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Abstract

This paper develops a systematic and formal approach to dimensional reduction of
electromagnetic boundary value problems. The approach is based on the concept of
continuous symmetry, and the definitions and the mathematical structures used are
conceptually distinct and completely coordinate-free and independent of
dimensions. The approach leads to sufficient conditions for when a boundary value
problem can be solved as a lower-dimensional one and it shows how to
systematically formulate the lower-dimensional problems. The symmetries are
described with Lie groups that are products of connected 1-D Lie groups.

1 Introduction
Symmetric boundary value problems (BVPs) are commonplace in electromagnetics and

generally in science and engineering. They include problems with discrete symmetries

such as rotational symmetries in rotating electrical machines and problems with con-

tinuous symmetries such as continuous translations in waveguides. Continuous sym-

metries are the key to dimensional reduction of BVPs, which includes 2-D modeling.

Even though discrete symmetries are well understood [1], often dimensional reduction

is applied ad hoc without a systematic approach based on the underlying principles. In

this paper, we explain basic concepts of symmetry and dimensional reduction and give

the necessary definitions. We specifically focus on linear electromagnetic BVPs, but the

results hold for any problems where the fields are modeled as differential forms and

the differential equations are expressed in terms of the exterior derivative. Moreover,

we state sufficient conditions for dimensional reduction in such BVPs and present the

systematic formulation of the lower-dimensional problems.

In intuitive terms, symmetry is about something remaining the same under some

transformations. Thus, symmetry can be used to describe invariances and redundan-

cies, which in turn can be exploited to reduce the complexity of the problem. Observe

that “something remaining the same under some transformations” need not depend on

coordinates, metric, dimension or orientation of the space. Thus, the usual view of sym-

metry in engineering under distance-preserving transformations, such as translations

or rotations, is a very restricted view of symmetry. Furthermore, dimensional reduction

is usually based on the assumption that some components of fields are zero in some

special coordinate system. In contrast, our exposition of symmetry and dimensional

reduction does not presume distance-preserving transformations or zero field
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components in some special coordinate system. Although the symmetries of BVPs are

defined similarly for discrete and continuous symmetries, systematic application of

continuous symmetries (dimensional reduction) requires additional structure called

observer. The observers decompose the fields, and all the operators on fields such that

the original symmetric BVP can be stated on a lower-dimensional domain.

We employ the mathematical tools of differential geometry because they offer con-

ceptually clear coordinate-free tools that are suitable for all dimensions. A systematic

approach to symmetry of BVPs with formal but clear definitions of the essential con-

cepts can help to recognize and apply symmetries that are not intuitively clear at the

first sight.

2 Symmetry
Let us next express symmetry in formal terms. “Something remaining the same” is

expressed with an equivalence relation ~ on set X. “Under some transformations” is

expressed with a group (G, ·) and its left group action on X, which is a mapping F : G

× X ® X such that F(g · h, x) = F(g, F(h, x)) and F(e, x) = x hold for all x Î X, for all

g, h Î G and for the identity e of G. Now, the symmetry is defined as follows:

Definition 1. (Symmetry predicate) Let X be a set and ~ an equivalence relation on

X. Furthermore, let a group G act on X by the action F : G × X ® X. The relation ~ is

(G, F)-symmetric over X if F(g, x) ~ x holds for all x Î X and for all g Î G.

We also say that the set X is (G, F, ~)-symmetric if the symmetry predicate holds.

The axioms of action F imply that the mappings Fg : X ® X, defined by Fg(x) = F (g,

x), are bijections that form a group under the composition of mappings. The mappings

Fg and the group they form are called the symmetry transformations and the symmetry

group of the relation ~. Furthermore, the group actions we consider are effective: For

each g Î G, there exists a unique Fg, i.e., Fg = Fh holds only if g = h holds. Then, we

can identify Fg with g or denote Fg simply by g. Moreover, then the symmetry group

(group of symmetry transformations Fg) is isomorphic to G, and thus, we also denote

it by G.

Next, let us look at an example of symmetry. If the figure in left of Figure 1 is trans-

formed by rotation of 180° around its center in clockwise or counter-clockwise, or by

reflection w.r.t. its diagonals, then its points are mapped to points of same color. Thus,

in terms of the symmetry predicate, the set X is the figure, symmetry transformations

Fg are the rotations and reflections of the figure, and ~ means the same color of the

points.

The orbit of a point x Î X is the set Gx = {g(x) Î X|g Î G}, where the symmetry

transformations of G map the point x. Clearly, by the symmetry predicate, the points

Figure 1 Left: An example of visual symmetry. Right: The blue points are a four-point orbit, and the
red points are a two-point orbit.
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of Gx are equivalent under ~. Moreover, each point belongs to exactly one orbit, and

thus, orbits define another equivalence relation on X.

For example, in the case of Figure 1, when G contains the 180° rotations and reflec-

tion, the orbits are sets of four points, except the points at diagonals, whose orbits

contain two points (see right of Figure 1). The center point is the only point in its

orbit.

Symmetry of a BVP implies that the unknown fields can be solved from a reduced

BVP defined on a reduced domain: Its solution can be expanded to a solution of the

original BVP using the symmetry transformations and the equivalence relation. Simi-

larly, the square on Figure 1 can be reconstructed from only a part of the original by

the rotations and reflections and the equivalence relation. Thus, the “bigger” the sym-

metry group is, the more the problem can be reduced and savings gained on the com-

putational resources.

3 Differential geometry
A fluent explanation for symmetry and particularly the dimensional reduction of elec-

tromagnetic BVPs requires clear separation of different aspects such as metric and

dimension. The structures of differential geometry meet the requirements. This section

gives a brief introduction to some of the essential structures we use in this paper.

References with precise definitions and more detailed expositions include [2-6].

Differentiable manifolds serve as the domains of BVPs. For each m-manifold M,

there exists a class of homeomorphisms U ⊂ M ® ℝm called charts. Each point x of

M has a tangent space Tx(M), which is an m-dimensional vector space of tangent vec-

tors. Any differentiable mapping f : M ® N between manifolds induces a unique map-

ping f*, the pushforward of f, that maps linearly from Tx(M) to Tf(x)(N). An oriented

manifold is a manifold whose tangent spaces are oriented and a manifold-with-bound-

ary M is a manifold that has a boundary ∂M ⊂ M. A diffeomorphism is a differentiable

bijection between manifolds with a differentiable inverse. An embedded submanifold of

M is a pair (N, f), where N is a manifold and f : N ® f(N) ⊂ M is a diffeomorphism.

Dimensional reduction is based on “smooth symmetries.” This smoothness is

reflected in the manifold structure of the symmetry groups. A Lie group is a group

that is also a manifold such that the group operations are differentiable mappings. An

example of a Lie group is ℝ = (ℝ, +, id), where ℝ is the set of real numbers, the group

operation + is the addition of real numbers, and the chart id is the identity mapping of

ℝ. Another example is S1, the group of all complex numbers with modulus one under

multiplication. ℝ and S1 are the only connected 1-D Lie groups up to isomorphism,

and every connected 2-D Lie group is a product of them.

It is possible to define an analysis on manifolds in a coordinate- and metric-free

manner and independent of the dimension. This analysis employs differential forms: A

differential p-form ω, or a p-form for short, assigns each point x Î M an antisym-

metric p-linear mapping ωx from the tangent space Tx(M) to the real numbers. The

vector space of all p-forms on M is denoted by Ωp(M), and the set of all differential

forms on M is denoted by Ω(M). For each differentiable mapping f : M ® N between

manifolds, there is an induced mapping f* : Ω(N) ® Ω(M) called the pullback. It is

defined point-wise as follows: (f*ω)x(v1,..., vp) = ωf(x)(f*v1,..., f*vp) holds for all x Î M,
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v1,..., vp Î Tx(M). The restriction of differential forms to a submanifold A of M is given

by the trace tA, which is the pullback i∗A of the inclusion map iA : A ® M.

