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Abstract

The purpose of this article is to establish the well posedness and the regularity of
the solution of the initial boundary value problem with Dirichlet boundary conditions
for second-order parabolic systems in cylinders with polyhedral base.

1 Introduction
Boundary value problems for partial differential equations and systems in nonsmooth

domains have been attracted attentions of many mathematicians for more than last 50

years. We are concerned with initial boundary value problems (IBVP) for parabolic

equations and systems in nonsmooth domains. These problems in cylinders with bases

containing conical points have been investigated in [1,2] in which the regularity and

the asymptotic behaviour near conical points of the solutions are established. Parabolic

equations with discontinuous coefficients in Lipschitz domains have also been studied

(see [3] and references therein).

In this study, we consider IBVP with Dirichlet boundary conditions for second-order

parabolic systems in both cases of finite cylinders and infinite cylinders whose bases

are polyhedral domains. Firstly, we prove the well posedness of this problem by Galer-

kin’s approximating method. Next, by this method we obtain the regularity in time of

the solution. Finally, we apply the results for elliptic boundary value problems in poly-

hedral domains given in [4,5] and former our results to deal with the global regularity

of the solution.

Let Ω be an open polyhedral domain in ℝn (n = 2, 3), and 0 <T ≤ ∞. Set QT = Ω ×

(0, T), ST = ∂Ω × (0, T). For a vector-valued function u = (u1, u2, ..., us) and p = (p1,

p2, ..., pn) Î Nn we use the notation Dpu = (∂px u1, . . . , ∂
p
x us).

Let m, k be non negative integers. We denote by Hm(Ω), H̊m(�) the usual Sobolev

spaces as in [6]. By the notation (., .) we mean the inner product in L2(Ω).

We denote by Hm,k(QT, g) (g Î ℝ) the weighed Sobolev space of vector-valued func-

tions u defined in QT with the norm
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||u||Hm,k(QT ,γ ) =

⎛
⎜⎝∫
QT

⎛
⎝ ∑

0≤|p|≤m

|Dpu|2 +
k∑
j=1

|utj |2
⎞
⎠ e−γ tdxdt

⎞
⎟⎠

1/2

< +∞.

Let us note that if T < +∞, then Hm,k(QT, g) ≡ Hm,k(QT).

The space H̊m,k(QT , γ ) is the closure in Hm,k(QT, g) of the set consisting of all vector-

valued functions u Î C∞(QT) which vanish near ST.

Let ∂singΩ be the set of all singular points of ∂Ω, namely, the set of vertexes of Ω for

the case n = 2 and the union of all edges of Ω for the case n = 3. Let r(x) be the dis-

tance from a point x Î Ω to the set ∂singΩ. For a Î ℝ, we denote by Hm
a (�) the

weighed Sobolev space of vector functions u defined on Ω with the norm

||u||Hm
a (�) =

⎛
⎝∫

�

∑
0≤|p|≤m

ρ(x)2(|p|−a)|Dpu|2dx
⎞
⎠

1/2

< +∞.

It is obvious from the definition that continuous imbeddings

Hm(�) ⊂ Hm
0 (�) ⊂ Hm

a−1(�) hold for all a ≤ 1.

The weighed Sobolev spaces Hm,k
a (QT , γ ),Hm

a (QT , γ ) are defined as sets of all vector-

valued functions defined in QT with respect to the norms

||u||Hm,k
a (QT ,γ )

=

⎛
⎜⎝∫
QT

⎛
⎝ ∑

0≤|p|≤m

ρ(x)2(|p|−a)|Dpu|2 +
k∑
j=1

|utj |2
⎞
⎠ e−γ tdxdt

⎞
⎟⎠

1/2

< +∞,

and

||u||Hm
a (QT ,γ ) =

⎛
⎜⎝∫
QT

⎛
⎝ ∑

0≤|p|+k≤m

ρ(x)2(|p|+k−a)|Dputk |2
⎞
⎠ e−γ tdxdt

⎞
⎟⎠

1/2

< +∞.

Let

L(x, t;D) = −
n∑

i,j=1

Di(Aij(x, t)Dj) +
n∑
i=1

Bi(x, t)Di + C(x, t),

be a second-order partial differential operator, where Di = ∂xi, and Aij, Bi, C are s × s

matrices of bounded functions with complex values from C∞(QT),Aij = A∗
ji,A

∗
ji is the

transposed conjugate matrix of Aji.

