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1 Introduction
The aim of this work is the solvability of the following equation

3B(u) — Aa(u) — Vd(t, x,u, Va(u)) + K(u) = f(t, x,u) (1.1)
where (¢, x) € (0, T) x Q = Qy; with the initial condition

B(u(0,x)) = B(uo(x)), x € Q (1.2)
and the boundary condition

u(t,x) = 0, (t,x) € (0,T) x . (1.3)

The memory operator K is defined by

(K(t)u, v) =//k(t,s)g(s,x, Vu(s, x))Vu(t, x)dsdx. (1.4)
0

Q

Let us denote by (P), the problem generated by Equations (1.1)-(1.3). The problem
(P) has relevant interest applications to the porous media equation and to integro-
differential equation modeling memory effects. Several problems of thermoelasticity
and viscoelasticity can also be reduced to this type of problems. A variety of problems
arising in mechanics, elasticity theory, molecular dynamics, and quantum mechanics
can be described by doubly nonlinear problems.

The literature on the subject of local in time doubly nonlinear evolution equations is
rather wide. Among these contributions, we refer the reader to [1] where the authors
studied the convergence of a finite volume scheme for the numerical solution for an
elliptic-parabolic equation. Using Rothe method, the author in [2] studied a nonlinear
degenerate parabolic equation with a second-order differential Volterra operator. In [3]
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the solutions of nonlinear and degenerate problems were investigated. In general, exis-
tence of solutions for a class of nonlinear evolution equations of second order is
proved by studying a full discretization.

The article is organized as follows. In Section 2, we specify some hypotheses, precise
sense of the weak solution, then we state the main results and some Lemmas that
needed in the sequel. In Section 3, by the Rothe-Galerkin method, we construct
approximate solutions to problem (P). Some a priori estimates for the approximations
are derived. In Section 4, we prove the main results.

2 Hypothesis and mean results
To solve problem (P), we assume the following hypotheses:

(H,) The function 3 : R — R is continuous, nondecreasing, 8 (0) = 0, B () € L* (Q)
and satisfies |B(s)|> < C,B* (a (s)) + Cy, Vs € R.

(Hy) a : R —> R is continuous, strictly increasing function, a (0) = 0 and
a(uo) € HY(R).

(Hs) d: (0, T) x Q x R x RN — RN is continuous, elliptic i.e., 3dy >0 such that 4 (¢,
%z, &) E=dy |EF for e RN and p > 2, strongly monotone i.e.,

d @t xn &) -dbxnd) (G -S) 2d & - & for &, & e RY, di >0 and satis-

p—1
fies |d(t,x,z, )| <C (1 +|EPP71 + (B*(a(2))) ? ) for any (t, x) € (0, T) x Q, Vze R,
e RN
(Hy) f:(0, T) x  x R = R is continuous such that

p—1
If(t,x,2)]| §C<1+(B*(a(Z))) g )

for any (¢, x) € (0, T) x Q, Vze R.

The functions g and k given in (1.4) satisfy the following hypotheses (Hs) and (Hy),
respectively:

(H5) g: (0, T) x Q x RN — RN is continuous and satisfies lg (6% O] < C QA+ |4

and |g (6, %, &) -g (L x &) <dy |& - §2|p»1.
(Hg) k: (0, T) x (0, T) - R is weak singular, i.e. |k (¢, )| < |t - 5| w(¢, s) for

0<y< ; and the function w : [0, T'] x [0, 7] — R is continuous.

(H,) For p = 2, we have

ld(t,x, m1, &) — d(t,x,m2,6)1 < C(la(m) — a(n2)| + 161 — &)
and

If (&% m) — (tx,m2)l < Cla(m) — a(n2)

where (£, x) e (0, T) x Q, Ny, Ny € R, &, & e RN,
As in [3] we define the function B* by

B*(s) := B(a"1(5))s — /,B(a’l(z))dz forse{yeR:y=a(z),zeR).
0

We are concerned with a weak solution in the following sense:
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Definition 1 By a weak solution of the problem (P) we mean a function u : Qpr —> R
such that:

(1) B () € L* (Q1), 3 (B () - Aa (w)) € LT ((0, T), W(Q)), a (u) € L¥ (0, T),
WP (Q)), @ () e L™ (0, T), H)(R)).

