�

[(
n + α −

(n
2

− θ
)

β
)
a(x) +m · ∇a

]
F(u)dx

(3:14)

for all t ≥ t0, where a = min {2θ, 1 - θ} and ci are positive constants given in the

proof, i = 4, 5.

Proof. First, we are going to estimate the derivative of ψ(t). From (3.9) and using

Equation 1.1, we have

d
dt

ψ(t) =
1
2

∫
�1

(m · ν)|ut|2d� − θ

∫
�

|ut|2dx

+
∫

�

(
m · ∇u(t) +

(n
2

− θ
)
u
)
M

(||∇u||22
)
�udx

+
∫

�

(
m · ∇u(t) +

(n
2

− θ
)
u
)

�utdx

−
∫

�

l(t)h(∇u)
(
m · ∇u(t) +

(n
2

− θ
)
u
)
dx

−
∫

�

(
m · ∇u(t) +

(n
2

− θ
)
u
)
a(x)f (u)dx.

Performing integration by parts and using Young’s inequality, we obtain

d
dt

ψ(t) ≤ 1
2

∫
�1

(m · ν)|ut|2d� − θ

∫
�

|ut|2dx

+
∫

�1

(
M

(||∇u||22
) ∂u

∂ν
+

∂ut
∂ν

)(
m · ∇u(t) +

(n
2

− θ
)
u
)
d�

−M
(||∇u||22

)
2

∫
�1

(m · ν)|∇u|2d� − (1 − θ)M(||∇u||22)||∇u||22

+ εc0M
(||∇u||22

) ||∇u||22 + Cε

∫
�

|∇ut|2dx

−
∫

�

l(t)h(∇u)
(
m · ∇u(t) +

(n
2

− θ
)
u
)
dx

−
∫

�

(
m · ∇u(t) +

(n
2

− θ
)
u
)
a(x)f (u)dx,

(3:15)
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where ε >0, cε and c0 are some positive constants. In the following, we will estimate

the last two terms on the right-hand side of (3.15). It follows from (1.13), Hölder’s

inequality, (3.11), (3.3) and (3.10) that∫
�

l(t)h(∇u)
(
m · ∇u(t) +

(n
2

− θ
)
u
)
dx

≤ γ (0)β1

(
R(x0) + B1

(n
2

− θ
))

||∇u||22

≤ 2γ (0)β1c1
m0

E(t),

(3:16)

where c1 = R(x0) + B1( n2 − θ). Taking (1.11) and (3.4) into account, we have

−
∫

�

(
m · ∇u(t) +

(n
2

− θ
)
u
)
a(x)f (u)dx

= −
∫

�

a(x)m · ∇F(u)dx −
(n
2

− θ
)∫

�

a(x)uf (u)dx

≤
∫

�

(na(x) +m · ∇a)F(u)dx −
∫

�1

a(x)(m · ν)F(u)d�

−
(n
2

− θ
)

β

∫
�

a(x)F(u)dx

≤
∫

�

[(
n −

(n
2

− θ
)

β
)
a(x) +m · ∇a

]
F(u)dx.

(3:17)

A substitution of (3.16)-(3.17) into (3.15), we obtain

d
dt

ψ(t) ≤ 1
2

∫
�1

(m · ν)|ut|2d� − θ ||ut||22 − (1 − θ − εc0)M
(||∇u||22

) ||∇u||22

+
∫

�1

(
M

(||∇u||22
) ∂u

∂ν
+

∂ut
∂ν

) (
m · ∇u(t) +

(n
2

− θ
)
u
)
d�

+Cε

∫
�

|∇ut|2dx − M
(||∇u||22

)
2

∫
�1

(m · ν)|∇u|2d� +
2γ (0)β1c1

m0
E(t)

+
∫

�

[
(n −

(n
2

− θ
)

β)a(x) +m · ∇a
]
F(u)dx.

(3:18)

Now, we analyze the boundary term on the right-hand side of (3.18). Applying

Young’s inequality and M(l) ≥ m0 >0 by (1.12), we have, for ε1 >0,∫
�1

(
M

(||∇u||22
) ∂u

∂ν
+

∂ut
∂ν

)
(m · ∇u(t) +

(n
2

− θ
)
u)d�

≤ ε1

∫
�1

[
|m · ∇u(t)|2 +

(n
2

− θ
)2

|u|2
]
d� + Cε1

∫
�1

∣∣∣∣M (||∇u||22
) ∂u

∂ν
+

∂ut
∂ν

∣∣∣∣2d�
≤ ε1

∫
�1

(m · ν)|∇u|2d� +
(n
2

− θ
)2
B∗ε1||∇u||22 + Cε1

∫
�1

∣∣∣∣M (||∇u||22
) ∂u

∂ν
+

∂ut
∂ν

∣∣∣∣2d�
≤ ε1

∫
�1

(m · ν)|∇u|2d� +
(n
2

− θ
)2 B∗ε1

m0
M

(||∇u||22
) ||∇u||22

+ Cε1

∫
�1

∣∣∣∣M (||∇u||22
) ∂u

∂ν
+

∂ut
∂ν

∣∣∣∣2d�,
where Cε1 is a positive constant and B* >0 is the constant such that∫

�1

|u|2d� ≤ B∗||∇u||22, ∀u ∈ V. (3:19)
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Thus, (3.18) becomes

