
RESEARCH Open Access

Study of the asymptotic eigenvalue distribution
and trace formula of a second order operator-
differential equation
Nigar Mahar Aslanova1,2

Correspondence: nigar.
aslanova@yahoo.com
1Department of Differential
Equation, Institute of Mathematics
and Mechanics-Azerbaijan National
Academy of Science, 9, F. Agayev
Street, Baku AZ1141, Azerbaijan
Full list of author information is
available at the end of the article

Abstract

The purpose of writing this article is to show some spectral properties of the Bessel
operator equation, with spectral parameter-dependent boundary condition. This
problem arises upon separation of variables in heat or wave equations, when one of
the boundary conditions contains partial derivative with respect to time. To illustrate
the problem and the proof in detail, as a first step, the corresponding operator’s
discreteness of the spectrum is proved. Then, the nature of the eigenvalue
distribution is established. Finally, based on these results, a regularized trace formula
for the eigenvalues is obtained.
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Introduction
Let L2 = L2 (H, [0, 1]) ⊕ H, where H is a separable Hilbert space with a scalar product

(·, ·) and a norm ||·|| inside of it. By definition, a scalar product in L2 is

(Y,Z)L2 =

1∫
0

(y(t), z(t)) dt − 1
h
(y1, z1), h < 0, (1)

where Y = {y (t), y1}, Z = {z (t), z1} and y(t), z(t) Î L2 (H, [0, 1]) for which L2 (H, [0,

1]) is a space of vector functions y(t) such that
∫ 1
0

∥∥y (t)∥∥2 dt < ∞.

Now, consider the equation:

l[y] ≡ −y′′(t) +
ν2 − 1

4

t2
y (t) + Ay (t) + q(t)y (t) = λy(t), t ∈ (0, 1), ν ≥ 1, (2)

y (1) − hy′(1) = λy (1) (3)

in L2 (H, [0, 1]), where A is a self-adjoint positive-definite operator in H which has a

compact inverse operator. Further, suppose the operator-valued function q(t) is weakly

measurable, and ||q(t)|| is bounded on [0, 1] with the following properties:

1. q(t) has a second-order weak derivative on [0, 1], and q(l) (t) (l = 0, 1, 2) are self-

adjoint operators in H for each t Î [0, 1], [q(l) (t)]* = q(l) (t), q(l) (t) Î s1(H). Here
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s1(H) is a trace class, i.e., a class of compact operators in separable Hilbert space

H, whose singular values form a convergent series (denoting the compact operator

by B, then its singular values are the eigenvalues of (BB∗)
1
2). If {�n} is a basis

formed by the orthonormal eigenvectors of B, then ‖B‖σ1(H) =
∑

|(Bϕn,ϕn)|. For
simplicity, denote the norm in s1(H) by ||·||1.

2. The functions ||q(l) (t)||1 (l = 0, 1, 2) are bounded on [0, 1].

3. The relation
∫ 1
0

(
q (t) f , f

)
dt = 0 is true for each f Î H.

State that if q(t) ≡ 0, a self-adjoint operator denoted by L0 can be associated with

problem (2), (3) whose definition will be given later.

If q(t) ≢ 0, the operators L and Q are defined by L = L0 + Q, and Q : Q {y (t), y1} = {q

(t) y(t), 0} which is a bounded self-adjoint operator in L2.

After the above definitions and the assumptions, the asymptotic of the eigenvalue

distribution and regularized trace of the considered problem will be studied. It is clear

that because of the appearance of an eigenvalue parameter in the boundary condition

at the end point, the operator associated with problem (2), (3) in L2 (H, [0, 1]) is not

self-adjoint. Introduce a new Hilbert space L2 (H, [0, 1]) ⊕ H with the scalar product

defined by formula (1) similar to one used in [1]. Then, in this space, the operator

becomes self-adjoint.

In [2], Walter considers a scalar Sturm-Liouville problem with an eigenvalue para-

meter l in the boundary conditions. He shows that one can associate a self-adjoint

operator with that by finding a suitable Hilbert space. Further, he obtains the expan-

sion theorem by reference to the self-adjointness of that operator. His approach was

used by Fulton in [3] later on.

As for the differential operator equations, to the best of this author’s knowledge in

the articles [1,4-6], an eigenvalue parameter appears in the boundary conditions. In [4],

the following problem is considered:

−u′′(x) + Au(x) = λu(x), x ∈ (0, b),

u′(0) + λu(0) = 0, u(b) = 0,

where A = A* > E, and u(x) Î L2 (H, (0, b)). It is proved that the operator associated

with this problem has a discrete spectrum, iff : A has a discrete spectrum. The eigenva-

lues of this problem form two sequences like λk ∼ √
μk and λm,k = μk + n2π2

b2
where n, k

Î N, and μk is an eigenvalue of A. This is obtained from appearance of l in the

boundary condition.

In [5], both boundary conditions depend on l. It is shown that the operator defined

in the space L2 (H, (0, 1)) ⊕ H ⊕ H is symmetric positive-definite. Further, the asymp-

totic formulas for eigenvalues are obtained.

In this author’s previous study [6], for the operator considered in [4], the trace for-

mula has been established.

If h = 0 in (3), then the boundary condition takes the form y(1) = 0. This problem is

considered in [[7], Theorem 2.2], where the trace formula is established. It is proved

that there exists a subsequence of natural numbers {nm} such that
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limm→∞
∑nm

n=1 (μn − λn) = −2νtrq(0) + trq(1)
4

, where μn and ln are the eigenvalues of

perturbed and non-perturbed operators. For definition of {nm}, see also [[8], Lemma 1].

For a scalar case, please refer to [9], where the following problem

−y′′ +
ν2 − 1

4
x2

y + q(x)y = λ2y,

y(π) = 0

is considered on the interval [0, π]. Then, the sum
∑∞

n=1

(
λn −

(
n +

v
2

− 1
2

)2
)
is

calculated.

In comparison with the above mentioned articles, here we consider a differential

operator equation which has a singularity at 0, and the boundary condition at 1

involves both the eigenvalue parameter l and physical parameter h <0.

Problems with l-dependent boundary conditions arise upon separation of variables

in the heat and wave equations. We can also refer to [10-17], where boundary-value

problems for ordinary differential operators with eigenvalue-dependent boundary con-

ditions are studied.

In 1953, Gelfand and Levitan [18] considered the Sturm-Liouville operator

−y′′(x) + q(x)y(x) = λy(x), y′(0) = 0, y′(π) = 0, q(x) ∈ C′ [0,π]

and derived the formula
∑∞

n=1 (μn − λn) =
1
4

(
q(0) + q(π)

)
, where μn are the eigenva-

lues of the above operator. For q (x) ≡ 0 the eigenvalues of the operator are given by

ln = n2.

It is worthwhile to note that, several studies are devoted to searching a regularized

trace for the concrete operators (e.g., [9-18]), as well as differential-operator equations

(e.g., [6-8,19]) and discrete abstract operators (e.g., [20-22]). For further detailed dis-

cussion of the subject, please refer to [23].

Trace formulas are used for the approximation of the first eigenvalues of the opera-

tors [24,25] to solve inverse problems [26,27]. They are also applied to index theory of

linear operators [28,29].