(2) Vve I? ((0, T), Wé'p(Q)), v,e L2 ((0, T), H}(2))and v (T) = 0 we have

—/ﬁ(u)atvdxdt—/Va(u)Vatvdxdt
Qr Qr

+/d(t,x, u, Va(u))Vvdde/,B(uo)vtdxdt
Qr Qr

(2.1)

T
+/Va(u0)Vvtdxdt+/ (K(u), v)dt =[f(t, x, u)vdxdt.
0 Qr

Qr

The main result of this article is the following theorem.

Theorem 2 Under hypotheses (Hy) - (Hg), there exists a weak solution u for problem
(P) in the sense of Definition 1. In addition, if (H) is also satisfied, then u is unique.

The proof of this theorem will be done in the last section. In the sequel, we need the

following lemmas:

Lemma 3 [3]Let ] : RN — RN be continuous and for any R >0, (J (x), x) = 0 for all |x|
= R. Then there exists an y € R such that y = 0, |y| < R and J (y) = 0.

Lemma 4 [4]Assume that 0,(B (u) - Aa(u)) € LU0, T), W Q)), a(u) € L¥ (0, T),
WP (R)), aw) € L7((0, T), HY(R)), B* € L7((0, T), L'(Q)), B(uo) € L*(Q) and

a(uo) € HY(RQ). Then for almost all t € (0, T), we have

| Gup) - aau)) awyde = [ B (atu(®))as
0

Q

+; / \Va(u(t))*dx— / B*(a(uo))dx — ; / \Va(uo)|*dx.

Q Q Q

3 Discretization scheme and a priori estimates
To solve problem (P) by Rothe-Galerkin method, we proceed as follows. We divide the

interval / = [0, 7] into n subintervals of the length h = T and denote u; = u (¢;), with ¢
n

=ih, i = 1, .., n, then problem (P) is approximated by the following recurrent sequence

of time-discretized problems

:l(ﬂ(ui) — B(ui—1)) — ;A(a(ui) —a(ui—1)) — Vd(ti, x, ui—1, Va(u;))

—f(ti, X, ui,l) + K(ﬁi;l) =0
ui(x) = 0on 92

Ui, teftiot),j=1,..,i—1

where #;_; =
it {ui—lz telti-i, T

Page 3 of 15
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Hence, we obtain a system of elliptic problems that can be solved by Galerkin
method.

Let ¢1, . . ., Gy - . . be a basis in W *(Q) and let V,, be a subspace of W,”()
generated by the m first vectors of the basis. We search for each m € N* the functions

{u"}i., such that a(ul") = Y}, alfe, and satisfying

[ e - o eds+ [ (aq) - Va@ ) veds
Q

@ (3.2)

+/d(t,-,x, ul |, Va(u"))Védx + (K(4",), &) — /f(ti,x, u | )édx =0
Q Q

Remark 5 In what follows we denote by C a nonnegative constant not depending on
n, m, j and h.

Theorem 6 There exists a solution U}"in V,, of the family of discrete Equation (3.2).

Proof. We proceed by recurrence, suppose that uj' is given and that u]"; is known.

Define the continuous function J,,, : R — R” by:
1 1 .
)=, [ (B0)g + aveyte— [ i, )e
Q Q

+Vaui" | )Vejdx + / d(ti, x, ul' |, Va(v))Veidx + (K(1" ), &) (3.3)
Q
- [ fte o Dads
Q

where a(v) = Z;Zl riej. We shall prove that J,, satisfies the following estimates