We assume that the operator L is uniformly strong elliptic, that is, there exists a con-

stant C > 0 such that

n∑
i,j=1

(Aij(x, t)ηη̄)ξiξj ≥ C|ξ |2|η|2 (1)

for all ξ Î ℝn, h Î ℂs and a.e. (x, t) Î QT.

In this article, we study the following problem:

ut + L(x, t;D)u = f in QT , (2)
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u = 0 on ST , (3)

u|t=0 = 0 in �, (4)

where f(x, t) is given.

Let us introduce the following bilinear form

B(u, v; t) =
∫
�

⎛
⎝ n∑

i,j=1

(Aij(x, t)DjuDiv +
n∑
i=1

Bi(x, t)Diuv̄ + C(x, t)uv̄

⎞
⎠ dx.

Then the following Green’s formula

(L(x, t;D)u, v) = B(u, v; t)

is valid for all u, v ∈ C∞
0 (�) and a.e. t Î [0, T).

Definition 1.1. A function u ∈ H̊1,1(QT , γ )is called a generalized solution of problem

(2) -(4) if and only if u|t = 0 = 0 and the equality

(ut, v) + B(u, v; t) = (f , v), a.e. t ∈ [0,T), (5)

holds for all v ∈ H̊1(�).

From (1) it follows that there exist constants µ0 > 0, l0 ≥ 0 such that

ReB(u, u; t) ≥ μ0||u||2H1(�) − λ0||u||2L2(�) (6)

holds for all u ∈ H̊1(�) and t Î [0, T). By substituting u = ve−λ0t into (2), we can

assume for convenience that l0 in (6) is zero. Hence, throughout the present paper we

also suppose that B(., .; t) satisfies the following inequality

ReB(u, u; t) ≥ μ0||u||2H1(�) (7)

for all u ∈ H̊1(�) and t Î [0, T).

Now, let us present the main results of this article. Firstly, we give a theorem on well

posedness of the problem:

Theorem 1.1. Let f Î L2(QT, g0), g0 > 0, and suppose that the coefficients of the

operator L satisfy

sup{|Aij|, |Bi|, |C| : i, j = 1, . . . ,n; (x, t) ∈ Q̄T} ≤ μ,μ = const.

Then for each g >g0, problem (2) -(4) has a unique generalized solution u in the space

H̊1,1(QT , γ )and the following estimate holds

||u||2H1,1(QT ,γ )
≤ C||f ||2L2(QT ,γ0), (8)

where C is a constant independent of u and f.

Write Aijtk =
∂kAij

∂ tk
, Bitk =

∂kBi
∂ tk

, Ctk =
∂kC
∂ tk

. Next, we give results on the smoothness of the

solution:

Theorem 1.2. Let m Î N*, γ0 = 2μn
μ0

, s = g - g0, gk = (2k + 1)g0. Assume that the coef-

ficients of L satisfy

sup{|Aijtk |, |Bitk |, |Ctk | : i, j = 1, . . . ,n; (x, t) ∈ Q̄T , k ≤ m + 1} ≤ μ,μ = const.
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Furthermore,

ftk ∈ Hm(QT , γk), for k = 0, 1, 2; ftk(x, 0) = 0, for k = 0, . . . ,m − 1.

Then there exists h > 0 such that u belongs to H2+m
a+1 (QT , γ2+m + σ )for any |a| <h, and

||u||2H2+m
a+1 (QT ,γ2+m+σ ) ≤ C

2∑
k=0

||ftk ||2Hm(QT ,γk), (9)

where C is a constant independent of u and f.

2 The proof of Theorem 1.1
Firstly, we will prove the existence by Galerkin’s approximating method. Let {ωk(x)}∞k=1
be an orthogonal basis of H̊1(�) which is orthonormal in L2(Ω). Put

uN(x, t) =
N∑
k=1

CN
k (t)ωk(x),

where CN
k (t), k = 1, . . . ,N, is the solution of the following ordinary differential sys-

tem:

(uNt ,ωk) + B(uN,ωk; t) = (f ,ωk), k = 1, . . . ,N, (10)

with the initial conditions

CN
k (0) = 0, k = 1, . . . ,N. (11)

Let us multiply (10) by CN
k (t), then take the sum with respect to k from 1 to N to

arrive at

(uNt , u
N) + B(uN, uN; t) = (f , uN), t ∈ [0,T).