To summarize this study, in Section 1, it is proved that the operator associated with

(2), (3) is self-adjoint and has a discrete spectrum. In Section 2, we establish an asymp-

totic formula for the eigenvalues. To do this, the zeros of the characteristic equation

(Lemmas 2.1, 2.2, 2.3) are searched in detail. In Section 3, by using the asymptotic for

the eigenvalues, we prove that the series called “a regularized trace” converges abso-

lutely (Lemma 3.1). This enables us to arrange the terms of the series in a suitable way

for calculation as in (3.9). To calculate the sum of this series, we introduce a function

whose poles are zeros of the characteristic equation, the residues at poles of which are

the terms of our series. Finally, we establish a trace formula by integrating this func-

tion along the expanded contours.

In conclusion, we apply the results of our study to a boundary value problem gener-

ated by a partial differential equation.
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1 Definition of L0 and proof of discreteness of the spectrum
Let D (L′

0) = {Y : Y = {y(t), y(1)}, y(t) ∈ C∞
0

(
H, [0, 1]

)
, y(t) ∈ D (A)}, where C∞

0 (H, [0, 1]) is a

set of vector functions with values in H (see [30], p. 57) that vanish in the vicinity of

zero and are infinitely differentiable in the norm of H. Also, on D (L′
0) define the

operator L′
0:

L′
0Y = {l[y], y(1) − hy′(1)}.

Using integration by parts it is easy to see that L′
0 is symmetric. Denote its closure by

L0 and show that it is self-adjoint. To do that, consider the adjoint operator of L′
0 as

L′
0
∗. By definition, vector Z = {z(t), z1} ∈ D (L′

0
∗) if for each Y ∈ D (L′

0) it holds

1∫
1

(l([y], z(t))) dt − 1
h
(y(1) − hy′(1), z1) =

1∫
0

(y(t), z∗(t)) dt + (y(1), z∗) (1:1)

and Z* = {z* (t), z*} Î L2. However, using integration by parts from (1.1), it is

obvious that D (L′
0
∗) = {Z : Z = {z(t), z1} ∈ L2 with z(t) ∈ W2

2(H, [0, 1]) and l[z] Î L2
(H, [0, 1])}. In other words, z(t) has a first-order derivative on [0, 1] which is absolutely

continuous in the norm of H and z (0) = z’(0) = 0, Az(t) Î L2 (H, [0, 1]) and

Z∗ = L′
0
∗Z = {l[z], z(1) − hz′(1)}.

Now, the vector Z ∈ D (L′
0
∗∗) if and only if for any Y ∈ D (L′

0
∗) (1.1) holds, Z* Î L2

and Z∗ = L′
0
∗∗Z.

By virtue of L′
0 ⊂ L′

0
∗, L′

0
∗∗ ⊆ L′

0
∗, we can state that any vector Z from D (L′

0
∗∗) must

also belong to D (L′
0
∗) and L′

0
∗∗Z = L′

0
∗Z. On the other hand, it could be verified that

relation (1.1) is also true for

Y ∈ D(L′
0
∗), Z(t) ∈ W2

2(H, [0, 1]),

l[z] ∈ L2(H, [0, 1])Z∗ = {l[z], z(1) − hz′(1)}.

Therefore, L′
0
∗∗ = L′

0
∗. In other words, L′

0
∗ is a self-adjoint operator. However, we

know that L′
0
∗∗ = L̄′

0. Thus, the closure of L′
0 is a self-adjoint operator L′

0
∗, which we

will denote by L0.

By virtue of all as stated above, L0 is defined as

D(L0) = {Y ∈ L2, y′′(t),Ay(t) ∈ L(H, (0, 1)), y1 = y(1)},
L0y = {l[y], y(1) − hy′(1)}.

By the properties of ν ≥ 1, A > E, it follows that L0 is a positive-definite operator. To

show that, for each Y Î D (L0), we have

(L0Y,Y)L2 =

1∫
0

(l[y], y(t)) dt − 1
h
(y(1) − hy′(1), y(1))

=

1∫
0

||y′(t)||2 dt +

1∫
0

(Ay(t), y(t)) dt +
∫ 1

0

ν2 − 1
4

t2
||y(t)||2dt − 1

h
||y(1)||2

≥
1∫

0

||y′(t)||2 dt +

1∫
0

||y(t)||2 dt.

Since the embedding W1
2(H, (0, 1)) ⊂ C(H, [0, 1]) is continuous ([[31], Theorem

1.7.7], [[32], p. 48]), then, ||y(1)|| ≤ c||y(t)||W1
2 (H,(0,1)), where c >0 is a constant.
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Thus,

(L0Y,Y)L2 ≥ C

⎛
⎝ 1∫

0

∥∥y (t)
∥∥2 dt − 1

h

∥∥y (1)
∥∥2
⎞
⎠ = C ‖Y‖2L2

which shows that L0 is a positive-definite operator.

To prove the discreteness of the spectrum, we will use the following Rellich’s theo-

rem (see [[33], p. 386]).

Theorem 1.1. Let B be a self-adjoint operator in H satisfying (B�, �) ≥ (�, �), � Î
DB, where DB is a domain of B.

Then, the spectrum of B is discrete if and only if the set of all vectors � Î DB, satisfy-

ing (B�, �) ≤ 1 is precompact.

Let g1 ≤ g2 ≤ · · · ≤ gn ≤ · · · be the eigenvalues of A counted with multiplicity and �1,

�2,..., �n,... be the corresponding orthonormal eigenvectors in H.

Take yk(t) = (y (t), �k). Then

(
y(t), y(t)

)
=

∞∑
k=1

|yk(t)|2,
((

ν2 − 1
4

t2
E + A

)
y, y

)
=

∞∑
k=1

(
ν2 − 1

4

t2
+ γk

)
|yk(t)|2.

(1:2)

Hence, using the Rellich’s theorem, we come to the following theorem:

Theorem 1.2. If the operator A-1 is compact in H, then the operator L0 has a discrete

spectrum.

Proof. By virtue of positive-definiteness of L0, by Rellich’s theorem, it is sufficient to

show that the set of vectors

Y =
{
Y ∈ D (L0) \(L0Y,Y)L2

=

1∫
0

[
(y′(t), y′(t)) +

((
ν2 − 1

4

t2
E + A

)
y(t), y(t)

)]
dt

−1
h
(y(1), y(1)) ≤ 1

} (1:3)

is precompact in L2.

To prove this theorem, consider the following lemma.

Lemma 1.1. For any given ε >0, there is a number R = R(ε), such that

1∫
0

∞∑
k=R+1

|yk(t)|2dt − 1
h

∞∑
k=R+1

|yk(1)|2 < ε.