Jhm (r)r > ;f (B*(a(u)) + ;|Va(v)|2>dx
Q

_ ;f(B*(a(u?ll))+ ;Wa(ui"ll)ﬁ)dx
Q

+d0/ |Va(v)|pdx—C8/ [Va(v)|dx

Q Q

1_ (3.4)
- C(S).C(y)Zh/ IVul" | |Pdx
k=1 Q
—C8o [ |Va(v)Pdx — C(8o) [ If (ti, x, ul",)|%dx
/ /
> C | |Va()]*dx+C [ |Va(v)Pdx — C
[ oworas-c |

Indeed, from hypothesis (H;) and the definition of B* we deduce

y [ B - s et [Fae)i-, (e s
Q Q

Q

Page 4 of 15
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the hypotheses on 4 and d imply

/ d(t;, x, ul",, Va(v))Va(v)dx > do f IVa(v)|Pdx, (3.6)
Q Q

using the identity
205, x—y) = I xIP= I yI*+ I x—yl?, (3.7)

we obtain

;/(Va(v) — Va(ui",))Va(v)dx
Q

1 2 1 m 2

\Y - Va(u! :

>, [vaora = [ ivarPas
Q Q

applying Holder and d-inequalities to the integral operator, it yields

q

(K" 1), a(v)) < f;/ /k(ti,s)g(s,x,vﬁi_l)ds Vdx
@ \o (3.8)

+C8/ |Va(v)|Pdx
Q
the first integral in (3.8) can be estimated as

5
f k(ti, s)g(s, x, VA" | )ds
0

X (3.9

1
i q i p
< (Zh|wkm_l|p> (Zh(t,-—tk)—yﬂ> +C.
k=1 k=1
Since y < ;, then

> h(ti—n)7"" < 1. C(y)
k=1 L—yp

for the function f we have

/f(t,-,x, ul )a(v)dx < CS/ |Va(v)|Pdx + C(S)/B*(a(u?))dx+ C. (3.10)
Q Q

Q

Therefore (3.4) holds. Then for |r| big enough, J;,,,(r) ¥ = 0. Taking into account that
Jum is continuous, Lemma 3 states that Jj,,, has a zero. Since the function a is strictly
increasing then there exists v = " solution of (3.2). ®

Now we derive the following estimates.

Page 5 of 15
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Lemma 7 There exists a constant C >0 such that

max [ B*(a(ui"))dx = C, (3.11)
Q

max/lVa(ulmﬂzdx <C,
Q

max (3.12)
> h / [Va(u)|Pdx < C. (3.13)
=1 5

Proof. Testing Equation (3.2) with the function a(u!"), then summing on i it yields

j
3 [ (B0~ B atu i

i=1 &

j
+ Z/ ;(Va(u,m) — Va(u",))Va(u")dx
lz‘l Q (3.14)
j
+ Z / d(ti, x, ui" 1, Va(ui"))Va(ul")dx
i=1 &
j j
+ ) (K (), a(uf") — Z /f(ti,x, u" Da(uM)dx = 0.

i=1 i=1 &

From the definition of B* we obtain

] /
-1 5

1

=

(B(u") = B(uy))a(w")dx = /B*(u;")dx— /B*(ug’)dx~ (3.15)
Q

Q
Using the identity (3.7) for the second integral in (3.14), we get
Lo
> [ (a) = Va(ur ) va@)as
i=1 &

: ) (3.16)
> 2/|Va(u;”)|2dx— 2/|Va(u6")|2dx.
Q Q

The hypotheses on d imply

j j
> / d(ti, x, uf" y, Va(u"))Va(u)dx > do Y / |Va(u)[Pdx. (3.17)

i=1 ¢ =g

Page 6 of 15
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The memory operator can be estimated as

j j p
N C N
(K@), a(u") < ¢ > / / k(ti, s)g(s, x, V" )ds | dx
i=1 =15 \p
j
+C82/ [Va(u!")|Pdx.
i=1 &
Using similar steps as in the proof of Theorem 6 we obtain
Li
/k(ti, s)g(s, x, V" | )ds
0
1 1
i q i P
< (Z h|Vu;;‘1|f’> (Z h(t — m”’) +C.
k=1 k=1
Applying Poincaré inequality, we get