Now adding this equality to its complex conjugate, we get

d
dt

(
||uN||2L2(�)

)
+ 2ReB(uN, uN ; t) = 2Re(f , uN). (12)

Utilizing (7), we obtain

ReB(uN, uN; t) ≥ μ0||uN||2H1(�).

By the Cauchy inequality, for an arbitrary positive number ε, we have

2|(f , uN)| ≤ 2||f ||L2(�)||uN||L2(�) ≤ C||f ||2L2(�) + ε||uN||2L2(�),

where C = C(ε) is a constant independent of uN, f and t. Combining the estimates

above, we get from (12) that

d
dt

(
||uN(., t)||2L2(�)

)
+ 2μ0||uN(., t)||2H1(�) ≤ C||f (., t)||2L2(�) + ε||uN(., t)||2L2(�) (13)

for a.e. t Î [0, T). Now write

η(t) := ||uN (., t)||2L2(�); ξ(t) := ||f (., t)||2L2(�), t ∈ [0,T).
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Then (13) implies

η′(t) ≤ ε.η(t) + Cξ(t), for a.e. t ∈ [0,T).

Thus the differential form of Gronwall-Belmann’s inequality yields the estimate

η(t) ≤ Ceεt
t∫

0

ξ(s)ds, t ∈ [0,T). (14)

We obtain from (14) the following estimate:

||uN(., t)||2L2(�) ≤ Ce(ε+γ0)t

t∫
0

e−γ0S ||f ||2L2(�)ds ≤ Ce(γ0+ε)t||f ||2L2(QT ,γ0).

Now multiplying both sides of this inequality by e-gt, g >g0 + ε, then integrating them

with respect to t from 0 to T, we obtain

||uN||2L2(QT ,γ ) ≤ C||f ||2L2(QT ,γ0). (15)

Multiplying both sides of (13) by e-gt, then integrating them with respect to t from 0

to τ, τ Î (0, T), we obtain

τ∫
0

e−γ t
(
d
dt

||uN||2L2(�)

)
dt + 2μ0

τ∫
0

e−γ t||uN||2H1(�)dt

≤ C(||f ||2L2(QT ,γ0) + ||uN||2L2(QT ,γ )).

Notice that

τ∫
0

e−γ t
(
d
dt

||uN||2L2(�)

)
dt =

τ∫
0

d
dt
(e−γ t||uN||2L2(�))dt + γ

τ∫
0

e−γ t||uN||2L2(�)dt

= e−γ τ ||uN(x, τ )||2L2(�) + γ

τ∫
0

e−γ t||uN||2L2(�)dt ≥ 0.

We employ the inequalities above to find

2μ

τ∫
0

e−γ t||uN||2H1(�)dt ≤ C||f ||2L2(QT ,γ0), ∀τ ∈ (0,T). (16)

Since the right-hand side of (16) is independent of τ, we get

||uN||2H1,0(QT ,γ )
≤ C||f ||2L2(QT ,γ0), (17)

where C is a constant independent of u, f and N.

Fix any v ∈ H̊1(�), with ||v||2H1(�) ≤ 1 and write v = v1 + v2, where v1 ∈ span{ωk}Nk=1
and (v2, ωk) = 0, k = 1, ..., N, (v2 ∈ span{ωk}Nk=1

⊥
). We have ||v1||H1(�) ≤ ||v||H1(�) ≤ 1.

Utilizing (10), we get

(uNt , v
1) + B(uN, v1; t) = (f , v1) for a.e. t ∈ [0,T).
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From uN(x, t) =
N∑
k=1

CN
k (t)ωk, we can see that

(uNt , v) = (uNt , v
1) = (f , v1) − B(uN, v1; t).

Consequently,

|(uNt , v)| ≤ C
(
||f ||2L2(�) + ||uN||2H1(�)

)
.

Since this inequality holds for all v ∈ H̊1(�), ||v||H1(�) ≤ 1, the following inequality

will be inferred

||uNt ||2L2(�) ≤ C
(
||f ||2L2(�) + ||uN||2H1(�)

)
. (18)

Multiplying (18) by e-gt, g >g0 + ε, then integrating them with respect to t from 0 to

T, and by using (17), we obtain

||uNt ||2L2(QT ,γ ) ≤ C||f ||2L2(QT ,γ0). (19)

Combining (17) and (19), we arrive at

||uN||2H1,1(QT ,γ )
≤ C||f ||2L2(QT ,γ0), (20)

where C is a constant independent of f and N.