The contraction iX by a vector field X decreases the degree of a form ω by one such

that (iXω)x(v2,..., vp) = ωx(Xx, v2,..., vp) holds for all x Î M, v2,..., vp Î Tx(M). The wedge

product is a bilinear mapping Λ : Ω(M) × Ω(M) ® Ω(M) which is anticommutative.

The extension Ia by a 1-form a and the wedge product increases the degree of ω by

one: Iaω = a Λ ω.

The differential operators grad, curl, and div of the vector analysis are metric coun-

terparts of a single metric-free differential operator on differential forms called the

exterior derivative. On a manifold M, it is the linear mapping dM : Ωp(M) ® Ωp+1(M)

such that it is the differential for 0-forms and dM (dMω) = 0 holds for all ω. Further-

more, d commutes with pullback: f* ∘ dN = dM ∘ f* holds for f : M ® N.

When (ℝ, +) acts on manifold M such that the symmetry transformations are diffeo-

morphisms, then the symmetry group is called a 1-parameter group of transformations.

The action induces a smooth vector field X on M such that the vector field is every-

where tangent to the orbits, most of which are now 1-D submanifolds. With a 1-para-

meter group of transformations and the pullback, one can define a directional

derivative of forms in the direction of the orbits. This derivative is called the Lie deri-

vative, and it is denoted by LX.

To assure uniqueness of a BVP solution, some cohomology classes of the fields may

have to be specified explicitly, and by de Rham’s theorem, this can be done by fixing

the values of integrals of the fields over suitable submanifolds [7]: These integrals are

presented as a linear operator H that operates on fields. Thus, the cohomology condi-

tion of a form ω is given by a real number tuple H(ω) that contains the values of the

integrals.

A metric tensor allows a definition of Hodge-operator which can be used to express

constitutive equations [3]. The Hodge-operator is a linear isomorphism ⋆: Ωp(M) ®
Ωm-p(M) such that it is definite. To give preference to the physics modeled by the con-

stitutive equations over the metric chosen for distance measurements and modeling,

we make the following generalization [6]:

Definition 2. Let M be an oriented m-manifold. A definite linear isomorphism υ : Ωp

(M) ® Ωm-p(M) is a Hodge-like operator if there exists a metric tensor j of M and a

linear isomorphism υj : Ωm-p(M) ® Ωm-p(M) such that υ = υj ∘⋆j holds, where ⋆j is

the Hodge-operator induced by j.

4 Description of model BVP
In this paper, we want to cover linear electromagnetic BVPs, and thus, we consider

BVPs expressible with the exterior derivative and form-independent Hodge-like opera-

tors. For simplicity, we consider mainly the following model BVP:

Definition 3. (Model BVP) The domain of model BVP is an oriented m-dimensional

manifold-with-boundary M. A pair of fields, a p-form C and an (m - p)-form K, are

governed by the differential equations expressed with the exterior derivative dM and

connected to each other by a Hodge-like operator v. The source field is given by a (p +

1)-form Q. The boundary values c and k of C and K, respectively, are given as restric-

tions t∂M1Cand t∂M2Kto the complementary parts ∂M1 and ∂M2 of the boundary ∂M.
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The cohomology conditions H(C)and H(K)of C and K are given by real number tuples

kHand kH.
Thus, model BVP consists of the following equations:

dMC = Q, K = υC, t∂M1C = c, H(C) = cH,
dMK = 0, t∂M2K = k, H(K) = kH,

which hold in M. □
Model BVP encompasses, e.g., magnetostatic problems: M is a 3-manifold-with-

boundary, C is the magnetic field 1-form H, K is the magnetic flux density 2-form B,

Q is the current density 2-form J, υ models permeability μ, and cH and kH are tuples

of real numbers that describe the magnetomotive forces of H and fluxes of B over

some curves and surfaces. Moreover, Maxwell’s equations over spacetime manifold are

included in the model BVP [8].

Remark 1. The reader may notice that quasi-static BVPs or the complete set of four

Maxwell’s equations with time as independent parameter are not included in the model

BVP. However, the theory we represent for the model BVP can be extended to more gen-

eral BVPs, including quasi-static cases and full Maxwell’s equations. Particularly, BVPs

can contain many pairs of fields that are connected to each other by a Hodge-like

operator. The differential equations for the fields may contain also time derivative

operator ∂t in addition to the exterior derivative, and there may be additions of fields.

For example, in electromagnetism, we have the equation dM H = J + ∂tD, where D is

the electric flux density 2-form and either J or ∂tD can be given as the source field.

5 Symmetric BVPs
In this section, we consider BVPs included in the model BVP and define the invariance

(symmetry) of the fields, differential equations, boundary values, Hodge-like operators,

and cohomology conditions. Finally, we state a theorem stating that the unique solu-

tion of a symmetric BVP is symmetric.

5.1 The symmetry transformations of the domain

We consider effective group actions whose symmetry transformations are diffeomorph-

isms of the BVP domain M. For dimensional reduction, we assume that the symmetry

group G is also a Lie group that is a product of connected 1-D Lie groups. Thus, the

symmetry group G is isomorphic to a product Lie group whose product factors are all

either ℝ or S1. For example, in cylindrical symmetry, G is isomorphic to ℝ × S1, and

most orbits are cylindrical surfaces. The axis of rotation forms an orbit whose dimen-

sion is smaller than that of the other orbits, see Figure 2.

This is because the action is effective but not free: There are symmetry transforma-

tions other than the identity mapping that map some points to themselves. These spe-

cial orbits are called singular orbits.

Definition 4. Let group G act effectively on manifold M. A point of M is singular if it

is a fixed point for a symmetry transformation that is not the identity mapping of M.

An orbit is singular if it contains a singular point.

5.2 Invariance of fields

With a group action on manifold M, we can geometrically characterize invariant fields:

The symmetry transformations g of M define correspondences between the points of
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M, and the pushforwards of g define correspondences between the tangent vectors at

corresponding points. Then, a differential form is invariant if at corresponding points,

it returns the same number for corresponding tangent vectors. Thus, a G-invariant

form ω equals to its pullback under the symmetry transformations, i.e., g*ω = ω holds

for all g Î G. On the other hand, the group action on manifold M induces a group

action on the set of differential forms Ω(M) such that the pullbacks g* are the symme-

try transformations of Ω(M). Furthermore, if the equivalence relation in Ω(M) is the

equality of forms (defined pointwise), then it is G-symmetric over the set of all G-

invariant forms. That is, in terms of the symmetry predicate, the equality of forms is

G-symmetric in the set of all G-invariant forms under these pullbacks.

We consider also more complicated actions on Ω(M), where the pullback g* is multi-

plied by a group homomorphism h : G → F, where F is the field of real or complex

numbers. For example, in the case of time-harmonic fields, the symmetry transforma-

tions g : M ® M of G = (ℝ,+) are translations in time and h : G → C is a group homo-

morphism such that h(g) = eiag holds, where a is some real number. Then, a form ω is

time harmonic with frequency a if g*ω = h(g)ω holds for all g Î G.

Definition 5. Let a group G act on a manifold M and let h : G → Fbe a group homo-

morphism (Lie group homomorphism for Lie group G). A differential form ω on M is (G,

h)-invariant if g*ω = h(g)ω holds for all g Î G. A vector field X on M is (G, h)-invariant

if g*X = h(g)X holds for all g Î G.

If h(g) = 1 holds for all g Î G, then we talk about G-invariance instead of (G, h)-

invariance.

For dimensional reduction, we need to express the (G, h)-invariance of the forms

equivalently in local terms. This can be done with the Lie derivative, if the symmetry

group G is a connected 1-D Lie group, as assumed: If G is parameterized by real num-

bers with a Lie group homomorphism b : ℝ ® G, the group action G × M ® M is

represented as a 1-parameter group of transformations ℝ × M ® M that induces a

smooth nonzero G-invariant vector field Xb everywhere tangent to the orbits [[6], p.