j

> [ i aturyas

i=1

; e ; (3.18)
<Cl)Y. / B*(u")dx + C5 Z/ |Va(u")[Pdx + C
i=1 Q i=1 Q

Substituting inequalities (3.15)-(3.18) in (3.14) it yields

j
/B*(u]?”)dx+ ; / |Va(u}")|2dx+ (do — C(S)Z/ |Va(u")Pdx
Q

Q =l g
1 U
5/3*(u6")dx+ 2/|Va(ug‘)|2dx+C.C(y)ZhZh/|Va(u]m)|”dx (3.19)
Q Q i=1 k=1 o
j
+C(5)th3*(u;")dx+c.
i=1 Q

Choosing d conveniently and applying the discrete Gronwall inequality, we achieve

the proof of Lemma 7. ®
Lemma 8 There exists a constant C >0 independent on m, n, h, i, and j such that

n—k
> h / (Bl — Bw"))(a(u}y) — a(u))dx < chk, (3.20)
=1 g
n—k

h/ IVa(u;f‘rk) - Va(u;")lzdx < chk. (3.21)
R

Proof. Summing Equation (3.2) for i =j + 1, j + k, choosing a(u}ﬁk) - a(u}") as test
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function, then summing the resultant equations for j =1 ..., n - k, we get
n—k 1
| 3B = B et - awds
j=1 g
n—k 1
+ / s |Va(uj’fk) — Va(u}”)|2dx
j=1 g
n—k j+k
> / d(ti, %, u}" y, Va(u"))(Va(ul,) — Va(u"))dx
j=1 isjrl g
) (3.22)
n—k j+k
+ Z Z(K(ﬁi—l)/a(uﬁk) —a(y"))
j=1 i=j+1
n—k j+k
S22 [ ftn Gk - atuyds
j=1 i=jal g
n—k j+k
=23 [ s atul) - a s =0,
j=1 i=jal g

The third and fifth integrals in (3.22) can be estimated as

n—k j+k
>3 / d(ti, x w y, Va(u"))(Va(ully,) — Va(u"))dx
j=1 isj+l g
< CZ/ ld(t;, x, ul* |, Va(u!"))|%dx
=g (3.23)
+Ck/ (|Va(u}f‘rk)|p + |Va(u;")|p)dx,
Q

n—k j+k
DX [ fnul atuk) - aw)is
=1 il g
< CZ/ If (&, 2, ul™ ) |9dx + Ck/ (|a(u;2k)|p + |a(u;”)|p)dx. (3.24)
=1 g Q

From hypotheses on d and f it yields

n
> [ idte ot Va@py s

=g ) ) (3.25)
scscy [Ivappars Y [ B (awris

i=1 o i=1 o
Z/ If (£, u™ )| dx < C+CZ/B*(a(uf"))dx. (3.26)

i=1 & i=1 &
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The operator K can be estimated as previously. Therefore we get

n—k 1
) / L (B = B @) — a(u))dx

1o
n—k 1
+ Z/ L |Va(u;f‘rk) - Va(u]m)|2dx <
1 g
n n
> / |Va(u")Pdx+C) / B*(a(ul™))dx (3.27)
i=1 g i=1 g
)Y [ Ivaturyras
i=1 g
n—k
+ChY / la(ut )" + la(u")P)dx + C
=1 g

Using the estimates of previous Lemma we obtain the desired results. ®
Notation 9 Let us introduce the step functions
{ﬂ:’f(t,x) =u"(t;,x),i=1,n {ﬁ%h(t,x) =u"(t — h,x), t € [ T]
u"(0,x) = ug'(x) up (tx) =ug'(x),  te€[0h]
{d,,(t,x,s,z) =d(t,x,5,2), te(ti1,t], i=1,n,
dn(0,x,5,2) =d(0,x,5,2)

Corollary 10 There exists a constant C independent of n, m, j and h such that

sup /B*(a(ﬁ,"f(t, x)))dx < C, sup /|Va(ﬁ,'f’(t, x))]?dx < C
0<t<T 0=t<T
Q Q
/ |Va(@l'(t,x))[Pdxdt < C,
Qf