d
dt

ψ(t) ≤ 1
2

∫
�1

(m · ν)|ut|2d� − θ ||ut||22

−
(
1 − θ − εc0 −

(n
2

− θ
)2B∗ε1

m0

)
M(||∇u||22)||∇u||22

−
(
M(||∇u||22)

2
− ε1

)∫
�1

(m · ν)|∇u|2d� + Cε

∫
�

|∇ut|2dx

+ Cε

∫
�1

∣∣∣∣M (||∇u||22
) ∂u

∂ν
+

∂ut
∂ν

∣∣∣∣2d� +
2γ (0)β1c1

m0
E(t)

+
∫

�

[(
n −

(n
2

− θ
)

β
)
a(x) +m · ∇a

]
F(u)dx.

(3:20)

By rewriting the boundary condition (2.5) as

M
(||∇u||22

) ∂u
∂ν

+
∂ut
∂ν

= −τ {ut + k(t)u(t) − k(t)u0 − k′♦u},

and, then, combining (3.7) and (3.20), we deduce that

L′(t) = NE′(t) + ψ ′(t)

≤ −
(
Nτ

2
− (m · ν)

2
− 8τ 2cε1

)∫
�1

|ut|2d� − (N − cε)||∇ut||22

− θ ||ut||22 −
(
1 − θ − εc0 −

(n
2

− θ
)2 B∗ε1

m0

)
M(||∇u||22)||∇u||22

+8τ 2cε1k
2(t)

∫
�1

|u|2d� +
(
Nτ

2
+ 8τ 2cε1

)
k2(t)

∫
�1

|u0|2d�

−Nτ

2

∫
�1

k′′ ◦ ud� −
(
M

(||∇u||22
)

2
− ε1

) ∫
�1

(m · ν)|∇u|2d�

+ 8τ 2cε1

∫
�1

|k′♦u|2d� +
2γ (0)β1c1

m0
E(t) − Nl(t)

∫
�

h(∇u)utdx

+
∫

�

[(
n −

(n
2

− θ
)

β
)
a(x) +m · ∇a

]
F(u)dx.

Similarly as in deriving (3.16), we note that

l(t)
∫

�

h(∇u)utdx ≤ γ (t)β1

(
1
2

||ut||22 +
1
2

||∇u||22
)

≤ γ (t)β1c3E(t) ≤ γ (0)β1c3E(t),

(3:21)

where c3 = 1 + 1
m0

. This implies that

L′(t) ≤ −
(
Nτ

2
− (m · ν)

2
− 8τ 2cε1

)∫
�1

|ut|2d�

−θ ||ut||22 − (N − cε)||∇ut||22
−

(
1 − θ − εc0 −

(n
2

− θ
)2 B∗ε1

m0

)
M

(||∇u||22
) ||∇u||22

+8τ 2cε1k
2(t)

∫
�1

|u|2d� +
(
Nτ

2
+ 8τ 2cε1

)
k2(t)

∫
�1

|u0|2d�

−Nτ

2

∫
�1

k′′ ◦ ud� −
(
M

(||∇u||22
)

2
− ε1

) ∫
�1

(m · ν)|∇u|2d�

+8τ 2cε1

∫
�1

|k′♦u|2d� + β1γ (0)
(
Nc3 +

2c1
m0

)
E(t)

+
∫

�

[(
n −

(n
2

− θ
)

β
)
a(x) +m · ∇a

]
F(u)dx.
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At this point, we choose

ε = ε1 < min

⎧⎨⎩m0

4
,

(1 − θ)

2
(
c0 +

( n
2 − θ

)2
B∗

)
⎫⎬⎭ .