101]. With b, the mapping h : G → F can be represented as a mapping hβ : R → F

such that hb = h ○ b holds. Because the vector field Xb is everywhere tangent to the

orbits, the Lie derivative w.r.t. Xb gives us an equivalent way to state the (G, h)-invar-

iance of the fields [[6], p. 102]:

Theorem 1. Let G be a connected 1-D Lie group and h : G → Fa Lie group homo-

morphism. Furthermore, let b : ℝ ® G be a Lie group homomorphism that

Figure 2 Singular orbit. Sections of infinitely long cylindrical surfaces that are orbits under a cylindrical
action (rotations and translations). The axis of rotation (black line) forms a singular orbit because all the
rotations map the points of the axis to themselves.
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parameterizes G with real numbers and let Xb be the induced vector field. For a (G, h)-

invariant form ω on manifold M, LXβ
ω = h′

β(0)ωholds everywhere.

To make the notation simpler, we regard b implicit and denote Xb and h′
β(0) simply

by X and h’(0).

5.3 Invariance-preserving operators

The model BVP has the operators dM, t∂M, υ, and H. In a symmetric BVP these opera-

tors map symmetric fields to symmetric fields, i.e., they should preserve the invariance

of fields in the sense that they map (G, h)-invariant forms to (G, h)-invariant forms.

This requires that they commute with the symmetry transformations and preserve the

equivalence relation. Because the equivalence relation in Ω(M) is the equality of the

forms, they automatically preserve the equivalence.

Because the exterior derivative dM is linear and commutes with the pullback, it pre-

serves (G, h)-invariance under every group G whose symmetry transformations are dif-

feomorphisms. Although dM is in this sense invariant under diffeomorphism group,

differential equations expressed with dM are not generally invariant under the diffeo-

morphism group: The invariance of a differential equation, such as dM ω = r, means

that if ω is a solution, then the transformed solution g*ω is also a solution or dM g*ω

= r holds [9]. Now, the invariance of the equation dM ω = r is defined by r and if r is

(G, h)-invariant, then clearly, the equation is also (G, h)-invariant: h(g)g*(dM ω) = h(g)

g* r is equivalent to dM h(g)g*ω = r.
The restriction of a diffeomorphism F : M ® M to the boundary ∂M is a diffeo-

morphism F∂ : ∂M ® ∂M [4]. Thus, a group action on the manifold induces a group

action on the boundary, and therefore, the invariance of boundary values is defined

similarly as in the above definition of invariant fields. Furthermore, it follows that the

boundary values of a (G, h)-invariant fields are automatically (G, h)-invariant, and thus,

the trace t∂M is invariance-preserving: If g∗
∂ denotes the restrictions of the pullbacks g*

to the boundary, then t∂M ◦ g∗ = g∗
∂ ◦ t∂M holds.

Contrary to the operators dM and t∂M, Hodge-like operators do not automatically

preserve invariance of fields under any group action, and thus, this must be tested:

Definition 6. A Hodge-like operator υ on M is (G, h)-invariance-preserving if g* ∘ υ =

υ ∘ g* and h(g)υ = υh(g) hold for all g Î G.

Note that the above definition permits so-called anisotropic materials. Furthermore,

because a Hodge-like operator is linear, h(g)υ = υh(g) holds for all Hodge-like

operators.

The cohomology class of a field ω is restricted by a cohomology condition H(ω) that

fixes the values of the integrals of ω over specific submanifolds. The following defini-

tion gives the cohomology conditions for (G, h)-invariant fields:

Definition 7. The cohomology condition H(ω)of a field ω is (G, h)-invariance-preser-

ving if H(g∗ω) = h(g)H(ω)holds for all g Î G.

If the cohomology condition H(ω) fixes the value of the integral of ω over submani-

fold Γ, then H(ω) preserves (G, h)-invariance of ω if the integral of ω over g(Γ) equals

the integral of ω over Γ, multiplied by h(g):∫
g(�) ω =

∫
�
g∗ω = h(g)

∫
�

ω.
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5.4 Unique solution of a symmetric BVP is symmetric

We state a theorem that guarantees the symmetry of the solution of the model BVP

when the source fields, boundary values, Hodge-like operators, and cohomology condi-

tions are symmetric and the BVP has a unique solution ([[6], p. 105] proves this for

linear constitutive equations).

Definition 8. A BVP is (G, h)-invariant if its source fields and boundary values are

(G, h)-invariant and the Hodge-like operators and the cohomology conditions are (G,

h)-invariance-preserving.

Theorem 2. If the model BVP is (G, h)-invariant and has a unique solution, then the

solution fields C and K are (G, h)-invariant.

Remark 2. The above theorem can be extended to more general cases discussed in

Remark 1, such as quasi-static problems and problems involving the full set of four

Maxwell’s equations.

6 Orbit space
Due to invariance of fields, it is sufficient to know the fields at one point of each orbit.

In order to construct a domain for a reduced BVP, one point from each orbit must be

chosen such that the resulting whole is a manifold. These domains, or symmetry cells,

are submanifolds of the domain of a symmetric BVP. In dimensional reduction, the

symmetry cells are lower-dimensional submanifolds. There is no canonical choice of

symmetry cell. However, all the symmetry cells are required to be canonically diffeo-

morphic. Then, the set of all orbits can be given a canonical manifold structure that is

independent of the choice of symmetry cell [[6], p. 109]. With this manifold structure,

the set of all orbits is called the orbit space, and it is the canonical domain for the

reduced BVPs.

Let us next define the symmetry cells and orbit space formally. The set of all orbits

of M under G is denoted by M/G. There is a natural projection π : M ® M/G such

that each point of M is mapped to its orbit. π induces the quotient topology for M/G

from M such that the topology is compatible with the orbits: U ⊂ M/G is open if and

only if its preimage π -1(U) is an open set of M. This topology makes π continuous

[10], and together with π, we can now define the symmetry cells (or G-reduced

domains as in [6]):

Definition 9. An embedded submanifold-with-boundary A of M is a symmetry cell, if

there is a continuous mapping � : M/G ® M, called cross-section, such that � (M/G)

= A holds and π ∘ � is the identity mapping of M/G.

� is called cross-section because it maps each orbit to one of its points (see Figure 3).

Each cross-section is a homeomorphism to its range A and induces a manifold struc-

ture for M/G by the requirement that the cross-section is a diffeomorphism from M/G

to its range. To make the induced manifold structure independent of the choice of the

cross-section, all the symmetry cells must be canonically diffeomorphic: A mapping

κ2 ◦ κ−1
1 from symmetry cell

A1 to symmetry cell A2 must be a diffeomorphism. Now, we can define the orbit

space.

Definition 10. The set of all orbits M/G together with a differentiable manifold struc-

ture is the orbit space, if the manifold structure is induced from a symmetry cell and is

independent of the choice of the symmetry cell.
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How are boundaries of M and its orbit space M/G related? Clearly, the orbits of

boundary points of M are at the boundary of the orbit space M/G. However, the points

of orbits that are at the boundary of the orbit space M/G need not be at the boundary

of M. For example, in the case of rotational symmetry, as in Figure 4, every point of

the axis of rotation is on the boundary of some symmetry cell, but not on the bound-

ary of M.

The points of the axis belong to singular orbits (Def. 4), and in this paper, we assume

that the singular orbits are always at the boundary of the orbit space.

The symmetry of the BVPs is independent of metric, and the reduced BVPs can be

defined directly from the original BVP without any metric in the orbit space. This

agrees with the fact that there is no canonical metric for the orbit space (see Figure 3,

where cross-sections �1 and �2 induce different metrics).

7 G-observers and horizontal forms
This is the point where the development of the theory of dimensional reduction

diverges from the theory of discrete symmetries. A dimensional reduction is often car-

ried out with a special coordinate system where one or more of the components of

fields are assumed to be zero. However, the symmetry is independent of the coordi-

nates, and it needs not make some components vanish. We build our theory without

A1

κ2

M/G

κ1

A2

Figure 3 Symmetry cells and orbit space. The blue lines describe orbits, and the red lines describe
symmetry cells A1 and A2 defined by the cross-sections �1 and �2. The black line describes the orbit space
M/G.