From the inequality (20), by standard weakly convergent arguments, we can conclude

that the sequence {uN}∞N=1 possesses a subsequence weakly converging to a function

u ∈ H̊1,1(QT , γ ), which is a generalized solution of problem (2) -(4). Moreover, it fol-

lows from (20) that estimate (8) holds.

Finally, we will prove the uniqueness of the generalized solution. It suffices to check

that problem (2)-(4) has only one generalized solution u ≡ 0 if f ≡ 0. By setting v = u(.,

t) in identity (5) (for f ≡ 0) and adding it to its complex conjugate, we get

d
dt
(||u(., t)||2) + 2ReB(u, u; t) = 0.

From (7), we have

d
dt
(||u||2L2(�)) + 2μ0||u||2H1(�) ≤ 0, for a.e. t ∈ [0,T).

Since u|t = 0 = 0, it follows from this inequality that u ≡ 0 on QT. The proof is

complete.

3 The proof of Theorem 1.2
Firstly, we establish the results on the smoothness of the solution with respect to time

variable of the solution which claims that the smoothness depends on the smoothness

of the coefficients and the right-hand side of the systems.

To simplify notation, we write

Btk(u, v; t) =
∫
�

⎛
⎝ n∑

i,j=1

(Aijtk(x, t)DjuDiv +
n∑
i=1

Bitk(x, t)Diuv̄ + Ctk(x, t)uv̄

⎞
⎠ dx.
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Proposition 3.1. Let h Î N*. Assume that there exists a positive constant µ such that

(i) sup
{|Aijtk |, |Bitk |, |Ctk | : i, j = 1, . . . ,n; (x, t) ∈ Q̄T , k ≤ h + 1

} ≤ μ,

(ii) ftk ∈ L2(QT , γk), k ≤ h; ftk(x, 0) = 0, 0 ≤ k ≤ h − 1.

Then for an arbitrary real number g satisfying g >g0, the generalized solution

u ∈ H̊m,1(QT , γ )of problem (2)-(4) has derivatives with respect to t up to order h with

utk ∈ H̊1,1(QT , γk + σ ), k = 0, . . . , h, and the estimate

||uth ||2H1,1(QT ,γh+σ ) ≤ C
h∑
j=0

||ftj ||2L2(QT ,γj) (21)

holds, where C is a constant independent of u and f.

Proof. From the assumptions on the coefficients of operator L and the function f, it

implies that the solution {CN
k }Nk=1 of problem (10)-(11) has derivatives with respect to t

up to order h + 1. We will prove by induction that

||uNth (., τ )||2H1(�) ≤ Ce(γh+
σ
2 )τ

h∑
j=0

||ftj ||2L2(QT ,γj), (22)

and

||uNth ||2H1,0(QT ,γh+σ ) ≤ C
h∑
j=0

||ftj ||2L2(QT ,γj). (23)

Firstly, we differentiate h times both sides of (10) with respect to t to find the follow-

ing equality:

(uNth+1 ,ωk) +
h∑
l=0

(
h
l

)
Bth−l(uNtl ,ωk; t) = (fth ,ωk), k = 1, . . . ,N. (24)

From the equalities above together with the initial condition (11) and assumption (ii),

we can show by induction on h that

uNtk |t=0 = 0 for k = 0, . . . , h. (25)

Equality (24) is multiplied by dh+1CN
k (t)

dth+1
and sum k = 1, ..., N, so as to discover

(uNth+1 , u
N
th+1) +

h∑
j=0

(
h
j

)
Bth−j(uNtj , u

N
th+1 ; t) = (fth , u

N
th+1).

Adding this equality to its complex conjugate, we get

2||uNth+1(., t)||2L2(�) + 2Re
h∑
j=0

(
h
j

)
Bth−j(uNtj , u

N
th+1 ; t) = 2Re(fth , u

N
th+1). (26)

Next, we show that inequalities (22) and (23) hold for h = 0. According to (26) (with

h = 0), we have

2||uNt (., t)||2L2(�) + 2ReB(uN, uNt ; t) = 2Re(f , uNt ).
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Then the equality is rewritten in the form:

2||uNt (., t)||2L2(�) +
∂

∂t
B(uN, uN ; t) = Bt(uN, uN ; t) + 2Re(f , uNt ).