—T

(3.28)

o\ﬂ

/ IVa(u™(t + ,x)) — Va(u™(t, x))|*dxdt < Ct
Q

T—1
| [t - s o
0 Q

x (a(uy (t +7,x)) —a(u) (t,x)))dx < Ct

for k=0,n—1 and te (kh, (k + 1) h).
Remark 11 (1) Corollary 10 and hypothesis (Hz) imply

Il dn (2, x, iy}, (2 x), Va(ity' )l gy < C
(2)From Equation (3.2) we get

I 9 (B (1) — Aa(ity)) a0,y H-19(2)) < C

Page 9 of 15



Chaoui and Guezane-Lakoud Boundary Value Problems 2012, 2012:10 Page 10 of 15
http://www.boundaryvalueproblems.com/content/2012/1/10

(3) The estimate of B* in Corollary 10 and hypothesis (H,) give
I By )2 < C
(4) For the memory operator we have

Il K (@) laqco,r)1a2)) < C

4 Convergence results and existence
Now we attend to the question of convergence and existence. From Corollary 10,
Remark 11 and Kolomogorov compactness criterion, one can cite the following:

Corollary 12 There exist subsequences with respect to n and m for (U)) that we will

note again (U))) such that

a(i™) — ain L((0, T), Hy(R2))
aiiy') = «in L2((0, T), W,"(2))
B(iy) — bin L*(Qr)
n(B(iy) — Aa(uy')) — zin L((0, T), H~ (%))
dn(t,x, 1, (t,x), Va(i')) — xin L9(Qr)N
K(in_y) = win L7((0, T), H(R))

when m, n — oo.
Proof of Theorem 2. We have to show that the limit function satisfies all the condi-
tions of Definition 1. Using Corollary 10 (third and fourth inequalities) and Kolmo-

gorov compactness criterion [[5], p. 72] it yields a(#') = & in L*(Q7). Since a is
strictly increasing then u;’ — u almost everywhere in Q. From the continuity of a it
yields a(i)') — a(u) almost everywhere in Qr and o = a (u), consequently
a(@™) — a(u) a.e. in L*(Qy). Applying Poincaré inequality and the fourth estimate in
(3.28) we obtain

B B C
I a(iy’) — a(is;),) ||fz((o/T)/Hé(S2))S n

then U, = U a.e. in Qr. Analogously b(ii;') — b(u) ae. in L*(Q7). According to the

hypothesis (H,) we get || fa(t x 1)) )lls(Qr) < C and consequently fu(tiy;,) —f(u) in
LY(Qy). For B* we can easily prove that B*(u) € L~((0, T), L'(Q)). Based on the fore-
going points, Equation (3.2) involves

r T T
/ (z,v)dt+/vadxdt+/ (/L,v)dt=//fn(t,x, u) vdxdt. (4.1)
0
0 Q

Qr 0

Rewriting the discrete derivative with respect to ¢ and taking into account

a(i(0)) = a(ug') — a(uo) in H)(2) we obtain



Chaoui and Guezane-Lakoud Boundary Value Problems 2012, 2012:10
http://www.boundaryvalueproblems.com/content/2012/1/10

[yt - s - wy)uisd
Qr

. / :I(Va(ﬂ;"(t)) — V(i (i — h)))Vudxdt
Qr

= —/ (B (t))0—nv + Va(u, (t))0—p Vv)dxdt
Qr
[ @ @)w0) + va@ ) v o) wr
Q

— —/ﬁ(u)utdxdt—/Va(u)Vvtdde/ﬁ(uo)vtdxdt
Qr Qr Qr

+ / Va(up) Vv dxdt
Qr

T
= / (z, v)dt
0

Yve I? ((0, T), Wé/p(ﬂ)), v, e L*((0, T), HY(R)) and »(T) = 0. Since v belongs to a

dense subspace in L? ((0, T), Wé'p(Q)) and using the second estimate in Remark 11

we get
2= 0,(B(u) — Aa(u)) € L((0,T), W~()).
Now we prove that
a(iiy') — a(u)in L*((0, T), W,"(R)).