κ

M

M/G

Figure 4 Boundary of an orbit space. M is a 3-D domain that has a rotational symmetry. The thick circle
represents a conductor, and the broken line shows the axis of rotation. The points of the axis constitute
singular orbits, which are part of the boundary of the 2-D orbit space M/G.
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any references to coordinates with a conceptual geometric structure called the G-obser-

ver. A G-observer induces two complementary projections that decompose fields into

two components. These components are horizontal forms, and (G, h)-invariant hori-

zontal forms on M bijectively correspond to differential forms on the orbit space N =

M/G. Furthermore, the observer-induced projections also decompose the boundary

values, the exterior derivative (differential equations), and Hodge-like operators (consti-

tutive equations) such that they are expressed in terms of horizontal operators operat-

ing on horizontal forms. These horizontal operators bijectively correspond to operators

in N such that decomposed (G, h)-invariant BVPs on M bijectively correspond to

lower-dimensional BVPs on N.

7.1 G-observers

The origins of observer structures are in modern physics, where spacetime is decom-

posed into space and time by an observer [8,11]. In the dimensional reduction, 1-D

smooth symmetries induce orbits that are 1-D manifolds passing through every sym-

metry cell. An observer decomposes the fields into two components: the component

along the orbits and the component along some symmetry cell. Furthermore, there is a

multitude of different possibilities to decompose fields corresponding to different

choices of symmetry cells.

Definition 11. Let a 1-D connected Lie group G act on a manifold M. A pair (T, τ) of

a vector field and a 1-form on M, respectively, is a G-observer on M, if

(1) T and τ are smooth and G-invariant,

(2) there exists a representation of the action as a 1-parameter group of transforma-

tions such that T is the induced vector field (T is everywhere tangent to the orbits),

(3) there exists a symmetry cell A such that τ(v) = 0 holds for all vectors v tangent to

A,

(4) τ(T) = 1 holds everywhere except at the singular points, where τ is not defined

and T is the zero vector.

Remark 3. For each g Î G, the image gA = {g(p) Î M|p Î A} is a symmetry cell simi-

lar to A in the sense that τ(v) = 0 holds for all vectors v tangent to gA. Furthermore,

because T is smooth and tangent to the orbits, it must be the zero vector at the singular

points. At the same time, τ is not defined at singular points because then τ (T) = 1 can-

not hold. If � is the cross-section N ® A defining A, then by the above Definition, �*τ =

0 holds. Finally, it follows from the above Definition that the 1-form τ of a G-observer is

closed or dM τ = 0 holds. [[6], p. 115]

7.2 Decomposition of fields

A G-observer (T, τ) define s two complementary projections for fields by contraction

and extension: Pτ = iT ○ Iτ and PT = Iτ ○ iT [6,11,12]. If id denotes the identity mapping

of Ω(M), the complementarity of the projections means that Pτ + PT = id and Pτ PT =

PT Pτ = 0 hold. Thus, a form ω is uniquely decomposed as ω = Pτω + PTω. The hori-

zontal component Pτ ω = ω - τ ∧ iT ω, which is the component along symmetry cells

defined by τ, is denoted by ωτ, and the vertical component PTω is the component along
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the orbits. If we write PTω in terms of the wedge product and contraction, the decom-

position reads as

ω = ωτ + τ ∧ iTω. (1)

Because τ is known, the field ω can be constructed from ωτ and iTω, the geometric

components of ω. Thus, the lower-dimensional BVPs are formulated in terms of the geo-

metric components.

Remark 4. The geometric components are of different degree, and only the horizontal

component is defined for 0-forms. Similarly, only the vertical component is defined for

m-forms on an m-manifold. At singular points, iTω = 0 holds because T = 0 holds. But

then because τ is not defined at singular points, the decomposition of the fields in (1) is

not defined either. However, this is not a problem because the singular orbits are

assumed to always be at the boundary of the orbit space N. Finally, because T and τ

are G-invariant, the geometric components of a (G, h)-invariant form are also (G, h)-

invariant [[6], p. 117].

7.3 Horizontal forms

A differential form ω is horizontal if Pτω = ω holds or equivalently if iTω = 0 holds.

The geometric components ωτ and iTω are both horizontal forms. The set 	
p
h(M) of

all horizontal p-forms on M constitutes a linear subspace of Ωp(M) and the wedge pro-

duct of horizontal forms is again a horizontal form [[6], p. 64].

Natural way to transfer differential forms from M to the orbit space N is to use the

pullback �* : Ω(M) ® Ω(N) of the cross-section � corresponding to the symmetry cell

A. The unrestricted �* is not an isomorphism because it is not an injection; however,

�* maps bijectively (G, h)-invariant horizontal forms on M to differential forms on N.

Thus, the vector space of all (G, h)-invariant horizontal p-forms on M is isomorphic to

Ωp(N). If ω is a solution to a BVP on M, the solution to the reduced BVP on N is

(�*ωτ, �*iT ω). To transfer this solution back to M from N, we need an inverse for �*.

Because �* is only a surjection, there exist only right-inverses, denoted by r. Thus, r :

Ω(N) ® (M) is a mapping such that �* ∘ r is the identity mapping of Ω(N). However,

because �* is also an injection for (G, h)-invariant horizontal forms, there exists such a

right-inverse r that r ∘ �* is the identity mapping for horizontal forms on M, i.e., r ∘ �*
= Pτ holds.

The observer-induced projections Pτ and PT decompose also the exterior derivative:

dM = Pτ dM + PT dM. The operator dτ = Pτ dM is called the horizontal exterior deriva-

tive, and it is the exterior derivative of the horizontal forms, because it has all the

same characteristics as the exterior derivative [[6], p. 65]. Furthermore, dτ naturally

corresponds to dN via the pullback �*:

κ∗ ◦ dτ = κ∗ ◦ PτdM = κ∗ ◦ dM = dN ◦ κ∗. (2)

Thus, we can make a bijective correspondence between differential equations in the

orbit space and differential equations of horizontal forms. At the same time, the verti-

cal exterior derivative dT = PT dM itself is not useful, because �*dT = 0 holds. However,

the useful parts of dT (cf. PTω and iTω) can be expressed with the horizontal exterior

derivative dτ and the Lie derivative LT, as shown in the next section.
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8 Lower-dimensional BVPs for 1-D symmetry groups
In this section, we formulate the reduced BVPs on the orbit space. We assume that the

model BVP is (G, h)-invariant under an action of a connected 1-D Lie group G and

that the orbit space N = M/G exists. Thus, the boundary values, the constitutive equa-

tion, and the source field Q are (G, h)-invariant. We also assume that the BVP has

unique solution, which implies that the fields C and K are (G, h)-invariant (Theorem

2). To formulate a reduced BVP, we must choose a G-observer (T, τ). Then, the projec-

tions Pτ and PT determine the geometric components. The projections decompose also

the differential equations, the boundary values, and the constitutive equation, such that

they are expressed in terms of horizontal operators and the geometric components.

Thus, the model BVP is decomposed such that when it is pulled back to the orbit

space N, with the cross-section � corresponding to τ, it can be identified with a BVP

in N. Finally, to express the decomposed BVP in N in terms of the operators of N, we

apply various commutation rules of the operators (e.g., Hodge-like operator) with the

pullback.

8.1 Construction of a G-observer and decomposition of fields

A G-observer (T, τ) is determined uniquely by a selection of a parameterization b : ℝ

® G (represents the action as a 1-parameter group of transformations) and a symme-

try cell A (Def. 11). Notice that the solution to the original BVP does not depend on

the choice of G-observer. However, the reduced BVP does depend on the choice, and

all choices may not be equally convenient. We shall come back to this subject later on.

The G-observer (T, τ) decomposes the fields C, K, and Q according to (1). The fields

to be solved from the reduced BVP are the geometric components Cτ, iT C, Kτ, and

iTK. To bijectively identify the geometric components of C, K, and Q with fields in the

orbit space, we use the pullback of the cross-section � : N ® A.

8.2 Differential equations of the reduced BVP

The differential equations in the orbit space are derived from the equations of the

model BVP through decomposition by the projections Pτ and PT :

dMC = Q

⇔ (PτdM + PTdM)(PτC + PTC) = PτQ + PTQ

⇔ PτdMPτC + PτdMPTC + PTdMPτC + PTdMPTC = PτQ + PTQ.