Proof. From (1.1) for Y Î Y :

1∫
0

∞∑
k=R+1

|yk(t)|2dt = 1
γR

1∫
0

∞∑
k=R+1

|yk(t)|2γR dt ≤ 1
γR

1∫
0

∞∑
k=R+1

|yk(t)|2γk dt

≤ 1
γR

1∫
0

∞∑
k=1

|yk(t)|2γk dt = 1
γR

1∫
0

(Ay, y) dt ≤ 1
γR

(L0Y,Y)L2 ≤ 1
γR

.
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Since gR ® ∞ for R ® ∞, for any given ε >0, we could choose R(ε) such that
1
γR

< ε2

(1−2
h )

2. Therefore, for this choice of R the inequality

1∫
0

∞∑
k=R+1

|yk(t)|2dt <
ε2(

1 − 2
h

)2 (1:4)

holds. On the other hand, by virtue of (1.3):

−1
h

∞∑
k=R+1

|yk(1)|2 = −1
h

∞∑
k=R+1

∣∣∣∣∣∣
1∫

0

(y2k (t))
′ dt

∣∣∣∣∣∣ = −1
h

∞∑
k=R+1

∣∣∣∣∣∣
1∫

0

2y′k(t)yk(t) dt

∣∣∣∣∣∣
≤ −2

h

∞∑
k=R+1

⎛
⎝ 1∫

0

∣∣y′k(t)∣∣2 dt

⎞
⎠

1/2⎛
⎝ 1∫

0

∣∣yk(t)∣∣2dt
⎞
⎠

1/2

≤ −2
h

⎛
⎝ ∞∑

k=R+1

1∫
0

∣∣y′k(t)∣∣2 dt

⎞
⎠

1/2⎛
⎝ ∞∑

k=R+1

1∫
0

∣∣yk(t)∣∣2 dt

⎞
⎠

1/2

≤ −2√
γRh

< −2
h

· ε

1 − 2
h

.

From (1.4) and the above, it follows that

1∫
0

∞∑
k=R+1

∣∣yk(t)∣∣2 dt − 1
h

∞∑
k=R+1

∣∣yk(1)∣∣2 <
ε2(

1 − 2
h

)2 −
2
hε

1 − 2
h

<
ε(

1 − 2
h

) −
2
hε

1 − 2
h

= ε.

This proves Lemma 1.1.

Now, turn to the proof of Theorem 1.2. Assume, Y Î Y. Denote the set of all vec-

tor-functions Ỹ =
{∑R

k=1 yk(t)ϕk,
∑R

k=1 yk(1)ϕk

}
∈ L2, by ER. Then, from Lemma 1.1 it

follows that for the set Y, ER is an ε-net in L2. Therefore, to prove the precompact-

ness of the set Y, we must prove the precompactness of ER in L2. Since |yk (1)| ≤ 1

(k = 1,..., R), it is sufficient to show that yk(t) (k = 1,..., R) satisfies the criteria of pre-

compactness in L2 (0, 1) [[34], p. 291]. In other words, yk (t), (k = 1,..., R) must be

equicontinuous and bounded with respect to the norm in L2 (0, 1). To show that,

using (1.3) results in

1∫
0

|yk(t)|2 dt ≤
1∫

0

(y(t), y(t)) dt ≤
1∫

0

(Ay, y) dt ≤ 1

which proves the boundedness of the functions yk (t) (k = 1,..., R). Assume that yk (t)

is a zero outside the interval (0, 1). Then, by using the following relation

∣∣yk (t + η) − yk (t)
∣∣ ≤

η∫
0

∣∣y′k (t + ξ)
∣∣ dξ ,

we have

1∫
0

|yk(t + η) − yk(t)|2 dt ≤
1−η∫
0

|yk(t + η) − yk(t)|2 dt +

1∫
1−η

|yk(t)|2 dt, (1:5)
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1∫
1−η

|yk(t)|2 dt =

1∫
1−η

∣∣∣∣∣∣
t∫

0

y′k (τ ) dτ

∣∣∣∣∣∣
2

dt ≤
1∫

1−η

∣∣∣∣∣∣
1∫

0

y′k (τ ) dτ

∣∣∣∣∣∣
2

dt ≤ η (1:6)

1−η∫
0

|yk(t + η) − yk(t)|2 dt ≤
1−η∫
0

⎛
⎝ η∫

0

|y′k(τ + t)| dτ
⎞
⎠

2

dt

≤
1−η∫
0

η

η∫
0

|y′k(τ + t)|2 dτ dt ≤
1−η∫
0

η

1∫
0

|y′k(τ )|2 dτ dt < η (1 − η) < η.

(1:7)

From the above, for |h| < ε we have

1∫
0

|yk(t + η) − yk(t)|2 dt < 2ε.

This shows the equicontinuity of ER, and it completes the proof of the discreteness

of the spectrum of L0.

2 The derivation of the asymptotic formula for eigenvalue distribution of L0
Suppose that the eigenvalues of A are gn ~ ana (n ® ∞, a >0, a >0). Then, by virtue of

the spectral expansion of the self-adjoint operator A, we get the following boundary

value problem for the coefficients yk(t) = (y(t), �k):

−y′′k (t) +
ν2 − 1

4

t2
yk (t) = (λ − γk) yk(t), t ∈ (0, 1), (2:1)

yk(1) − hy′k(1) = λyk(1). (2:2)

The solution to problem (2.1) from L2 (0, 1) is

yk(t) =
√
tJν
(
t
√

λ − γk

)
.

For this solution to satisfy (2.2), it is necessary and sufficient to hold

Jν
(√

λ − γk

)
− h

2
Jν
(√

λ − γk

)
− h

√
λ − γkJ

′
ν

(√
λ − γk

)
− λJν

(√
λ − γk

)
= 0(2:3)

at least for one gk(l ≠ gk). Therefore, the spectrum of the operator L0 consists of

those real values of l ≠ gk, such that at least for one k(
1 − h

2
− z2 − γk

)
Jν(z) − hzJ′ν(z) = 0, (2:4)

where z =
√

λ − γk. Then, by using (2.4) and identity zJ′ν(z) = zJν−1(z) − νJν(z) [[35],

p. 56], we get(
1 − h

2
− z2 − γk + hν

)
Jν(z) − hzJν−1(z) = 0, (2:5)

Find the eigenvalues of the operator L0 which are less than gk. These values corre-

spond to the imaginary roots of Equation 2.5. By taking z = 2i
√
y and using [[35], p. 51]:
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∞∑
n=0

yn

n!� (n + ν + 1)
=
Jν
(
2i

√
y
)

(
i
√
y
)ν ,

we get

−2hi
√
y
(
i
√
y
)ν−1

∞∑
n=0

yn

n!� (n + ν)
+
(
4y + 1 − h

2
+ hν − γk

) (
i
√
y
)ν ∞∑

n=0

yn

n!� (n + ν + 1)
= 0,

or equivalently

−2h
∞∑
n=0

yn

n!� (n + ν)
+
(
4y + 1 − h

2
− γk + hν

) ∞∑
n=0

yn

n!� (n + ν + 1)

=
∞∑
n=0

yn

n!

(
−2h + 4n
� (n + ν)

− γk + h
2 − 1 − hν

(ν + n)� (n + ν)

)

=
∞∑
n=0

yn

n!

(ν + n)(4n − 2h) −
(
γk + h

2 − 1 − hν
)

(ν + n) � (n + ν)
= 0.

(2:6)

Now, consider the quadratic equation (4z − 2h) (ν + z) −
(
γk + h

2 − 1 − hν
)
= 0

whose roots are given as

z =
−(2ν − h) ±

√
(2ν − h)2 + 4γk + 2h − 4 + 4hν

4
.