Integrating both sides of this equality with respect to t from 0 to τ, τ Î (0, T),

employing Garding inequality (7) and Cauchy inequality, and by simple calculations,

we deduce that

||uN (., τ )||2H1(�) ≤ 2μn
μ0

∫ τ

0 ||uN(., t)||2H1(�)dt +
∫ τ

0 ||f (., t)||2L2(�)dt.

Thus Gronwall-Belmann’s inequality yields the estimate

||uN(., τ )||2H1(�) ≤ Ceγ0τ
∫ τ

0
e−γ0t||f (., t)||2L2(�)dt

≤ Ceγ0τ ||f ||2L2(QT ,γ0), for all τ ∈ (0,T),
(27)

where γ0 = 2μn
μ0

. Multiplying both sides of (27) by e(−γ0−σ )t, then integrating them

with respect to t from 0 to T, we arrive at

||uN||2H1,0(QT ,γ0+σ ) ≤ C||f ||2L2(QT ,γ0)
. (28)

From inequalities (27) and (28), it is obvious that (22) and (23) hold for h = 0.

Assume that inequalities (22) and (23) are valid for k = h - 1, we need to prove that

they are true for k = h. With regard to equality (26), the second term in left-hand side

of (26) is written in the following form:

2Re
h∑
j=0

(
h
j

)
Bth−j(uNtj , u

N
th+1 ; t)

= 2ReB(uNth , u
N
th+1 ; t) + 2Re

h−1∑
j=0

(
h
j

)
Bth−j(uNtj , u

N
th+1 ; t)

=
∂

∂t
[B(uNth , u

N
th ; t)] − Bt(uNth , u

N
th ; t)

+2Re
h−1∑
j=0

(
h
j

) [
∂

∂t
Bth−j(uNtj , u

N
th ; t) − Bth−j(uNtj+1 , u

N
th ; t) − Bth−j+1(uNtj , u

N
th ; t)

]
.

Hence, from (26) we have

2||uth+1 ||2L2(�) +
∂

∂t
[B(uNth , u

N
th ; t)] − Bt(uNth , u

N
th ; t)

+2Re
h−1∑
j=0

(
h
j

)[
∂

∂t
Bth−j(uNtj , u

N
th ; t) − Bth−j(uNtj+1 , u

N
th ; t) − Bth−j+1(uNtj , u

N
th ; t)

]
= 2Re(fth,uN

lh+1
).

(29)

Integrating both sides of (29) with respect to t from 0 to τ, 0 <τ <T, and using the

integration by parts, we find
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2||uth+1 ||2L2(Qτ ) + B(uNth , u
N
th ; τ )

=

τ∫
0

Bt(uNth , u
N
th ; t)dt − 2Re

h−1∑
j=0

(
h
j

)
Bth−j(uNtj , u

N
th ; τ )

+2Re
h−1∑
j=0

(
h
j

) τ∫
0

Bth−j+1(uNtj , u
N
th ; t) + 2Re

h−1∑
j=0

(
h
j

) τ∫
0

Bth−j(uNtj+1 , u
N
th ; t)

+2Re
∫
Qτ

fthu
N
th+1dxdt.

(30)

For convenience, we abbreviate by I, II, III, IV, V the terms from the first to the fifth,

respectively, of the right-hand side of (30). By using assumption (i) and the Cauchy

inequality, we obtain the following estimates:

(I) ≤ 2μn

τ∫
0

||uth ||2H1(�)dt.

(II) ≤ C(ε)
h−1∑
j=0

||uNtj ||2H1(�) + ε||uNth ||2H1(�).

(III) ≤ C(ε)
h−1∑
j=0

τ∫
0

||uNtj ||2H1(�) + ε

τ∫
0

||uNth (x, t)||2H1(�)dt.

(IV) ≤ C(ε)
h−1∑
j=1

τ∫
0

||uNtj ||2H1(�) + ε

τ∫
0

||uNth ||2H1(�)dt + 4μnh

τ∫
0

||uNth ||2H1(�)dt.

(V) ≤ C(ε1)
∫
Qτ

|fth |2dxdt + ε1

∫
Qτ

|uNth+1 |2dx, (ε1 < 1).

Employing the estimates above, we get from (30) that

B(uNth , u
N
th ; τ ) ≤ C

∫
Qτ

|fth |2dxdt + C1

h−1∑
j=0

τ∫
0

||uNtj ||2H1(�)dt + 2(2h + 1)μn

τ∫
0

||uNth ||2H1(�)dt

+ ε

τ∫
0

||uNth ||2H1(�)dt + ε||uNth ||2H1(�) + C2

h−1∑
j=0

||uNtj ||2H1(�).