Once ε = ε1 is fixed (hence cε and cε1 are also fixed), we pick N large satisfying (3.12)

and

N > max
{
max�1 |m · ν| + 16τ 2cε1

τ
, cε

}
(3:22)

at the same time. Then, from the properties of k(t) by (3.1) and noting that

|g♦φ(t)|2 ≤ ∫ t
0 |g(s)|ds(|g| ◦ φ) (t) by (2.4), we see that

L′(t) ≤ − θ ||ut||22 − 1 − θ

2
M

(||∇u||22
) ||∇u||22

− k(0)
∫

�1

k′ ◦ ud� + c4k
2(t)

∫
�1

|u0|2d�

+ 8τ 2cε1k
2(t)

∫
�1

|u|2d� + β1γ (0)
(
Nc3 +

2c1
m0

)
E(t)

+
∫

�

[(
n −

(n
2

− θ
)

β
)
a(x) +m · ∇a

]
F(u)dx.

Utilizing the inequality M(λ)λ ≥ M̂(λ) by (1.12) and the definition of E(t) by (3.5),

we obtain

L′(t) ≤ −
(

α − β1γ (0)
(
Nc3 +

2c1
m0

))
E(t) +

(τα

2
k(t) + 8τ 2cε1k

2(t)
) ∫

�1

|u|2d�

−
(τα

2
+ k(0)

)∫
�1

k′ ◦ ud� + c4k
2(t)

∫
�1

|u0|2d�

+
∫

�

[(
n + α −

(n
2

− θ
)

β
)
a(x) +m · ∇a

]
F(u)dx,

which together with (3.19) and (3.10) infers that

L′(t) ≤ −
(

α − β1γ (0)
(
Nc3 +

2c1
m0

))
E(t) +

2B∗
m0

(τα

2
k(t) + 8τ 2cε1k

2(t)
)
E(t)

−
( τα

2
+ k(0)

) ∫
�1

k′ ◦ ud� + c4k2(t)
∫

�1

|u0|2d�

+
∫

�

[(
n + α −

(n
2

− θ
)

β
)
a(x) +m · ∇a

]
F(u)dx,

where a = min{2θ, 1 - θ}. Besides, we note that there exists t0 large enough satisfying

k(t) ≤ m0

2B∗
min

{√
α

64τ 2cε2
,
1
4τ

}
for t ≥ t0, (3:23)

because of limt®∞ k(t) = 0 by (3.13). Therefore, taking b1 small enough such that

0 < β1 <
α

4γ (0)
(
Nc3 +

2c1
m0

) , (3:24)
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then,

L′(t) ≤ −α

2
E(t) + c4k2(t)

∫
�1

|u0|2d� − c5

∫
�1

k′ ◦ ud�

+
∫

�

[(
n + α −

(n
2

− θ
)

β
)
a(x) +m · ∇a

]
F(u)dx

(3:25)

for all t ≥ t0, where ci are positive constants, i = 4, 5. This completes the proof. □
Theorem 3.5. Given that (u0, u1) Î (H2 (Ω) ∩ V)2, assume that (A1)-(A4), (3.1)-(3.3)

and (3.13)hold, with b1 (given by (A4)) small enough. Assume further that(
n + α −

(n
2

− θ
)

β
)
a(x) +m · ∇a < 0, ∀x ∈ �. (3:26)

Then, for some t0 large enough, we have, ∀t ≥ t0,

E(t) ≤ cE(t0)e−a1
∫ t
0 γ (s)ds if u0 = 0 on �1, (3:27)

otherwise (if u0 ≠ 0 on Γ1),

E(t) ≤ c

{
E(t0) +

(∫
�1

|u0|2d�
)∫ t

t0
k2(s)ea1

∫ s
t0

γ (ζ )dζ

ds

}
e−a1

∫ t
0 γ (s)ds, (3:28)

where a1 is a fixed positive constant and cis a generic positive constant.

Proof. Multiplying (3.25) by g(t) and exploiting (3.26), (3.1) and (3.7), we derive that

γ (t)L′(t) ≤ −α

2
γ (t)E(t) + c4k

2(t)γ (t)
∫

�1

|u0|2d� − c5γ (t)
∫

�1

k′ ◦ ud�

≤ −α

2
γ (t)E(t) + c4k2(t)γ (t)

∫
�1

|u0|2d� + c5

∫
�1

k′′ ◦ ud�

≤ −α

2
γ (t)E(t) + c6k2(t)

∫
�1

|u0|2d� − c7E′(t)

− c7l(t)
∫

�

h(∇u)utdx,

(3:29)

where c6 = c4g(0) + c5 and c7 = 2c5
τ
. Employing (3.21) again, (3.29) becomes

F′
1(t) − γ ′(t)L(t) ≤ −γ (t)

(α

2
− β1c7c3

)
E(t) + c6k

2(t)
∫

�1

|u0|2d�,

where

F1(t) = γ (t)L(t) + c7E(t),

which is equivalent to E(t) due to Lemma 3.3 and g(t) is nonincreasing by (3.2). In

addition to (3.24), we further require

0 < β1 <
α

8c7c3
,

then, we have

F′
1(t) ≤ −a1γ (t)F1(t) + c6k

2(t)
∫

�1

|u0|2d�,∀t ≥ t0, (3:30)
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where a1 is a positive constant.