Therefore, the coefficients for yn in (2.6) become positive for

n >

⎡
⎢⎣−ν − h

2

2
+

√
(2ν−h)2

4 + γk + h
2 − 1 + hν

2

⎤
⎥⎦ . (2:7)

Further, let N be the number of positive roots of the function in (2.6), and W be the

number of sign changes in its coefficients. Because the radius of convergence of this

series is ∞, then by Descartes’ rule of signs [[36], p. 52] W - N is a nonnegative even

number. From (2.7), W = 1, therefore N = 1. Hence, beginning with some k, Equation

2.6 has exactly one positive root corresponding to the imaginary root of Equation 2.5.

Now, find the asymptotic of the imaginary roots of Equation 2.5. For z = iy and

using the asymptotic of Jν (z) for imaginary z a large |z| [[37], p. 976]

Jν
(
iy
)
= Iν

(
y
)
e

π
2 νi, Iν

(
y
) ∼ ey√

2πy

(
1 − ν2 − 1

4

2y
+O

(
1
y2

))
,

This means (2.4) is equivalent to

(
1 − h

2
+ y2 − γk

)(
1 − ν2 − 1

4

2y
+O

(
1
y2

))
−hy

(
1 − (ν − 1)2 − 1

4

2y
+O

(
1
y2

))
= 0,

from which

y ∼ ν2 − 1
4 + 2h

4
+

√
γk −

√
γk

2

(
ν2 − 1

4

)
. (2:8)
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Using (2.8) in
√

γk − λ = y, we come up with the asymptotic formula for the eigenva-

lues of L0 which are less than gk

λk ∼ −h
√

γk. (2:9)

Now, find the asymptotic of those solutions of Equation 2.3 which are greater than

gk, i.e., the real roots of Equation 2.5. By virtue of the asymptotic for a large |z| [[35],

p. 222]

Jν(z) =

√
2
πz

cos
(
z − νπ

2
− π

4

)(
1 +O

(
1
z

))
,

Equation 2.5 becomes(
1 − h

2
− z2 − γk

)√
2
πz

cos
(
z − νπ

2
− π

4

)(
1 +O

(
1
z

))

+hz

√
2
πz

sin
(
z − νπ

2
− π

4

)(
1 +O

(
1
z

))
= 0.

Hence,

z =
νπ

2
− π

4
+ πm +O

(
1
z

)
, (2:10)

where m is a large integer. Therefore, we can state the following Lemma 2.1:

Lemma 2.1. The eigenvalues of the operator L0 form two sequences

λk ∼ −h
√

γk and λm,k = γk + z2m = γk + αm,

where αm ∼ (
πm + νπ

2 − π
4

)2. Denote the imaginary and real roots of Equation 2.2 by

x0,k and xm, k, respectively.

State the following two lemmas.

Lemma 2.2. Equation 2.5 has no complex roots except the pure imaginary or real

roots.

Proof. l is real since it is eigenvalue of self-adjoint operator associated with problem

(2.1), (2.2). gk is real by our assumption (A* = A). Hence, the roots of (2.5) are square

roots of real numbers. Lemma 2.2 is proved.

Let C be a rectangular contour with vertices at ±iB, ±iB + Am, where

Am = mπ + νπ
2 + π

4, and B is a large positive number. Further, assume that this contour

bypasses the origin and the imaginary root at -ix0,k along the small semicircle on the

right side of the imaginary axis and ix0,k on the left.

Then, we claim that the following lemma is true.

Lemma 2.3. For a sufficiently large integer m, the number of zeros of the function

z−ν

((
1 − h

2
− z2 − γk

)
Jν (z) − hzJ′ν (z)

)

inside of C is exactly m.

Proof. Since z−ν
((

1 − h
2 − z2 − γk

)
Jν (z) − hzJ′ν (z)

)
is an entire function of z, then

the number of its zeros inside of C equals:
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1
2π i

∫
C

[
z−ν

((
1 − h

2
− z2 − γk

)
Jν (z) − hzJ′ν(z)

)]′

z−ν

((
1 − h

2
− z2 − γk

)
Jν (z) − hzJ′ν(z)

) dz

=
1
2π i

∫
C

[
z−ν

(
hzJν+1 (z) +

(
1 − h

2
− hν − z2 − γk

)
Jν (z)

)]′

z−ν

((
1 − h

2
− z2 − γk

)
Jν (z) − hzJ′ν(z)

) dz

=
1
2π i

∫
C

⎡
⎢⎢⎣

−νz−ν−1

(
hzJν+1 (z) +

(
1 − h

2
− hν − z2 − γk

)
Jν (z)

)

z−ν

((
1 − h

2
− z2 − γk

)
Jν (z) − hzJ′ν(z)

)

+
z−ν

(
hJν+1 (z) + hzJ′ν+1 (z) − 2zJν(z) +

(
1 − h

2
− hν − z2 − γk

)
J′ν (z)

)

z−ν

((
1 − h

2
− z2 − γk

)
Jν (z) − hzJ′ν(z)

)
⎤
⎥⎥⎦ dz

=
1
2π i

∫
C

⎡
⎢⎢⎣
z−ν

(
−νhJν+1(z) − ν

Jν(z)
z

(
1 − h

2
− hν − z2 − γk

))

z−ν

((
1 − h

2
− z2 − γk

)
Jν (z) − hzJ′ν(z)

)

+
z−ν

(
hJν+1 (z) + hzJ′ν+1(z) − 2zJν(z) +

(
1 − h

2
− hν − z2 − γk

)
J′ν (z)

)

z−ν

((
1 − h

2
− z2 − γk

)
Jν (z) − hzJ′ν(z)

)
⎤
⎥⎥⎦ dz

=
1
2π i

∫
C

⎡
⎢⎢⎣
z−ν

(
−νhJν+1(z) − Jν+1 (z)

(
1 − h

2
− hν − z2 − γk

)

z−ν

((
1 − h

2
− z2 − γk

)
Jν (z) − hzJ′ν(z)

)

+
z−ν

(
hJν+1 (z) + hzJν (z) − h(ν + 1)Jν+1(z) − 2zJν(z)

)
z−ν

((
1 − h

2
− z2 − γk

)
Jν (z) − hzJ′ν(z)

)
⎤
⎥⎥⎦ dz

=
1
2π i

∫
C

−Jν+1 (z)

(
1 − h

2
− z2 − γk

)
− 2νhJν+1(z) + Jν (z) z(h − 2)(

1 − h
2

− z2 − γk

)
Jν (z) − hzJ′ν(z)

dz.

In the above, we have used the following identities:

zJ′ν(z) = νJν(z) − zJν+1(z),

zJ′ν+1(z) = zJν(z) − (ν + 1)Jν+1(z).

As the integrand is an odd function. the order of its numerator in the vicinity of zero

is O(zν+1), and the order of its denominator is O(zν), the integral along the left part of

contour vanishes. Now, consider the integrals along the remaining three sides of the

contour. On these sides [[35], p. 221, p. 88]

Jν (z) =
H(1)

ν (z) +H(2)
ν (z)

2
,

where

H(1)
ν (z) =

(
2
πz

) 1
2
e
i
(
z− νπ

2 − π
4

) {
1 + η1,ν (z)

}
,

H(2)
ν (z) =

(
2
πz

) 1
2
e
−i
(
z− νπ

2 −π
4

) {
1 + η2,ν (z)

}
,

h1,ν (z) and h2,ν (z) are of order O
( 1
z

)
for large |z|.
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For simplicity, denote the integrand by f(z), then

1
2π i

iB∫
iB+mπ+ νπ

2 + π
4

f (z) dz = − 1
2π i

iB+mπ+ νπ
2 + π

4∫
iB

f (z) dz

∼ 1
2π i

iB+mπ+ νπ
2 +π

4∫
iB

Jν+1 (z)
Jν (z)

(
1 +O

(
1
z

))
dz

=
1
2π i

iB+mπ+ νπ
2 +π

4∫
iB

[
1 + η2,ν+1 (z)
1 + η2,ν (z)

] [
1 +O

(
e2iz
)]

dz → m
2

+
ν

4
+
1
8
.