(3)

Because dMτ = 0 holds for any G-observer (T, τ) (see Remark 3), we can prove with

straightforward calculations and Cartan’s formula [2] that the following equations hold

for any ω [[6], p. 68]:

PτdMPTω = 0,

PTdMPτω = τ ∧ LTωτ ,

PTdMPTω = −τ ∧ dτ iTω.

Then, (3) can be written in terms of the horizontal exterior derivative dτ = Pτ dM, the

Lie derivative LT, and the geometric components of C and Q:

dτCτ + τ ∧ (LTCτ − dτ iTC), = Qτ + τ ∧ iTQ. (4)
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Straightforward calculations using the projections Pτ and PT show that (4) is equiva-

lent to the following system of equations:{
dτCτ = Qτ ,
dτ iTC = LTCτ − iTQ.

Because C is (G, h)-invariant, its geometric components are also (G, h)-invariant.

Thus, LTCτ = h′(0)Cτ holds by Theorem 1 and substitution of h’(0)Cτ for LTCτ in the

above system of equations yields:{
dτCτ = Qτ ,
dτ iTC = h′(0)Cτ + iTQ.

The pullback �* bijectively identifies these equations with equations in the orbit

space:{
κ∗dτCτ = κ∗Qτ ,
κ∗dτ iTC = h′(0)κ∗Cτ + κ∗iTQ.

The equations are still expressed in terms of dτ. However, �* ∘ dτ = dN ∘ �* holds by
(2), and thus, we get the desired equations that are expressed in terms of dN:

dN(κ∗Cτ ) = κ∗Qτ , (5)

dN(κ∗iTC) = h′(0)κ∗Cτ + κ∗iTQ. (6)

Similar derivation applied to the other differential equation in the model BVP pro-

duces the following equations:

dN(κ∗Kτ ) = 0, (7)

dN(κ∗iTK) = h′(0)κ∗Kτ . (8)

Equations 5-8 are the differential equations on the orbit space for the reduced BVP.

Interestingly, some of the equations may hold trivially: for example, if the degree of

�*Kτ is the same as the dimension of N, then its exterior derivative is always zero. The

fields governed by these trivial equations are solved by substitution into the constitu-

tive equations.

Example 1. Let the model BVP depict a magnetostatic BVP. If the BVP is G-invariant

(h’(0) = 0), then the differential equations for the reduced BVP in the 2-D orbit space N

are ⎧⎪⎪⎨
⎪⎪⎩

dN(κ∗iTB) = 0,
dN(κ∗Hτ ) = κ∗Jτ ,
dN(κ∗iTH) = κ∗iTJ,
dN(κ∗Bτ ) = 0.

The last equation is a trivial equation. Notice that only G-invariance of current J is

assumed, but not any special direction. Often, only one of the geometric components of J

is assumed to be nonzero, in which case the current is either in the direction of the

orbits or is purely horizontal. This makes one of the equations for H homogeneous and

often very easy to solve. □
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8.3 Boundary values of the reduced BVP

The (G, h)-invariant boundary values of the Model BVP can be decomposed with the

observer-induced projections. Then, the pullback �* bijectively identifies these decom-

posed boundary values with boundary values in the orbit space. Singular orbits always

reside, by assumption, on the boundary ∂N of the orbit space. For those singular orbits

whose points are not part of the boundary ∂M, the symmetry itself will induce the

boundary values.

The boundary ∂N is a union ∂N = S ∪ E, where S is the set of all singular orbits

whose points are not included in ∂M, and E is the part of ∂N that can be embedded

into ∂M with a cross-section (see Figure 5).

Furthermore, in the model BVP, the boundary ∂M consists of two complementary

parts (∂M = ∂M1 ∪ ∂M2), and therefore, also E consists of two complementary parts,

or E = E1 ∪ E2 holds.

To derive the boundary values at E, we need the restrictions Ptτ = itT Itτ and PtT = Itτ
itT of the projections Pτ and PT to the boundary ∂M (tτ and tT denote the restrictions

of τ and T to ∂M). Then, with these projections, we can decompose the boundary

values of the model BVP:

t∂M1C
⇔ t∂M1PτC + t∂M1PTC

=
=
c
Ptτ c + PtTc.

(9)

Then, because Ptτ and PtT are complementary and because t∂M ○ Pτ = Ptτ ○ t∂M and

t∂M ○ PT = PtT ○ t∂M hold, Equation 9 is equivalent to the following system of equa-

tions: {
t∂M1PτC = Ptτ c,
t∂M1PTC = PtTc,

which can be written as follows:

t∂M1Cτ = cτ (10)

κE

iE

ES

M

κ
A N

i∂M
iS

∂M

Figure 5 Embedding the boundary of the orbit space. M is a 3-manifold with rotational symmetry. A is
a symmetry cell, i.e., the image of the orbit space N under a cross-section �. The boundary ∂N consists of
parts E and S whose points correspond to the points in ∂M and in the axis of rotation, respectively. iE and
iS are the inclusion maps of E and S into N, and �E embeds E into ∂M.
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t∂M1Iτ iTC = Itτ itTc. (11)

Because of the relation τ(T) = 1,

Iτ iTω = Iτ iTη ⇔ iTω = iTη (12)

holds for all forms ω and h. This fact together with the commutations t∂M ○ Iτ = Itτ
○ t∂M and t∂M ○ iT = itT ○ t∂M makes Equation 11 equivalent to the following:

t∂M1 iTC = itTc. (13)

Equations 10 and 13 express the equation t1∂MC = c in terms of the geometric compo-

nents. To identify them bijectively with equations in N, we use the pullback of the

embedding �E : E ® ∂M : If iE and i∂M are the inclusion maps of the boundaries E

and ∂M to N and M, respectively, then �E is defined such that

i∂M ◦ κE = κ ◦ iE (14)

holds (see Figure 5). Pullbacks to the composite mappings of Equation 14 satisfy the

following commutation rule:

κ∗
E ◦ t∂M = tE ◦ κ∗.

Then, just operation by κ∗
E to Equations 10 and 13 will give the boundary values for

the fields �*Cτ and �*iT C:

tE1 (κ
∗Cτ ) = κ∗

E1Cτ , (15)

tE1 (κ
∗iTC) = κ∗

E1 iTc. (16)

Similar derivation for fields �*Kτ and �*iT K yields:

tE2(κ
∗Kτ ) = κ∗

E2kτ , (17)

tE2 (κ
∗iTK) = κ∗

E2 iTk. (18)

At singular points, the vector field T is always the zero vector, and therefore, iTω = 0

holds on them. Thus, the symmetry fixes the fields �*iT C and �*iT K to zero at the

singular orbits:

ts(κ∗iTC) = 0, (19)

ts(κ∗iTK) = 0, (20)

where tS denotes the pullback of the inclusion map iS : S ® ∂N (see Figure 5). On

the other hand, the fields �*Cτ and �*Kτ are not even defined at singular orbits (see

Remark 4). However, the fields C and K can still be solved for and they need not be

zero at singular interior points of M, which can be easily seen from the following mag-

netostatic BVP: The domain is the one shown in Figure 4, and there is a static current

in the circular conductor. Clearly, the magnetic field H and flux density B are not zero

at the points of the rotational axis, but nonzero and aligned along the direction of the

axis. Because the fields H and B are smooth in small neighborhoods of the axis points,

we can uniquely extend the solution for these points.
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Equations 15-20 are the boundary values on the orbit space for the reduced BVP.

Observe that non-homogeneous boundary conditions on ∂M may induce homogeneous

conditions on ∂N, because ∂N is an (n - 2)-manifold and all forms of degree (n - 1) or

n are always zero at ∂N. However, there is no contradiction, because the contracted

forms, e.g., iT k, need not be zero. Furthermore, these homogeneous equations hold tri-

vially, they always correspond to the fields that also have trivial differential equations,

and they are solved for by substitution into the constitutive equations.

8.4 Constitutive equations of the reduced BVP

The constitutive equation gets decomposed by the observer-induced projections, and

this induces a decomposition of the Hodge-like operator υ into four linear operators.