Case I: If u0 = 0 on Γ1, then (3.30) reduces to

F′
1(t) ≤ −a1γ (t)F1(t), ∀t ≥ t0.

Integrating the above inequality over (t0, t) to get

F1(t) ≤ F1(t0)e
−a1

∫ t
t0

γ (s)ds, ∀t ≥ t0.

Then, using the fact F1(t) is equivalent to E(t), we obtain, for some positive constant

c,

E(t) ≤ cE(t0)e
−a1

∫ t
t0

γ (s)ds

= cE(t0)ea1
∫ t0
0 γ (s)dse−a1

∫ t
0 γ (s)ds, ∀t ≥ t0.

Thus, (3.27) is proved.

Case II: If u0 ≠ 0 on Γ1, then (3.30) gives

F′
1(t) ≤ −a1γ (t)F1(t) + c8k2(t), ∀t ≥ t0,

where c8 = c6
∫
�1

|u0|2d� . Direct computations give(
ea1

∫ t
t0

γ (s)dsF1(t)
)′

≤ c8k
2(t)ea1

∫ t
t0

γ (s)ds.

An integration over (t0, t) yields

F1(t) ≤
(
F1(t0) + c8

∫ t

t0
k2(s)e

a1
∫ s
t0

γ (ζ )dζ

ds

)
e−a1

∫ t
t0

γ (s)ds, ∀t ≥ t0.

Again using the fact F1(t) is equivalent to E(t), we obtain, for some positive constant

c,

E(t) ≤ c

{
E(t0) +

(∫
�1

|u0|2d�
)∫ t

t0
k2(s)e

a1
∫ s
t0

γ (ζ )dζ

ds

}
ea1

∫ t0
0 γ (s)dse−a1

∫ t
0 γ (s)ds, ∀t ≥ t0.

This completes the proof of Theorem 3.5. □

4 Conclusion and suggestions
Santos et al. [22] considered problem (1.1)-(1.4) with a = 1 and without a function of

the gradient term. They showed the solution decays exponentially (or polynomially) to

zero provided the kernel decays exponentially (or polynomially) to zero. Recently, Mes-

saoudi and Soufyane in 2010 [17] considered a semi-linear wave equation, in a

bounded domain, where the memory-type damping is acting on the boundary. They

established a general decay result, from which the usual exponential and polynomial

decay rate are only special cases. Motivated by this, we intended to investigate the

decay properties of problem (1.1)-(1.4) using the work of Messaaoudi and Soufyane

[17]. Since stability of problems with the nonlinear term h(∇u) requires a careful treat-

ment, it is interesting to investigate whether we still have the similar general decay

result as that of [16] in the presence of a function of the gradient term. This is our

motivation to consider problem (1.1)-(1.4). And, this problem is not considered before.

Wu Boundary Value Problems 2011, 2011:55
http://www.boundaryvalueproblems.com/content/2011/1/55

Page 13 of 15



By adopting and modifying the method proposed by Messaoudi and Soufyane in

2010 [17], we establish a general decay result, from which the usual exponential and

polynomial decay rate are only special cases. Further, our result allows certain kernels

which are not necessarily of exponential or polynomial decay. In this way, we improved

the results of Santos et al. [22], in which they considered problem (1.1)-(1.4) with a =

1 and in the absence of l(t)h (∇u). Moreover, we note that our result also holds for

problem (1.1)-(1.4) with a = 1 and l(t) = 0 and without imposing strong damping

term, thus our result improves the one of Bae et al. [27]. More precisely, the estimate

(3.27) and (3.28) generalizes the exponential and polynomial decay result given in

[22,27]. Indeed, we obtain exponential decay for g(t) = c and polynomial decay for g(t)
= c(1 + t)-1, where c is a positive constant. Additionally, as in [17], our result allows

kernels which satisfy k″(t) ≥ c (-k′)1+q, for 0 < q <1 instead of the usual assumption

0 < q < 1
2 . It suffices to take, for example, k(t) = (1 + t)-l, for l >0. Direct computa-

tions yield

k′′(t) = c(−k′(t))1+
1

1+λ .

It is clear that 0 < 1
1+λ

< 1 , for l >0.

Though we consider the conditions on the term involving the gradient are too

restrictive and we combine some known ideas to obtain our result, our findings extend

those decay results in [22,27] and these findings are interesting to those with closely

concerns. For future work, we will consider not necessarily decreasing kernels and

relax the condition of h(∇u).
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