One can analogously show that the integral along the lower side tends to the same

number.

To calculate the integral along the fourth side, use the relations:
Jν+1(z)
Jν (z)

− tg
(
z − νπ

2 − π
4

)
= 2ν+1

2z +O
( 1
z2
)

for large |z|, and

∫ iB+mπ+ νπ
2 +π

4
−iB+mπ+ νπ

2 +π
4
tg
(
z − νπ

2 − π
4

)
dz = 0.

Since O
( 1
z

)
is bounded on the right-hand side of the contour, we get

− 1
2π i

iB+mπ+ νπ
2 + π

4∫
−iB+mπ+ νπ

2 +π
4

[
Jν+1 (z)
Jν (z)

(
1 +O

(
1
z

))]
dz

= − 1
2π i

iB+mπ+ νπ
2 +π

4∫
−iB+mπ+ νπ

2 + π
4

[
2ν + 1
2z

+ tg
(
z − νπ

2
− π

4

)
+O

(
1
z2

)]

×
(
1 +O

(
1
z

))
dz ∼ −1

4
(2ν + 1) +O

(
1
m

)
.

Consequently, the limit of the integral along the entire contour is m +O
( 1
m

)
. How-

ever, as the integral must be an integer, it should be equal to m. This completes the

proof of Lemma 2.3.

By using the above results, derive the asymptotic formula for the eigenvalue distribu-

tion of L0. To do that, denote the eigenvalue distribution of the operator L0 by N (l,
L0). Then:

N (λ, L0) =
∑

λj(L0)<λ

1 = N1 (λ) +N2 (λ) ,

where

N1 (λ) =
∑
λk<λ

1, N2 (λ) =
∑

λm,k<λ

1.

Since gk ~ a · ka, then λk ∼ c1k
α
2. That is

N1 (λ) ∼ C1λ
2
α . (2:11)
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From Lemmas 2.2 and 2.3 and the asymptotic of xm, k, it follows that one can find a

number c such that for a large m

πm < xm,k < πm + c.

From this inequality, it follows that N2(l) is less than N′
2 (λ), where N′

2 (λ) is the

number of the positive integer pairs (m, k) satisfying the inequality

π2m2 + akα < λ. (2:12)

Also, N2(l) is greater than N′′
2 (λ), where N′′

2 (λ) is the number of the positive integer

pairs for which

(πm + c)2 + akα < λ. (2:13)

To summarize, we have

N′′
2 (λ) < N2 (λ) ≤ N′

2 (λ) . (2:14)

Thus, by (2.12) and (2.13) as in [[38], Section 3, Lemma 2] we have:

2γ λ
2+α
2α

πα
√
a

− (c + 1)

(
λ

a

) 1
α − 1

π
λ
1
2 ≤ N′′

2 (λ) < N2 (λ) ≤ N′
2 (λ) ≤ 2γ λ

2+α
2α

πα
√
a
,

where γ =

π∫
0

cos2t sin
2
α

−1t dt.

From the above, we have

N2 (λ) ∼ 2γ λ
2+α
2α

πα
√
a
. (2:15)

Therefore, by virtue of (2.11) and (2.15), we have

N (λ) ∼ c1λ
2
α + c2λ

2+α
2α .

For a >2

N (λ, L0) ∼ c2λ
2+α
2α

and consequently, λn (L0) ∼ dn
2+α
2α , d = c

− 2α
2+α

2
.

For a >2, N (λ, L0) ∼ c1λ
2
α or, λn (L0) ∼ c

− 2
α

1 n
α
2.

For a = 2, N (l) ~ (c1 + c2) l from which ln(L0) ~ dn, d = (c1 + c2)
-1.

Then, as Q is a bounded operator in L2, it follows from the relation for the resol-

vents of the operators L0 and L [[30], p. 219]

Rλ (L) = Rλ (L0) − Rλ (L)QRλ (L0)

that the spectrum of L is also discrete. By virtue of the last equality and the proper-

ties that hold for s numbers of compact operators [[30], pp. 44, 49] as in [[38], Section

3, Lemma 2], for the eigenvalues of L denoted by μn(L), we have

μn(L) ∼ dnδ .
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Therefore, we can state the following theorem:

Theorem 2.1. If gn ~ ana (0 < a, a >0), then

λn (L0) ∼ μn (L) ∼ dnδ , (2:16)

where

δ =

⎧⎪⎪⎨
⎪⎪⎩

2α

α + 2
for α > 2,

α

2
for α < 2,

1 for α = 1.

For simplicity, we will denote the eigenvalues of L0 and L by ln and μn, respectively.

3 Regularized trace of the operator L
Now make use of the theorem proved in [20] for abstract operators. At first, introduce

the following notations.

Let A0 be a self-adjoint positive discrete operator, {ln} be its eigenvalues arranged in

ascending order, {�j} be a basis formed by the eigenvectors of A0, B be a perturbation

operator, and {μn} be the eigenvalues of A0 + B. Also, assume that A−1
0 ∈ σ1(H). For

operators A0 and B in [[20], Theorem 1], the following theorem is proved.

Theorem 3.1. Let the operator B be such that D(A0) ⊂ D(B), and let there exist a

number δ Î [0, 1) such that BA−δ
0 has a bounded extension, and number ω Î [0, 1), ω

+ δ <1 such that A−(1−δ−ω)
0

is a trace class operator. Then, there exists a subsequence of

natural numbers {nm}∞m=1and a subsequence of contours Γm Î C, that for ω ≥ δ the for-

mula

lim
m→∞

nm∑
j=1

(μj − λj − (Bϕj,ϕj)) = 0

is true.

Note that the conditions of this theorem are satisfied for L0 and L. That is, if we take

A0 = L0, B = Q, then L−1
0 Q is bounded. For ω = δ < α−2

4α
and a >2, from asymptotic

(2.16), we will have that A−(1−δ−ω)
0 = L−(1−2δ)

0 is a trace class operator. If a <2, then

L−(1−2δ)
0 will be a trace class operator for ω = δ < α−2

α
.

Thus, by the statement of Theorem 3.1, for a >2, we have

lim
m→∞

nm∑
n=1

(μn − λn) = lim
m→∞

nm∑
n=1

(Qψn,ψn)L2 , (3:1)

where ψ1(x), ψ2(x),... are the orthonormal eigenvectors of L0.