(31)

By using (7) again, we obtain from (31) the estimate

||uNth ||2H1(�) ≤ C
∫
Qτ

|fth |2dxdt + C1

h−1∑
j=0

τ∫
0

||uNtj ||2H1(�)dt + C2

h−1∑
j=0

||uNtj ||2H1(�)

+
2(2h + 1)μn + ε

μ0 − ε

τ∫
0

||uNth ||2H1(�)dt.

(32)

Luong and Loi Boundary Value Problems 2011, 2011:56
http://www.boundaryvalueproblems.com/content/2011/1/56

Page 9 of 14



From (32) and the induction assumptions, we get

||uNth ||2H1(�) ≤ C
∫
Qτ

|fth |2dxdt + C1

h−1∑
j=0

eγjτ
τ∫

0

e−γjτ ||uNtj ||2H1(�)dt

+ C2

h−1∑
j=0

e(γj+
σ
2 )τ

j∑
k=0

||ftk ||2L2(QT ,γk) +
2(2h + 1)μn + ε

μ0 − ε

τ∫
0

||uNth ||2H1(�)dt

≤ C
∫
Qτ

|fth |2dxdt + C1

h−1∑
j=0

eγjτ ||ftj ||2L2(QT ,γj)

+ C2

h−1∑
j=0

e
(γj+

σ

2
)τ

j∑
k=0

||ftk ||2L2(QT ,γk) + (γh +
σ

2
)

τ∫
0

||uNth ||2H1(�)dt,

(33)

where ε > 0 is chosen such that

2(2h + 1)μn + ε

μ0 − ε
<

2(2h + 1)μn
μ0

+
σ

2
.

By the Gronwall-Bellmann inequality, we receive from (33) that

||uNth (., τ )||2H1(�) ≤ C

⎛
⎜⎝∫
Qτ

|fth |2dxdt +
h−1∑
j=0

e(γj+
σ
2 )

τ

||ftj ||2L2(�T ,γj)

⎞
⎟⎠

+ Ce(γh+
σ
2 )τ

τ∫
0

e−(γh+
σ
2 )t

⎛
⎝||fth ||2L2(�) +

h−1∑
j=0

e(γj+
σ
2 )t||ftj ||2L2(QT ,γj)

⎞
⎠ dt

≤ Ce(γh+
σ
2 )τ

h∑
j=0

||ftj ||2L2(QT ,γj),

(gh >gj, for j = 0, ..., h - 1). Now multiplying both sides of this inequality by e(−γh−σ )τ,

then integrating them with respect to τ from 0 to T, we arrive at

||uNth ||2H1,0(QT ,γh+σ ) ≤ C
h∑
j=0

||ftj ||2L2(QT ,γj). (34)

It means that the estimates (22) and (23) hold for k = h.

By the similar arguments in the proof of Theorem 1.1, we obtain the estimate

||uNth ||2L2(QT ,γh+σ ) ≤ C
h∑
j=0

||ftj ||2L2(QT ,γj). (35)

Then the combination between (34) and (35) produces the following inequality:

||uNth ||2H1,1(QT ,γh+σ ) ≤ C
h∑
j=0

||ftj ||2L2(QT ,γj). (36)

Accordingly, by again standard weakly convergent arguments, we can conclude that

the sequence {uNtk }∞N=1 possesses a subsequence weakly converging to a function

u(k) ∈ H̊1,1(QT , γk + σ ). Moreover, u(k) is the kth generalized derivative in t of the
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generalized solution u of problem (2)-(4). Estimate (21) follows from (36) by passing

the weak convergences. □
Next, by changing problem (2) -(4) into the Dirichlet problem for second order ellip-

tic depending on time parameter, we can apply the results for this problem in polyhe-

dral domains (cf. [4,5]) and our previous ones to deal with the regularity with respect

to both of time and spatial variables of the solution.

Proposition 3.2. Let the assumptions of Theorem 3.1 be satisfied for a given positive

integer h. Then there exists h > 0 such that utkbelongs to H2,0
a+1(QT , γk + σ )for any |a|

<h, k = 0, ..., h and

h∑
k=0

||utk ||2H2,0
a+1(QT ,γk+σ )

≤ C
h∑

k=0

||ftk ||2L2(QT ,γk), (37)

where C is a constant independent of u and f.