When the decomposition of the constitutive equation is pulled back to the orbit space

with �*, we get the constitutive equations for the fields �*iT K and �*Kτ in terms of

the fields �*Cτ and �*iT C.

The projections decompose the constitutive equation of the model BVP:

K
⇔ PτK + PTK
⇔ PτK + PTK

=
=
=

υC
υPτC + υPTC
Pτ υPτC + PTυPτC + Pτ υPTC + PTυPTC.

Because v is a bijection and the projections are complementary, the equation above is

equivalent to the following system of equations:{
PτK = Pτ υPτC + Pτ υPTC,
PTK = PTυPτC + PTυPTC.

To express the constitutive equation in terms of the geometric components of the

fields C and K, we use Equation 12:{
Kτ = (Pτ υ)(Cτ ) + (Pτ υIτ)(iTC),
iTK = (iTυ)(Cτ) + (iTυIτ )(iTC).

This shows the decomposition of υ into four linear operators that map horizontal

forms to horizontal forms.

Let us next pull back these equations into the orbit space with �* and use the prop-

erty �*Pτ = �*:

κ∗Kτ = (κ∗υ)(Cτ) + (κ∗υIτ)(iTC), (21)

κ∗iTK = (κ∗iTυ)(Cτ ) + (κ∗iTυIτ )(iTC). (22)

To express these equations in terms of fields �*Cτ and �*iT C, we define the linear

operators υτ
τ , υ

τ
T, υ

T
τ , and υT

T that map from Ω(N) to itself such that they satisfy the fol-

lowing commutation rules for all horizontal forms on M:

κ∗ ◦ υ

κ∗ ◦ υ ◦ Iτ
κ∗ ◦ iT ◦ υ

κ∗ ◦ iT ◦ υ ◦ Iτ

=
=
=
=

υτ
τ ◦ κ∗,

υτ
T ◦ κ∗,

υT
τ ◦ κ∗,

υT
T ◦ κ∗.
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The operators can be given explicitly with a right-inverse r of �* that satisfies r ○ �*

= Pτ (see Section 7.3):

υτ
τ = κ∗

m−p ◦ υ ◦ rp,

υτ
T = κ∗

m−p ◦ υ ◦ Iτ ◦ rp−1,

υT
τ = κ∗

m−p−1 ◦ iT ◦ υ ◦ rp,

υT
T = κ∗

m−p−1 ◦ iT ◦ υ ◦ Iτ ◦ rp−1,

where the subindices in �* and r indicate the degree of the form they operate on.

With these operators, Equations 21 and 22 become

κ∗Kτ = υτ
τ (κ

∗Cτ ) + υτ
T(κ

∗iTC), (23)

κ∗iTK = υT
τ (κ

∗Cτ ) + υT
T (κ

∗iTC). (24)

Equations 23 and 24 are the constitutive equations on the orbit space for the

reduced BVP. They hold at the interior points of N.

Example 2. Let us present the matrices of the operators υτ
τ , υ

τ
τ , υ

τ
T, and υT

Tbases that

are compatible with the G-observer. Let C and K be 1- and 2-forms, respectively, on a

3-manifold M. Let X, Y, and Z be G-invariant vector fields on M such that (X, Y, Z)

forms a basis field, where (X, Y) is a basis field for a chosen symmetry cell A and Z is

in the direction of the orbits. Then, the dual basis (dx, dy, dz) is a basis for 1-forms,

and (Z, dz) is a G-observer compatible with the basis fields (X, Y, Z). Furthermore, let

(dy ∧ dz, dz ∧ dx, dx ∧ dy) be the basis for 2-forms. Then, there exist component 0-

forms Cx, Cy, Cz, Kx, Ky, and Kz such that in these bases, C = Cxdx + Cydy + Czdz and

K = Kxdy ∧ dz + Kydz ∧ dx + Kzdx ∧ dy hold. The geometric components Cdz, iZC, Kdz,

and iZK in terms of the above bases are

Cdz = Cxdx + Cydy,

iZC = Cz,

Kdz = Kzdx ∧ dy,

iZK = Kydx − Kxdy.

The pullback �* brings the above bases of 1- and 2-forms to corresponding bases of 1-

and 2-forms into the orbit space N. In these pullback bases, the component 0-forms of

the geometric components in N are the same as in M. If in the above-defined bases, the

operator υ is expressed as the matrix

υ =

⎡
⎣υxx υxy υxz

υyx υyy υyz

υzx υzy υzz

⎤
⎦ ,

then the matrices of the linear operators υdz
dz , υ

dz
Z , υZ

dz,and υZ
Z in the pullback bases are

υdz
dz = [υzx υzy],

υZ
dz =

[
υyx υyy

−υxx υxy

]
,

υdz
Z = [υzz],

υZ
Z =

[
υyz

−υxz

]
.
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8.5 The reduced BVP and the choice of G-observer

The reduced model BVP on the orbit space N, corresponding to a G-observer (T, τ),

consists of the differential equations (5)-(8), the boundary values (15) - (20), and the

constitutive equations (23) - (24):

dN(κ∗Cτ )
dN(κ∗iTC)
dN(κ∗Kτ )
dN(κ∗iTK)

κ∗Kτ

κ∗iTK

=
=
=
=

=
=

κ∗Qτ ,
h′(0)κ∗Cτ + κ∗iTQ,
0,
h′(0)κ∗Kτ ,

υτ
τ (κ

∗Cτ ) + υτ
T(κ

∗iTC),
υT

τ (κ
∗Cτ ) + υT

T (κ
∗iTC).

tE1 (κ∗Cτ )
tE1 (κ∗iTC)
tE2 (κ∗Kτ )
tE2 (κ∗iTK)
ts(κ∗iTC)
ts(κ∗iTK)

=
=
=
=
=
=

κ∗
E1Cτ ,

κ∗
E1 iTc,

κ∗
E2kτ ,

κ∗
E2 iTk,
0,
0,

These equations show that in the most general case, the terms h’(0) �*Cτ and h’(0)

�*Kτ in the differential equations and the operators υτ
τ and υT

T in the constitutive equa-

tions couple the system of four differential equations.

Let us examine when the equations decouple. First, if the model BVP is G-invariant

(h’(0) = 0) and if the operators υτ
τ and υT

T are zero, then reduced BVP breaks up into

two decoupled BVPs:

dN(κ∗Cτ )

dN(κ∗iTK)
dN(κ∗iTC)

dN(κ∗Kτ )

=

=
=

=

κ∗Qτ ,

0,
κ∗iTQ,

0,

κ∗iTK

κ∗Kτ

=

=

υT
τ (κ

∗Cτ ),

υτ
T(κ

∗iTC),

tE1 (κ∗Cτ )
tE2 (κ∗iTK)
ts(κ∗iTK)
tE1 (κ∗iTC)
tE2 (κ∗Kτ )
ts(κ∗iTC)

=
=
=
=
=
=

κ∗
E1Cτ ,

κ∗
E2 iTk,
0,
κ∗
E1 iTc,

κ∗
E2kτ ,
0.

In the case of G-invariant BVP, the decoupling can be achieved also without υτ
τ and

υT
T being zero, if one of the geometric components is zero: If, for example, dN (�*Kτ) =

0 is a trivial equation, in which case the boundary value κ∗
E2kτ is zero, and if the source

�*iT Q and the boundary value κ∗
E1 iTc are zero, then �*iT C must be zero. In this way,

the coupling via constitutive equations disappears, and we have the following BVP to

solve:

dN(κ∗Cτ )

dN(κ∗iTK)

=

=

κ∗Qτ ,

0,

κ∗iTK

κ∗Kτ

=

=

vTτ (κ
∗Cτ ),

vττ (κ
∗Cτ ),

tE1(κ∗Cτ )

tE2(κ∗iTK)

ts(κ∗iTK)

=

=

=

κ∗
E1Cτ ,

κ∗
E2 iTk,

0.

Observe that the equation κ∗Kτ = υτ
τ (κ

∗Cτ ) is for evaluation only.