Introduce the following notation:

λ(i) =
ni∑

k=ni−1+1

λk, μ(i) =
ni∑

k=ni−1+1

μk (i = 1, 2, . . .) , (3:2)

and investigate the sum of series
∞∑
i=1

(μ(i) − λ(i)), which as will be seen later, is inde-

pendent of the choice of {nm}∞m=1. We will call the sum of this series a regularized trace

of the operator L0.
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Now, we calculate the norm for the eigen-vectors of the operator L0 in L2. To do

this, we will use the following identity obtained from the Bessel equation”

1∫
0

tJν (αt) Jν (βt) dt =
1

α2 − β2

[
Jν (α) βJ′ν (β) − Jν (β) αJ′ν (α)

]
.

As a ® b, we get

1∫
0

tJ2ν (βt) dt =
β2J′ν(β)2 + (β2 − ν2) J2ν (β)

2β2
. (3:3)

We also consider the following identities:

J′ν(z) = −Jν+1(z) +
ν

z
Jν(z),

J′′ν(z) = −J′ν+1(z) − ν

z2
Jν(z) +

ν

z
J′ν(z),

zJ′ν+1(z) = zJν(z) − (ν + 1)Jν+1(z).

By the above identities and also by the equation

βJ′ν (β) −
(
1 − h

2
− β2 − γk

)
Jν (β)

h
= 0

satisfied by xm, k, we obtain

(β2 − ν2) J2ν (β) + β2J′2ν(β)

=
1 − h − 2β2 − 2γk + h2

4 + β2h + γkh + β4 + 2γkβ
2 + γ 2

k + β2h2 − ν2h2

h2
J2ν (β).

Therefore,

1∫
0

tJ2ν (xm,kt)(ϕk,ϕk) dt − 1
h
J2ν (xm,k)(ϕk,ϕk)

=
1 − h − 2x2m,k − 2γk + h2

4 − x2m,kh + γkh + x4m,k + 2γkx2m,k + γ 2
k + h2x2m,k − ν2h2

2x2m,kh
2

J2ν (xm,k).

So, the orthonormal eigen-vectors of L0 are

1
Jν(xm,k)

√√√√ 2x2m,kh
2

1 − h − 2x2m,k − 2γk + h2
4 − x2m,k + γkh + x4m,k + 2γkx2m,k + γ 2

k + h2x2m,k − ν2h2

×
{√

tJν(xm,kt)ϕk, Jν(xm,k)ϕk

} (
m = 1,∞; k = 1,∞
m = 0; k = N,∞

)
.

(3:4)

Now, we prove the following lemma.

Lemma 3.1. If the operator function q(t) has properties 1, 2, and also a >0, then

∞∑
k=1

∞∑
m=1

∣∣∣∣∣∣
∫ 1

0

2x2m,kh
2tJ2ν (xm,kt)(q(t)ϕk,ϕk)dt

J2ν (xm,k)
(
1 − h − 2x2m,k − 2γk + h2

4 − x2m,kh + γkh + x4m,k + 2γkx2m,k + γ 2
k + h2x2m,k − ν2h2

)
∣∣∣∣∣∣

+
∞∑
k=N

∣∣∣∣∣∣
1∫

0

2x20,kh
2tJ2ν (x0,k

t)(q(t)ϕk,ϕk)dt

J2ν (x0,k)
(
1 − h − 2x20,k − 2γk + h2

4 − x20,kh + γkh + x40,k + 2γkx20,k + γ 2
k + h2x20,k − ν2h2

)
∣∣∣∣∣∣ < ∞.

(3:5)
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Proof. Assume that fk(t) = (q(t) �k, �k). By Lemma 2.1 we have xm,k ∼ πm + νπ
2 − π

4.

So, in virtue of the inequality
∣∣∣ tJ2ν (xm,kt)
J2ν (xm,k)

∣∣∣ < c [[35], p. 666] and properties 1 and 2 we

have

∞∑
k=1

∞∑
m=1

∣∣∣∣∣∣
1∫

0

2x2m,kh
2tJ2ν (xm,kt)fk(t) dt

J2ν (xm,k)
(
1 − h − 2x2m,k − 2γk + h2

4 − x2m,kh + γkh + x4m,k + 2γkx2m,k + γ 2
k + h2x2m,k − ν2h2

)
∣∣∣∣∣∣

< c
∞∑
k=1

∞∑
m=1

1∫
0

|fk(t)|dt

x2m,k − h + 2γk + h2 − 2 +
1−h−2γk+

h2
4 +γkh+γ 2

k −ν2h2

x2m,k

∼
∞∑
k=1

∞∑
m=1

O

(
1

x2m,k

) 1∫
0

|fk(t)| dt < ∞.

To estimate the second series in (3.5), we use the relation

x0,k ∼ ν2−1
4+2h
4 +

√
γk, γk ∼ akα.

By hypothesis of Lemma 3.1 a >0. Therefore, denoting this sum by s, we have

|s| <

∞∑
k=N

1

x20,k

1∫
0

|fk(t) dt| < ∞.

This proves Lemma 3.1.

Now, assume that

1∫
1−δ

|fk(t)|
cos π t

2

dt < ∞, (3:6)

δ∫
0

|fk(t)|
t

dt < ∞ (3:7)

for small δ >0.

Then, we can state the following theorem.

Theorem 3.2. Let the conditions of Theorem 2.1, (3.6) and (3.7) hold. If the operator-

value function q(t) has properties 1-3, then the following formula is true

lim
m→∞

nm∑
i=1

(μn − λn) = −2νtrq(0) + trq(1)
4

. (3:8)

Proof. By virtue of lemma 3.1 we have

∞∑
i=1

(μ(i) − λ(i))

=
N−1∑
k=1

∞∑
m=1

1∫
0

2x2m,kh
2tJ2ν (xm,kt)fk(t)[

1 − h − 2x2m,k − 2γk + h2
4 − x2m,kh + γkh + x4m,k + 2γkx2m,k + γ 2

k + h2x2m,k − ν2h2
]
J2ν (xm,k)

dt

+
∞∑
k=N

∞∑
m=0

1∫
0

2x2m,kh
2tJ2ν (xm,kt)fk(t)[

1 − h − 2x2m,k − 2γk + h2
4 − x2m,kh + γkh + x4m,k + 2γkx2m,k + γ 2

k + h2x2m,k − ν2h2
]
J2ν (xm,k)

dt.

(3:9)

At first evaluate the inner sum in the second term on the right hand side of (3.9). To

do this, as N ® ∞ investigate the asymptotic behavior of the function
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RN(t) =
N−1∑
m=0

2th2x2m,kJ
2
ν (xm,kt)

J2ν (xm,k)
{
1 − h − 2x2m,k − 2γk + h2

4 − x2m,kh + γkh + x4m,k + 2γkx2m,k + γ 2
k + h2x2m,k − ν2h2

} .

To derive a formula for RN(t), show for each fixed value of k, the mth term of the

sum RN(t) as a residue at the point xm, k of some complex variable function with poles

at xm,k
(
m = 0,N − 1

)
.

For this purpose, consider the following function:

g(z) =
2tzhJ2ν (tz)

Jν(z)
{
−hzJ′ν(z) + (1 − h

2 − z2 − γk)Jν(z)
} .

The poles of this function are x0,k,...,xN - 1,k and j1,..., jN (Jν(jn) = 0). The residue at jn
equals

res
z=jn

g(z) =
2thjnJ2ν (tjn)

J′ν(jn)(−hjnJ′ν(jn) + (1 − h
2 − j2n − γk)Jν(jn))

= −2tJ2ν (tjn)

J′ν(jn)2
.

