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Abstract

This paper deals with the periodic boundary value problems{
u′′ + ρ2u = f (u), 0 < t < T,
u(0) = u(T), u′(0) = u′(T),

where 0 < ρ ≤ 3π
2T is a constant and in which case the associated Green’s function

may changes sign. The existence result of positive solutions is established by using
the fixed point index theory of cone mapping.
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1 Introduction
The periodic boundary value problems{

u′′ + a(t)u = f (t, u), 0 < t < T,
u(0) = u(T), u′(0) = u′(T), (1)

where f is a continuous or L1-Caratheodory type function have been extensively

studied. A very popular technique to obtain the existence and multiplicity of positive

solutions to the problem is Krasnosel’skii’s fixed point theorem of cone expansion/

compression type, see for example [1-4], and the references contained therein. In those

papers, the following condition is an essential assumptions:

(A) The Green function G(t, s) associated with problem (1) is positive for all (t, s) Î
[0, T] × [0, T].

Under condition (A), Torres get in [4] some existence results for (1) with jumping

nonlinearities as well as (1) with a repulsive or attractive singularity, and the authors in

[3] obtained the multiplicity results to (1) when f(t, u) has a repulsive singularity near x

= 0 and f(t, u) is super-linear near x = +∞. In [2], a special case, a(t) ≡ m2 and

m ∈ (0, π
T ), was considered, the multiplicity results to (1) are obtained when the non-

linear term f(t, u) is singular at u = 0 and is super-linear at u = ∞.

Recently, in [5], the hypothesis (A) is weakened as

(B) The Green function G(t, s) associated with problem (1) is nonnegative for all

(t, s) Î [0, T] × [0, T] but vanish at some interior points.
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By defining a new cone, in order to apply Krasnosel’skii’s fixed point theorem, the

authors get an existence result when f (t, u) = g(t)f̄ (u) and f̄ (u) is sub-linear at u = 0

and u = ∞ or f̄ (u) is super-linear at u = 0 and u = ∞ with f̄ (u) is convex and

nondecreasing.

In [6], the author improve the result of [5] and prove the existence results of at least

two positive solutions under conditions weaker than sub- and super-linearity.

In [7], the author study (1) with f(t, u) = lb(t)f(u) under the following condition:

(C) The Green function G(t, s) associated with problem (1) changes sign

andmint∈[0,T]
∫ T
0 G−(t, s)ds = m∗ > 0 where G - is the negative part of G.

Inspired by those papers, here we study the problem:{
u′′ + ρ2u = f (u), 0 < t < T,
u(0) = u(T), u′(0) = u′(T), (2)

where 0 < ρ ≤ 3π
2T is a constant and the associated Green’s function may changes

sign. The aim is to prove the existence of positive solutions to the problem.

2 Preliminaries
Consider the periodic boundary value problem{

u′′ + ρ2u = e(t), 0 < t < T,
u(0) = u(T), u′(0) = u′(T), (3)

where 0 < ρ ≤ 3π
2T and e(t) is a continuous function on [0, T]. It is well known that

the solutions of (3) can be expressed in the following forms

u(t) =
∫ T

0
G(t, s)e(s)ds,

where G(t, s) is Green’s function associated to (3) and it can be explicitly expressed

G(t, s) =

{
sin ρ(t−s)+sin ρ(T−t+s)

2ρ(1−cos ρT) , 0 ≤ s ≤ t ≤ T,
sin ρ(s−t)+sin ρ(T−s+t)

2ρ(1−cos ρT) , 0 ≤ t ≤ s ≤ T.