Proof. We prove the assertion of the theorem by an induction on h. First, we con-

sider the case h = 0. Equalities (2), (3) can be rewritten in the form:

L(x, t;D)u = f1 := f − ut in QT , (38)

u = 0 on ST . (39)

Since u satisfies

B(u, v; t) = (f1, v),∀v ∈ H̊1(�) for a.e. t ∈ (0,T),

it is clear that for a.e. t Î (0, T), u is the solution of the Dirichlet problem for system

(38) with the right-hand side f1(., t) = f (., t) − ut(., t) ∈ L2(�) ⊂ H0
a−1 for all a ≤ 1.

From Theorem 4.2 in [5] (or Theorem 1.1. in [4]), it implies that there exists h > 0

such that u(., t) ∈ H2
a+1(�) for any |a| ≤ h. Furthermore, we have

||u(., t)||2
H2

a+1(�)
≤ C||f1(., t)||2H0

a−1(�)
≤ C

(
||f (., t)||2L2(�) + ||u(., t)||2L2(�)

)
, (40)

where C is a constant independent of u, f and t. Now multiplying both sides of (40)

with e−(γ0+σ )t, then integrating with respect to t from 0 to T and using estimates from

Theorem 3.1, we obtain

||u||2
H2,1

a+1(QT ,γ0+σ )
≤ C||f ||2L2(QT ,γ0)

,

where C is a constant independent of u, f. Thus, the theorem is valid for h = 0. Sup-

pose that the theorem is true for h - 1; we will prove that this also holds for h. By dif-

ferentiating h times both sides of (38)-(39) with respect to t, we get

L(x, t;D)uth = F := fth − uth+1 −
h−1∑
k=0

(
h
k

)
Lth−k(x, t;D)utk , in QT (41)

uth = 0, on ST , (42)

where

Ltk(x, t;D) = −
n∑

i,j=1
Di(Aijtk(x, t)Dj) +

n∑
i=1

Bitk(x, t)Di + Ctk(x, t).
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By the induction assumption, it implies that

utk ∈ H2,1
a+1(QT , γk + σ ) ⊂ L2(QT , γk + σ ), k = 0, 1, . . . , h − 1,

and

fth ∈ L2(QT , γh+1) ⊂ L2(QT , γh).

Moreover,

uth+1 ∈ L2(QT , γh)

by Theorem 3.1. Hence, for a.e. t Î (0, T), we have F(., t) ∈ L2(�) ⊂ H0
a−1(�) and

the estimate

||F(., t)||2H0
a−1(�) ≤ C

(
||fth(., t)||2L2(�) + ||uth+1(., t)||2L2(�) +

h−1∑
k=0

||utk(., t)||2L2(�)

)
. (43)

Applying Theorem 4.2 in [5] again, we conclude from (41)-(42) that

uth(., t) ∈ H2
a+1(�) and

||uth(., t)||2H2
a+1(�)

≤ C||F(., t)2
H0

a−1(�)
.

From the inequality above and (43), it follows that

||uth(., t)||2H2
a+1(�) ≤ C

(
||fth(., t)||2L2(�) + ||uth+1 (., t)||2L2(�) +

h−1∑
k=0

||utk(., t)||2L2(�)

)
. (44)

Multiplying both sides of (44) with e−(γh+σ )t, then integrating with respect to t from 0

to T and using Theorem 3.1 with a note that gk <gh for k = 0, 1, ..., h - 1, we obtain

||uth ||2H2,0
a+1(QT ,γh+σ )

≤ C
h∑

k=0
||ftk ||2L2(QT ,γk)

,

where C is the constant independent of u and f. The proof is completed. □
Proof of Theorem 1.2. We will prove the theorem by an induction on m. It is easy

to see that

||u||2
H2

a+1(QT ,γ2+σ )
≤

2∑
k=0

||utk ||2H2−k,0
a+1 (QT ,γk+σ )

.