Now, compute the residue at xm, k:
(

−hzJ′ν(z) +
(
1 − h

2
− z2 − γk

)
Jν(z)

)′

= J′ν(z)
(
1 − h

2
− z2 − γk − h

)
− hzJ′′ν(z) − 2zJν(z)

=
(
−ν

z
Jν(z) + Jν−1(z)

)(
1 − h

2
− z2 − γk − h

)
− hz

( ν

z2
Jν(z) − ν

z
J′ν(z) + J′ν−1(z)

)
− 2zJν(z)

= −ν

z
Jν(z)

(
1 − h

2
− z2 − γk

)
+ hνJ′ν(z) + Jν−1(z)

(
1 − h

2
− z2 − γk − h

)
− hzJ′ν−1(z) − 2zJν(z).

(3:9a)

Denote the right hand side of (3.10) by G(z). Since xm, k satisfies equation (2.4), by

setting z = xm, k and using the identity

zJ′ν−1(z) = (ν − 1) Jν−1(z) − zJν(z),

we have

G(xm,k) = Jν−1(xm,k)
(
1 − 3h

2
− x2m,k − γk

)
− h((ν − 1)Jν−1(xm,k) − xm,kJν(xm,k))

−2xm,kJν(xm,k) = Jν−1(xm,k)
(
1 − 3h

2
− x2m,k − γk

)
−h(ν − 1)Jν−1(xm,k) + xm,k(h − 2)Jν(xm,k)

= Jν−1(xm,k)
(
1 − h

2
− x2m,k − γk − hν

)
+ (h − 2)xm,kJν(xm,k)

=
(
J′ν(xm,k) +

ν

xm,k
Jν(xm,k)

)(
1 − h

2
− x2m,k − γk − hν

)
+ (h − 2)xm,kJν(xm,k)

=
(xm,kJ′ν(xm,k) + νJν(xm,k))

(
1 − hν − h

2
− x2m,k − γk

)
+ (h − 2)x2m,kJ

2
ν (xm,k)

xm,k

=
−hνxm,kJ′ν(xm,k) − hν2Jν(xm,k)

xm,k
+
(xm,kJ′ν(xm,k) + νJν(xm,k))(1 − h

2 − x2m,k − γk) + (h − 2)x2m,kJ
2
ν (xm,k)

xm,k

=
−hν2Jν(xm,k) + xm,kJ′ν(xm,k)

(
1 − h

2
− x2m,k − γk

)
+ (h − 2)x2m,kJν(xm,k)

xm,k

=

Jν(xm,k)

⎡
⎢⎢⎢⎣
(
−hν2 + (h − 2)x2m,k

)
+

(
1 − h

2
− x2m,k − γk

)2

h

⎤
⎥⎥⎥⎦

xm,k
=
Jν(xm,k)
xm,k

×

[
1 − h − 2x2m,k − 2γk +

h2

4
− x2m,kh + γkh + x4m,k + 2γkx2m,k + γ 2

k − h2ν2 + h2x2m,k

]
h

.
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Therefore,

res g
z=xm,k

(z) =
2th2x2m,kJ

2
ν (txm,k)

/
J2ν (xm,k)(

1 − h − 2x2m,k − 2γk + h2
4 − x2m,kh + γkh + x4m,k + 2γkx2m,k + γ 2

k + h2x2m,k − ν2h2
) .

Consider the contour C mentioned in Lemma 2.3 as the contour of integration.

According to Lemmas 2.1 and 2.3, for a sufficiently large N, we have xN - 1,k <AN <xN,

k and jN <AN <jN+1.

It could easily be verified that in the vicinity of zero, the function g(z) is of order O (zν).

By virtue of this asymptotic and because g(z) is an odd function, the integral along the

left-hand side of the contour C vanishes when r (radius of a semicircle) goes to zero.

Furthermore, if z = u + iv, then for large |v| and u ≥ 0, the integrand will be of order

O (e|v|(2t-2)). That is, for a given value of AN, the integrals along the upper and lower

sides of C go to zero as B ® ∞ (0 < t <1). Thus, we obtain

RN(t) − TN(t) = lim
B→∞

1
2π i

AN+iB∫
AN−iB

2zthJ2ν (tz) dz

Jν(z)
{
−hzJ′ν(z) +

(
1 − h

2
− z2 − γk

)
Jν(z)

} , (3:10)

where

TN(t) =
N∑
n=1

2tJ2ν (tjh)

J′ν(jh)2
.

Also, along the contour C for x−1+ε
N−1,k ≤ t < 1, 0 < ε < 1

2, we have |tz| ® ∞. There-

fore, in integral (3.11), we could replace the Bessel functions by their asymptotic at

large arguments. Hence, from

J2ν (z) =
2
πz

[
1
2
+
sin (2z − νπ)

2

](
1 +O

(
1
z

))

as N ® ∞ we have

1
2π i

lim
B→∞

AN+iB∫
AN−iB

g(z) dz ∼ h

π i
lim
B→∞

AN+iB∫
AN−iB

1 + sin(2zt − νπ)
−z(1 + sin(2z − νπ))

dz

∼ 1
π

∞∫
−∞

dv
−(AN + iv)(1 + cos 2iv)

− 1
π

∞∫
−∞

sin(2tAN − νπ + 2tiv) dv
(AN + iv)(1 + cos 2iv)

.

(3:11)

Denote the right side of (3.12) by J:

|J| <
const.
AN

∞∫
0

1 + ch2tv
ch2v

dv =
const.
2AN

π +
const.
AN

1
cos π t

2

. (3:12)

Then the limit of (3.11) becomes:

lim
N→∞

1∫
0

RN(t)fk(t) dt = lim
N→∞

1∫
0

TN(t)fk(t) dt +
1
2π i

lim
N→∞

1∫
0

⎛
⎜⎝

AN+i∞∫
AN−i∞

g(z) dz

⎞
⎟⎠ fk(t) dt

= lim
N→∞

1∫
0

TN(t)fk(t) dt + lim
N→∞

A−1+ε
N∫
0

(RN(t) − TN(t)) fk(t) dt + +
1
2π i

1∫
A−1+ε
N

⎡
⎢⎣

AN+i∞∫
AN−i∞

g(z) dz

⎤
⎥⎦ fk(t).

(3:13)
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Using (3.6) and (3.13), we obtain

1∫
A−1+ε
N

∣∣∣∣∣∣∣
⎡
⎢⎣

AN+i∞∫
AN−i∞

g(z) dz

⎤
⎥⎦ fk(t)

∣∣∣∣∣∣∣ dt

≤ lim
N→∞

const.
AN

1∫
A−1+ε
N

|fk(t)| dt + lim
N→∞

const.
AN

1∫
A−1+ε
N

|fk(t)|
cos π t

2

dt = 0.

(3:14)

Moreover, if (3.7) holds, then by virtue of the known relation for a large N [[35], p.

642]

TN(t) ∼ 1
2t

[
1 − sin 2ANt

sinπ t

]
.