By direct computation, we get

sin ρT

2ρ(1 − cos ρT)
≤ G(t, s) ≤ sin ρT

2

ρ(1 − cos ρT)
= max

t,s∈[0,T]
G(t, s),

and

G(t, s) < 0

for |t − s| < T
2 − π

2ρ when π
T ≤ ρ ≤ 3π

2T , and

g(t) =
∫ T

0
G(t, s)ds =

1
ρ2

, t ∈ [0,T],

min
t∈[0,T]

∫ T
0 G+(t, s)ds∫ T
0 G−(t, s)ds

=
1

1 − sin ρT
2

,

where G+ and G- are the positive and negative parts of G.
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We denote

σ =
1

ρ2maxt,s∈[0,T]G(t, s)
=
2 sin ρT

2

ρ
,

and

γ =

{
+∞, 0 ≤ ρ ≤ π

T ,
1

1−sin
ρT
2

, π
T < ρ ≤ 3π

2T .

Let E denote the Banach space C[0, T] with the norm ||u|| = maxtÎ[0,T] |u(t)|.

Define the cone K in E by

K = {u ∈ E : u ≥ 0,
∫ T

0
u(s)ds ≥ σ ||u||}.

We know that σ =
sin

ρT
2

ρ

2
< T and therefore K ≠ ∅. For r >0, let Kr = {u Î K : ||u|| <

r}, and ∂Kr = {u Î K : ||u|| = r}, which is the relative boundary of Kr in K.

To prove our result, we need the following fixed point index theorem of cone

mapping.

Lemma 1 (Guo and Lakshmikantham [8]). Let E be a Banach space and let K ⊂ E

be a closed convex cone in E. Let L : K ® K be a completely continuous operator and

let i(L, Kr, K) denote the fixed point index of operator L.

(i) If μLu ≠ u for any u Î ∂Kr and 0 < μ ≤ 1, then

i(L,Kr ,K) = 1.

(ii) If infu∈∂Kr ||Lu|| > 0 and μLu ≠ u for any u Î ∂Kr and μ ≥ 1, then

i(L,Kr ,K) = 0.

3 Existence result
We make the following assumptions: (H1) f : [0, +∞) ® [0, +∞) is continuous;

(H2) 0 ≤ m = inf uÎ[0,+ ∞] f (u) and M = supuÎ[0,+ ∞) f (u) ≤ +∞;

(H3) M
m ≤ γ, when m = 0 we define M

m = +∞.

To be convenience, we introduce the notations:

f0 = lim
u→0

f (u)
u

and f∞ = lim
u→∞

f (u)
u

,

and suppose that f0, f∞ Î [0, ∞].

Define a mapping L : K ® E by

Lu(t) =
∫ T

0
G(t, s)f (u(s))ds, t ∈ [0,T].

It can be easily verified that u Î K is a fixed point of L if and only if u is a positive

solution of (2).

Lemma 2. Suppose that (H1), (H2) and (H3) hold, then L : E ® E is completely

continuous and L(K) ⊆ K.
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Proof Let u Î K, then in case of g = +∞, since G(t, s) ≥ 0, we have Lu(t) ≥ 0 on [0,

T]; in case of g <+∞, we have

Lu(t) =
∫ T

0
G(t, s)f (u(s))ds

=
∫ T

0
(G+(t, s) − G−(t, s))f (u(s))ds

≥
∫ T

0
(G+(t, s)m − G−(t, s)M)ds

= m
∫ T

0
(G+(t, s) − M

m
G−(t, s))ds

≥ m
∫ T

0
(G+(t, s) − γG−(t, s))ds

≥ 0.

On the other hand,∫ T

0
Lu(t)dt =

∫ T

0

∫ T

0
G(t, s)f (u(s))dsdt

=
∫ T

0
f (u(s))

∫ T

0
G(t, s)dtds

≥ 1
ρ2

∫ T

0
f (u(s))ds.

and

Lu(t) =
∫ T

0
G(t, s)f (u(s))ds ≤ max

t,s∈[0,T]
G(t, s)

∫ T

0
f (u(s))ds

for t Î [0, T]. Thus,∫ T

0
Lu(t)dt ≥ σ max

t∈[0,T]
|Lu(t)|,

i.e., L(K) ⊆ K. A standard argument can be used to show that L : E ® E is comple-

tely continuous.

Now we give and prove our existence theorem:

Theorem 3. Assume that (H1), (H2) and (H3) hold. Furthermore, suppose that f0 > r2

and f∞ < r2 in case of g = +∞. Then problem (2) has at least one positive solution.