Hence, Proposition 3.2 implies that the theorem is valid for m = 0. Assume that the

theorem is true for m - 1, we will prove that it also holds for m. It is only needed to

show that

uts ∈ H2+m−s,0
a+1 (QT , γ2+m−s + σ ) for s = m,m − 1 . . . , 0, and

||uts ||2H2+m−s
a+1 (QT ,γ2+m−s+σ ) ≤ C

2∑
k=0

||ftk ||2Hm(QT ,γk).
(45)

Suppose that (45) is true for s = m, m - 1, ..., j + 1, return one more to (41) (h=j),

and set v = utj, we obtain

Lv = Fj, (46)
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where Fj = (ftj − vt) − (−1)m
j∑

k=1

(
j
k

)
Ltj−kutk. By the inductive assumption with

respect to s, we see that

vt ∈ H1+m−j
a+1 (�) ⊂ Hm−j

a−1(�) for a.e. t ∈ (0,T),

ftj ∈ Hm(�) ⊂ Hm−j
a−1(�), for a.e. t ∈ (0,T),

and

Ltj−kutk ∈ Hm−k(�) ⊂ Hm−j
a−1(�), k = 1, . . . , j, for a.e. t ∈ (0,T).

Thus, the right-hand side of (46) belongs to Hm−j
a−1(�). Applying Theorem 4.2 in [5]

again, we get that v = utj ∈ H2+m−j
a+1 (�) for a.e. t Î (0, T). It means that v = utj belongs

to H2+m−j,0
a+1 (QT , γ2+m−j + σ ).

Furthermore, we have

||v||2
H2+m−j,0

a+1 (QT ,γ2+m−j+σ )
≤ C||Fj||Hh−j,0

a−1 (QT ,γ2+m−j+σ ) ≤ C
2∑

k=0

||ftk ||2Hm−j(QT ,γk)
. (47)

Therefore,

||utj ||2H2+m−j
1+a (QT ,γ2+m−j+σ )

≤ ||utj+1 ||2H2+m−j−1
1+a (QT ,γ2+m−j+σ )

+ ||utj ||2H2+m−j,0
a+1 (QT ,γ2+m−j+σ )

≤ C
2∑

k=0

||ftk ||2Hm(QT ,γk).

It implies that (45) holds for s = j. The proof is complete for j = 0.

An example. In order to illustrate the results above, we show an example for the

case L = -Δ, and Ω is a curvilinear polygonal domain in the plane.

Denote by A1, A2, ..., Ak the vertexes of Ω. Let aj be the opening of the angle at the

vertex Aj. Set

Kj = {(x1, x2) ∈ R2 : r > 0, 0 < θ < αj}

as the angle at vertex Aj with sides γ −
j : θ = 0, γ +

j : θ = αj. Here r, θ are the polar

coordinates of the point x = (x1, x2), noting that r(x) = r(x) is the distance from a

point x Î Kj ∩ U to the set {A1, A2, .... Ak}, where U is a small neighbourhood of Aj.

Let ηj = π
αj be the eigenvalue of the pencil U(λ) (cf. [7]) arises from the Dirichlet pro-

blem for Laplace operator via the Mellin transformation r ® l. Let h = min{hj}. We

consider the Cauchy-Dirichlet problem for the classical heat equation

ut − �u = f in QT , (48)

u = 0 on ST , (49)

u|t=0 = 0 in �, (50)

where f : QT ® ℂ is given.

Combining Theorem 1.2 and Theorem 4.4 in [5] we receive the following theorem.

Theorem 3.1. Let Ω ⊂ ℝ2 be a bounded curvilinear polygonal domain in the plane.

Furthermore,
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ftk ∈ L2(QT , γk), for k = 0, 1, 2; ftk(x, 0) = 0, for k = 0, 1.

Then the generalized solution u of problem (48)-(50) belongs to H2
a+1(QT , γ2 + σ )for

any |a| <h := min hj, as above, and u satisfies the following estimate

||u||2H2
a+1(QT ,γ2+σ ) ≤ C

2∑
k=0

||ftk ||2L2(QT ,γk), (51)

where C is a constant independent of u and f.

Remark: Let us notice that f (., t) ∈ L2(�) = V0
0 (�), u ∈ H̊1(�) ⊂ V1

0 (�), the

weighed Sobolev space Vm
β (�) is defined in [[7], p. 191]. Applying Theorem 6.1.4 in

[[7], p. 205] with l2 = 2, b2 = 1 - a, l1 = 1, b1 = 0, n = 2 and the strip 0 < Rel <a <h
does not contain any eigenvalue of U(λ), we obtain u(., t) ∈ V2

1−a(�). It is easy to see

that H2
a+1(�) ⊂ V2

1−a(�). Hence, the regularity of the solution of problem (48)-(50) is

better than the regularity result, which can obtain from helps of Theorem 6.1.4 in [[7],

p. 205].
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