Hence, we will have

lim
N→∞

A−1+ε
N∫
0

TN(t)fk(t) dt = 0. (3:15)

Using property 2 and the asymptotic of xm, k

lim
N→∞

A−1+ε
N∫
0

RN(t)fk(t) dt = 0. (3:16)

Earlier it was obtained that under the assumptions 1-3 (see [[7], Theorem 2.2])

lim
N→∞

1∫
0

TN(t)fk(t) dtz = −2νfk(0) + fk(1)
4

. (3:17)

Thus, from (3.14) to (3.18), we have

lim
N→∞

1∫
0

RN(t)fk(t) dt = −2νfk(0) + fk(1)
4

.

Consequently,

∞∑
k=N

∞∑
m=0

1∫
0

g(xm,k)fk(t) dt =
∞∑
k=N

−2νfk(0) + fk(1)
4

. (3:18)

In a similar way to the one considered above, we get (this time Equation 2.5 has no

imaginary roots, so the contour C will only bypass the origin on the right half-plane):

N−1∑
k=1

∞∑
m=1

1∫
0

g(xm,k)fk(t) dt = −
N−1∑
k=1

2νfk(0) + fk(1)
4

. (3:19)
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Finally, combining (3.19) and (3.20), we get

∞∑
i=1

(μ(i) − λ(i)) = −2νtrq(0) + trq(1)
4

which completes the proof.

Remark. It should be noted that in condition 1, property q(l)(t) Î s1, l = 0, 2 may be

weakened. Namely, we may just require to hold

∞∑
j=1

|(q(l)(t)ϕj,ϕj)| < const.

Then formula (3.8) takes the form
∞∑
i=1

(μ(i) − λ(i)) = −
2ν

∞∑
j=1

[(q(0)ϕj,ϕj)+(q(1)ϕj,ϕj)]

4
. There

exist the bounded functions that are not from the trace class, even compact, but satisfy

the above stated condition. Now, introduce an example.

Example. We consider the following boundary value problem:

∂u
∂t

=
∂2u
∂x2

+
∂2u
∂y2

− ∂4u
∂z4

− q(x, y, z)u, t > 0 (3:20)

((
1 − h

2

)
u − h

∂u
∂n

− ut

)
∂�×[0,1]

= 0 (3:21)

u|z=0 = u|z=1 =
∂2u
∂z2

∣∣∣∣
z=0

=
∂2u
∂z2

∣∣∣∣
z=1

= 0 (3:22)

in the cylinder ∂Ω × [0, 1], where Ω is a circle in R2 ((x, y) Î R2) of radius 1. Also,

∂Ω is a circumference of this circle, n is an exterior normal to the surface ∂Ω × [0, 1]

and h = const.. Looking for the solution of this problem, which can be represented as

u(x, y, z, t) = U(x, y, z)T(t), we have

T′

T
=

∂2U
∂x2

· 1
U

+
∂2U
∂y2

· 1
U

− 1
U

∂4U
∂z4

− q(x, y, z).

Thus, the left-hand side of this equality depends only on t, while the right-hand side

on x, y, z. This means they are equal to some constant which we will denote by -l.
Therefore,

−∂2U
∂x2

− ∂2U
∂y2

+
∂4U
∂z4

+ q(x, y, z)U = λU

and (3.22) becomes like[(
1 − h

2

)
U − h

∂U
∂n

− λU
]

∂�×[0,1]
= 0. (3:23)

Using the cylindric coordinates x = r cos �, y = r sin �, z = z, we have

−∂2U
∂r2

− 1
r

∂U
∂r

− 1
r2

∂2U
∂ϕ2

+
∂4U
∂z4

+ q(r,ϕ, z)U = λU.
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The boundary condition in (3.24) becomes((
1 − h

2

)
U − h

∂U
∂r

− λU
)
r=1

= 0. (3:24)

We will solve this problem by separation of variables. Taking U(r, �, z) = V (r, z)j

(�), q(r, �, z) = Q(r, z), and φ ′′
φ

= −ν2, ν = const., we get

−∂2V
∂r2

− 1
r

∂V
∂r

+
ν2

r2
V +

∂4V
∂z4

+Q(r, z)V = λV.

By making V(r, z) = V1(r,z)√
r substitution, we get

−∂2V1

∂r2
+

ν2 − 1
4

r2
V1 +

∂4V1

∂z4
+Q(r, z)V1 = λV1, (3:25)

and (3.25), (3.23) take the form:(
V1(r, z) − h

∂V1(r, z)
∂r

)∣∣∣∣
r=1

= λV1(1, z)

V1(r, 0) = V1(r, 1) =
∂2V1

∂z2

∣∣∣∣
z=0

=
∂2V1

∂z2

∣∣∣∣
z=1

,

(3:26)

where Q(r, z) is a real-valued function which is continuous on [0, 1] × [0, 1], and has

second partial derivative with respect to r on [0, 1] for each fixed z. Fourier series of

this function and its partial derivatives converge, respectively, to their values. Also

assume that

1∫
0

Q(0, z) dz =

1∫
0

Q(1, z) dz = 0.

Now, rewrite the problem in the differential operator form:

−v′′(r) +
ν2 − 1

4

r2
v(r) + Av(r) + q(r)v(r) = λv(r)

v(1) − hv′(1) = λv(1),

(3:27)

where v(r) = V1(r, ·) is a vector function with the values from L2(0, 1). Operators A

and q(r) are defined in the following way:

D(A) = {u ∈ W2(0, 1)
/
u(0) = u(1) = u′′(0) = u′′(1) = 0}, Au =

∂4u
∂z4

+ ωu, ω > 0,

D(q(r)) = L2(0, 1), q(r)u = Q(r, z)u − ωu.
(3:28)

Obviously, the operator A is self-adjoint, positive-definite, and A-1 is a compact

operator in L2(0, 1). Also, the eigenvalues of A are of the form:

μk(A) = ω + π4k4, k = 1, 2, . . .

Then, by virtue of Theorem 2.1, the eigenvalues of this problem behave like

λm ∼ const. m
4
3.

Aslanova Boundary Value Problems 2011, 2011:7
http://www.boundaryvalueproblems.com/content/2011/1/7

Page 20 of 22



Using the statement of Theorem 3.2, we have

∞∑
i=1

(μ(i) − λ(i)) = −2νtrq(0) + trq(1)
4

,

where μi are the eigenvalues of problem (3.28) with q(r) ≡ 0. Now calculate

trq(0) = 2
∞∑
j=1

1∫
0

Q(0, z) sin2jπz dz =
2
π

∞∑
j=1

π∫
0

Q
(
0,

t
π

)
sin2jt dt

=
2
π

∞∑
j=1

π∫
0

Q
(
0,

t
π

)
1 − cos 2jt

2
dt = −

∞∑
j=1

π∫
0

Q
(
0,

t
π

)
cos 2jt dt

=
1
4

⎡
⎣ ∞∑

j=0

cosj · 0 · 2
π

π∫
0

Q
(
0,

t
π

)
cos jt dt +

∞∑
j=0

cos jπ ·
π∫

0

Q
(
0,

t
π

)
cos jt dt

⎤
⎦

=
1
4
[Q(0, 0) +Q(0, 1)].

In a similar way, we can find

trq(1) =
1
4
[Q(1, 0) +Q(1, 1)].

Therefore,

∞∑
i=1

(μ(i) − λ(i)) = −2ν[Q(0, 0) +Q(0, 1)] +Q(1, 0) +Q(1, 1)
16

.
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