Proof Since f0 > r2, there exist ε > 0 and ξ >0 such that

f (u) ≥ (ρ2 + ε)u, forallu ∈ [0, ξ]. (4)

Let r Î (0, ξ), then for every u Î ∂Kr, we have

T||Lu|| ≥
∫ T

0
Lu(t)dt

=
∫ T

0
f (u(s))

∫ T

0
G(t, s)dtds

≥ 1
ρ2

∫ T

0
f (u(s))ds

≥ ρ2 + ε

ρ2

∫ T

0
u(s)ds

≥ (ρ2 + ε)σ r
ρ2

> 0.
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Hence, infu∈∂Kr ||Lu|| > 0. Next, we show that μLu ≠ u for any u Î ∂Kr and μ ≥ 1.

In fact, if there exist u0 Î ∂Kr and μ0 ≥ 1 such that μ0Lu0 = u0, then u0(t) satisfies{
u′′
0(t) + ρ2u0(t) = μ0f (u0(t)), 0 < t < T,

u0(0) = u0(T), u′
0(0) = u′

0(T).
(5)

Integrating the first equation in (5) from 0 to T and using the periodicity of u0(t) and

(4), we have

ρ2
∫ T

0
u0(t))dt = μ0

∫ T

0
f (u0(t))ds

≥ (ρ2 + ε)
∫ T

0
u0(t)dt.

Since
∫ T
0 u0(t))dt ≥ σ ||u0|| > 0, we see that r2 ≥ (r2 + ε), which is a contradiction.

Hence, by Lemma 1, we have

i(L,Kr ,K) = 0. (6)

On the other hand, since f∞ < r2, there exist ε Î (0, r2) and ζ >0 such that

f (u) ≤ (ρ2 − ε)u, forallu ≥ ζ .

Set C = max0≤u≤ζ |f (u) - (r2 - ε)u| + 1, it is clear that

f (u) ≤ (ρ2 − ε)u + C, forallu ≥ 0. (7)

If there exist u0 Î K and 0 < μ0 ≤ 1 such that μ0Lu0 = u0, then (5) is valid.

Integrating again the first equation in (5) from 0 to T, and from (7), we have

ρ2
∫ T

0
u0(t))dt = μ0

∫ T

0
f (u(t))dt

≤ (ρ2 − ε)
∫ T

0
u0(t)dt + C.

Therefore, we obtain that

C
ε

≥
∫ T

0
u0(t)dt ≥ σ ||u0||,

i.e.,

||u0|| ≤ C
σε

. (8)

Let R > max{ C
σε
, ξ}, then μLu ≠ u for any u Î ∂KR and 0 < μ ≤ 1. Therefore,

by Lemma 1, we get

i(L,KR,K) = 1. (9)

From (6) and (9) it follows that

i(L,KR\K̄r ,K) = i(L,KR,K) − i(L,Kr ,K) = 1.

Hence, L has a fixed point in KR\K̄r, which is the positive solution of (2).
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Remark 4. Theorem 3 contains the partial results of [4-7] obtained in case of posi-

tive Green’s function, vanishing Green’s function and sign-changing Green’s function,

respectively.

4 An example
Let 0 ≠ q <1 be a constant, h be the function:

h(x) =
{
1, x ≥ 0,
0, x < 0,

and let

f (u) = 1 + h(
π

T
− ρ)uq + (1 − h(

π

T
− ρ))

2sin ρT
2

π(1 − sin ρT
2 )

arctan u.

By the direct calculation, we get m = 1 and M = g, and f0 = ∞ and f∞ = 0 in case of g
= +∞. Consider the following problem{

u′′ + ρ2u = f (u), 0 < t < T,
u(0) = u(T), u′(0) = u′(T), (10)

where 0 < ρ ≤ 3π
2T is a constant. We know that the conditions of Theorem 3 hold for

the problem (10) and therefore, (10) have at least one positive solution from Theorem 3.
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