Because the operators υτ
τ and υT

T depend on the G-observer (T, τ), their being zero

may depend on the choice of the G-observer. Let us next examine when it is possible

to choose an observer that makes the operators υτ
τ and υT

T zero. The operators are zero

if υ, T, and τ are such that iT (υ(τ ∧ ω)) = 0 holds for all ω Î Ωp-1(M). Let us study

what this requirement means geometrically, and for simplicity, we take υM : Ω1(M) ®
Ωm-1(M), in which case ω is a 0-form and can be ignored. Thus, we have iT (υ(τ)) = 0,

and by the Def. 2, this is equivalent to (iT υj ⋆j)(τ) = 0, where j is some metric tensor

on M. Now, if j is such that υj is a scalar field υ0, we have (υ0iT⋆j)(τ) = 0. Then, by

the Definition of Hodge-operator, this is equivalent to υ0iT i♯τ vol = 0, where ♯τ is the
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metric dual [4] of τ and vol the volume element [2] of j. This equation means that ♯τ

and T are parallel and the symmetry cell is everywhere orthogonal to T. Thus, the

operators υτ
τ and υT

T to be zero, there must be such a metric j that υj is a scalar field

and the orbits are everywhere orthogonal to the symmetry cell.

9 Multi-dimensional symmetry groups
In this section, we formulate reduced BVPs with multi-dimensional symmetry groups

G that are products of connected 1-D Lie groups. This may sound like a restriction,

but for instance, all connected 2-D Lie groups are products of 1-D Lie groups [13].

Moreover, in 3-D symmetries, where time is one of the dimensions, the Lie groups are

also always products of 1-D Lie groups. When G is a product of 1-D groups, we can

apply the previous results: The group action is a composition of the separate actions of

the 1-D factor groups, and we can iteratively apply each factor group one at a time and

use the results of the previous sections. We can also make a direct approach where we

apply all the factors at once and deduce the lower-dimensional BVP directly. A more

detailed exposition can be found in [6].

9.1 Iterative approach

Assume that the symmetry group G = G1 ×··· × Gn is a product of n ≤ m 1-D Lie

groups Gi. Furthermore, assume that the group actions Fi : Gi × M ® M are separate

from every other Fj, j ≠ i. Finally, assume that the symmetry transformations of the

group actions Fi commute, i.e., gi ∘ gj = gj ∘ gi holds for all gi Î Gi, gj Î Gj.

Let G1 act on M. Then, with a G1-observer, we can formulate a lower-dimensional

BVP on the orbit space M/G1. Now, the group action F2 of G2 on M induces a group

action F12 on M/G1 such that F12(g2,G1x) = G1F2(g2, x) holds, where G1x and G1F2(g2,

x) are the orbits of points x, F2(g2, x) Î M under the action F1. For example, if F1 and

F2 consist of translations and rotations, respectively, then the relation

F12(g2,G1x) = G1F2(g2, x) means the following: The translation of point x Î M forms

the orbit G1x Î M/G1, and then G1x is rotated by F12 to the orbit G1F2(g2, x) containing

the point F2(g2, x), which is the point where x is rotated by F2. The action F12 now has

its own orbit space (M/G1)/G2, and by choosing a G2-observer on M/G1, we can apply

the dimensional reduction. The process continues similarly down to the last group Gn.

9.2 Direct approach

From the three starting assumptions of the iterative approach, it follows that the com-

position F = F1 ∘ ··· ∘ Fn is a group action of G on M. Now, we construct Gi-observers

(Ti, τi) on M. Ti are Gi-invariant vector fields induced by the actions Fi represented as

1-parameter groups of transformations. Then, to define 1-forms τi, we select a symme-

try cell A of the action F (A is an (m - n)-dimensional submanifold of M). For the

identity ei of Gi, the image Ai = F (G1,..., Gi-1, ei, Gi+1,···, Gn, A) of A is a symmetry cell

of the action Fi. Then, let τi be G-invariant 1-forms such that τi(Ti) = 1 and τi(Tj) = 0

(i ≠ j) hold everywhere and if v is tangent to A, then τi(v) = 0 holds. Now, (Ti, τi) are

the Gi-observers, and together, they form a G-observer.

Each pair (Ti, τi) of a G-observer define s a pair of complementary projections Pτi and
PTi on Ω(M). Then, we can decompose fields, differential equations, boundary values,

and constitutive equations by applying the projections of the G-observer just like in
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Section 8. For example, if {(T, τ); (Z, ζ)} is a G-observer, then a field K is decomposed

as follows:

K = PτK + PTK

= PζPτK + PZPτK + PζPTK + PZPTK

= (Kτ )ζ + ζ ∧ (iZKτ ) + τ ∧ (iTK)ζ + τ ∧ ζ ∧ iz(iTK).

The geometric components of K are (Kτ)ζ, iZKτ, (iTK)ζ, and iZ(iTK). The geometric

components are horizontal forms because the projection PζPτ is an identity mapping

for them.

10 Dimensional reduction theorem
In this section, we give sufficient conditions for a linear BVP described in the model

BVP to be solvable as a lower-dimensional BVP. The conditions are precise, and they

constitute a systematic checklist, that, when confirmed by the modeler, will guarantee

that the BVP can be solved as a lower-dimensional BVP.

Theorem 3. (Dimensional reduction theorem) Let a linear BVP on m-manifold M

described in the model BVP have a unique solution, and additionally, let G be an n-

dimensional (n ≤ m) Lie group that is a product of 1-D connected Lie groups and

h : G → Fbe a differentiable homomorphism. If G acts effectively on M such that

(1) the symmetry transformations of the action are diffeomorphisms, and

(2) the source and boundary values are(G, h)-invariant and the Hodge-like operator

and the cohomology conditions are (G, h)-invariance-preserving, and

(3) the orbit space exists, and

(4) all the singular orbits reside at the boundary of the orbit space, and

(5) aG-observer exists,

then the BVP can be equivalently stated as an (m - n)-dimensional BVP on the orbit

space with a unique solution.

Proof. The assumptions (1) and (2) together with Theorem 2 show that the solution

fields C and K are (G, h)-invariant. Then, based on the assumptions (3)-(5), we have

shown in Sections 8 and 9 how to constructively formulate the (m - n)-dimensional

BVP on the orbit space corresponding to the chosen G-observer. The pullback of the

unique solution of the model BVP to the orbit space is a solution for the reduced

BVP. Thus, a solution exists for the reduced BVP. On the other hand, every solution

of the reduced BVP induces also a solution for the model BVP by (G, h)-invariance of

the fields. However, because of the unique solution of the model BVP, the induced

solutions must be the same and hence same also in the reduced BVP. Thus, the

reduced BVP has a unique solution. □

11 Examples
We give two detailed examples of the use of dimensional reduction in problems of

electromagnetism. The solutions of these problems are well known, but usually, they

are not recognized explicitly to based on symmetry, and they are obtained by working

directly with coordinates. Notice also that the static and time-harmonic Maxwell’s
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equations are the reduced differential equations of Maxwell’s equations in spacetime

[8] under an ℝ-invariance and a harmonic (ℝ, h)-invariance w.r.t. time [6].

11.1 Modes of a waveguide

Waveguides have uniform cross-sections and are infinitely long. Furthermore, time-

harmonic invariance of fields is assumed. Under these assumptions, modes of EM

waves arise, and they can be analyzed in the 2-D cross-sections of the waveguide. In

other words, the symmetry group G is (ℝ, +), and the boundary values, the Hodge-like

operators ε and μ, and the fields E, D, H, and B are all (G, h)-invariant.

In the 3-D domain manifold M (corresponds to the waveguide), where there are no

free currents or charges and the waveguide is filled with dielectric material, the follow-

ing time-harmonic Maxwell’s equations and constitutive equations hold:

dMD = 0, B = μH,
dMH = jωD, D = εE.
dMB = 0,
dME = −jωB,

Let us next choose a G-observer (Z, ζ), where Z is in the direction of the orbits, i.e.,

in the direction of the waveguide and ζ corresponds to the cross-section �, i.e., to

some cross-section of the waveguide. The fields are assumed to be (G, h)-invariant

with h = e-gg (in which case h’(0) = -g holds), where g is the complex propagation con-

stant in the direction of the orbits. Then, the above time-harmonic Maxwell’s equa-

tions are decomposed by the observer into eight equations in the 2-D orbit space N,

but only the following six equations are nontrivial:

dN(κ∗iZD) = −γ κ∗Dζ , (25)

dN(κ∗Hζ ) = jω(κ∗Dζ ), (26)

dN(κ∗iZH) = −γ κ∗Hζ + jω(κ∗iZD), (27)

dN(κ∗iZB) = −γ κ∗Bζ , (28)

dN(κ∗Eζ ) = −jω(κ∗Bζ ), (29)

dN(κ∗iZE) = −γ κ∗Eζ − jω(κ∗iZB). (30)

The constitutive equations in the orbit space are as follows:

κ∗Bζ = μ
ζ
ζ (κ

∗Hζ ) + μ
ζ

Z(κ
∗iZH), (31)

κ∗iZB = μZ
ζ (κ

∗Hζ ) + μZ
Z(κ

∗iZH), (32)

κ∗Dζ = ε
ζ
ζ (κ

∗Eζ ) + ε
ζ

Z(κ
∗iZE), (33)

κ∗iZD = εZζ (κ
∗Eζ ) + εZZ(κ

∗iZE). (34)
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Together with the boundary values, Equations 25-34 completely define the electro-

magnetic fields in a waveguide.

In the case of TE-modes of a rectangular waveguide, we assume that iZE = 0 holds.

Furthermore, if the materials are appropriate (e.g., isotropic) and the G-observer is

selected conveniently, then we can make μ
ζ
ζ = ε

ζ
ζ = 0 and μZ

Z = εZZ = 0 hold. Thus, the

differential equations on the orbit space in terms of the geometric components of E

and H are:

dNεZζ (κ
∗Eζ ) = 0, (35)

dN(κ∗Hζ ) = 0, (36)

dN(κ∗iZH) = −γ κ∗Hζ + jωεZζ (κ
∗Eζ ), (37)

dNμ
ζ

Z(κ
∗Hζ ) = −γμ

ζ

Z(κ
∗iZH), (38)

dN(κ∗Eζ ) = −jωμ
ζ

Z(κ
∗iZH), (39)

γ κ∗Eζ = −jωμ
ζ

Z(κ
∗Hζ ). (40)

From (37), (38), and (40), we can derive the wave equation for �*izH:

(μζ

Z)
−1dNμz

ζdN(κ
∗iZH) + (μζ

Z)
−1h2μζ

Z(κ
∗iZH) = 0,

:where h2 = −γ 2 + ω2εZζ μZ
ζ holds. In a suitable xy-coordinate system, the above wave

equation is equivalent to Helmholtz’s equation:

∂2(iZH)
∂x2

+
∂2(iZH)

∂y2
+ h2(iZH) = 0,

where h2 = -g2 +ω2εrμr holds. When �*iZH is solved for, the other geometric compo-

nents �*Eζ and �*Hζ can be solved from Equations 35-40 [14].

11.2 Helicoidal geometries

Consider a magnetostatic BVP that depicts a magnetic field due to helicoidally twisted

current wires (Figure 6) as a 2-D problem.

If the 3-D domain M is covered with a Cartesian xyz-chart f that replicates the

observed geometry of the situation (the chart is so-called standard parameterization

[6]), the orbits are helices under the chart f. The symmetry group G is (ℝ, +), and the

boundary values, source J, constitutive equation in terms of the operator μ, and the

cohomology conditions for H and B are all G-invariant. Therefore, the solution fields

H and B are also G-invariant under the helicoidal action on M.

To formulate a 2-D BVP, we need a G-observer. Furthermore, for numerical solu-

tion, we need to formulate the problem on a chart. These two objectives are conveni-

ently satisfied with helicoidal uvw-coordinates that are compatible with the orbits and

some symmetry cell: Let U, V, and W denote the G-invariant coordinate-induced basis

vectors of u-, v-, and w-coordinates. Assume that W is everywhere tangent to the

orbits. Then, the coordinate differential dw is the dual 1-form of W such that dw(W) =
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1 and dw(U) = dw(V) = 0 hold. Thus, (W, dw) is a G-observer compatible with the

helicoidal coordinates such that dw is defined by the uv-plane which is the symmetry

cell. The helicoidal uvw-coordinates of chart g are given in terms of xyz-coordinates of

the chart f, when the wires are twisted around the z-axis, as follows:⎧⎨
⎩

u = x cos(αz) − y sin(αz),
v = x sin(αz) + y cos(αz),
w = z,

(41)

where a is the twist pitch describing the extent of twisting. Notice that the symmetry

cell coincides with the xy-plane in the codomain of f.

The problem to be solved on the orbit space N, which can be naturally identified

with the uv-plane, is

dNHdw

dN(iWB)
dN(iWH)

dNBdw

=
=
=
=

Jdw,
0,
0,
0.

iWB
Bdw

=
=

μW
dw(Hdw) + μW

W(iWH),
μdw
dw(Hdw) + μdw

W (iWH),

Here, iW J is zero because current density is tangent to the orbits. Furthermore, the

equation dN Bdw = 0 is trivial. On the other hand, the equation dN(iW H) = 0, together

with the zero boundary condition for iW H, implies that iW H = 0 holds. To express μ

in chart g, we use the chart f, where the matrix of μ (in the coordinate-induced bases)

is simply μ0I (here μ0 is the permeability of empty space, and I is the identity matrix):

The matrix of μ in the chart g is

μg =
1

det(Jc)
Jcμf J

T
c = μ0

⎡
⎣1 + α2v2 −α2uv −αv

−α2uv 1 + α2u2 αu
−αv αu 1

⎤
⎦ , (42)

where Jc is the Jacobian matrix of the change of coordinates in (41), when z = w = 0,

in terms of the uvw-coordinates [[6], p. 85]. The matrices of the operators μW
dw,

μdw
dw,μ

dw
dw, and μdw

W in the standard basis of the uv-plane are (almost) the blocks of the

Y
Z

X

Figure 6 Helicoidal wires. Also shown is a symmetry cell, which is a plane orthogonal to the axis of
rotation.
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matrix of μg in (42) (see Example 2). Because iW H = 0 holds, the constitutive equa-

tions are simplified, and we have the following 2-D problem to solve:

dNHdw

dN(iWB)
=
=
Jdw,
0,

iWB
Bdw

=
=

μW
dw(Hdw),

μdw
dw(Hdw).

Note that the last equation is for evaluation only. The 3-D solution is then H = Hdw

and B = Bdw + dw ∧ iW B at the points of the uv-plane. The solution can be expanded

to the whole M with the pullbacks of the symmetry transformations. Calculated results

can be found in [6].

12 Conclusion
Symmetries of BVPs make it possible to reduce the problems and thus make them

easier and faster to solve. However, symmetry is often applied in engineering intuitively

case-by-case basis without systematic formulations. Particularly, this is the case for

dimensional reduction, which is actually based on symmetry and appears in a number

of different guises.

Starting with a rigorous Definition of symmetry, we have presented a formal and sys-

tematic approach to symmetry and dimensional reduction of BVPs expressed with the

exterior derivative. Particular objective has been the use of mathematical structures

that are natural for each concept related to symmetries of BVPs, giving them a clear

geometrical meaning. With this objective in mind, we have used tools of differential

geometry, which are suitable for all dimensions, and constructed a coordinate-free the-

ory of dimensional reduction. The theory includes sufficient conditions for dimensional

reduction and a systematic procedure to formulate lower-dimensional BVPs.

The systematic approach underlies many traditional solutions. For example, time-

harmonic fields, modes of waveguides, and fields due to helicoidal currents in electro-

magnetics can be explained in terms of the developed theory of dimensional reduction.

Particularly, the systematic approach can help to recognize and apply symmetries that

are not intuitively clear at the first sight and therefore can broaden the scope of appli-

cations of symmetry.
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