In fact, taking in (3.2) the function & = a(u)}') — a(V}}) as test function and integrat-

ing on the interval (0, 7), where a(¥") € LP((0, T), Vin(2)) is the approximate of a(x)

in LP ((O, T), W;’p(ﬂ)>, constant on each interval ((k - 1) /4, kh), we obtain

/ 0,B(8") (a(@") — a(i"))dvdt

Q:

+ / wVa(iuy)(Va(u)') — Va(v))))dxdt
Q:

+/dn(t, x, wyy, Va(iy'))(Va(iy') — Va(vy'))dxdt 43)
Q.

T

o [ ), @) - a@d

0

- / folt x @) (a(@) — a(@))dxde
Q.

Page 11 of 15
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Lemma 4 implies
/ / 0B () (a(il!) — a(F) )t
0 Q

. f / 0y Va(ilh) (Va(@l') — Va(#l))dxdt
0 Q

> ; j / B*(a(a;”))dxdmzlh j / —Va(u")—2dxdt

T—h Q T—h Q

—fB*(a(u(r)))dx— ; /—Va(u(r))—zdx+cs

Q Q

From Fatou Lemma we deduce

liminf; / / (B*(a(ﬁ;"))+;—Va(ﬁnm)—2) dxdt

BN
> /B*(a(u(r)))dx+ ; /—Va(u(r))—zdx,
Q Q

consequently

timinf [ [ (046 (@) - a72)
m;n— o0
0 Q
+0,Va(uy')(Va(uy') — Va(v)'))|dxdt > 0
Taking into account the convergence of a(#™) to a(u) in L*(Q7), the convergence of
a(¥) to a(u) in L? <(O, T), Wé’p(Q)>, the continuity of d, the weak convergence of d
in L1Qp)N and the dominated convergence theorem, we obtain
dn(t, x, W, Va(uw)) — d(t, x, u, Va(u)) in  LY(Qr)Y

In addition to monotonicity of d gives

T

/ / dy (t, %, @y Va (@) (Va(@) — Va(@"))dxdt
0 Q

/ / (da(t, x @™, Va(@) — du(t, x, @7y, Va(@))
0 Q
x(Va(ii™) — Va(i"))dxdt

+ / / dy (t, x, @, Va (7)) (Va(@l') — Va(ill))dxde
0 Q

v

T
d; / / —Va(u)') — Va(') —Pdxdt — ce
0 Q

Page 12 of 15
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as previously using hypotheses (Hs) and (Hg), the operator memory can be estimated
as

[ K@M ,), a(@") — a(i))dt

0
C T t
< 8/‘//—Va(ﬁﬂ)—Va(l7ﬂ)—”dxdt
020

+C8——a(u™) — a(v;")——ip((oﬂwé,,,(m) +Cs

For f, we have

T

//fn(t, x, ) (a(iy') — a(v,'))dxdt < Ce,
0 Q
regrouping the estimates of all terms of Equation (4.3) we obtain

d —C8) | | —Va(i™) — Va(i")—Pdxdt
[

T t
< C///—Va(ﬂ,’{’)—Va(l"/,':’)—pdxdt.
0Q 0

Gronwall inequality implies
//—Va(ﬁ,’f’) — Va(¥)")—Pdxdt < Ce,
0 Q

hence we get
a(@) — a(u) in LP((0, T), Wy ().
Following the Proof of Theorem 2: From the continuity of d and g it yields

dn(t, x, Uy, Va(i,)) —  d(t x u, Va(u)) ae Qr
gt x, Vi ) — gt x, Vu) ae Qr

The weak convergences of dn(t, x, iy}, Va(iy')) and K(@ ;) and the almost every-
where convergences imply that y = d(¢, x, u, Va(u)) and y = K(u). So u is the weak
solution of the problem (P) in the sense of Definition 1.

Now we prove the uniqueness of the weak solution. We assume that the problem (P)

has two solutions u' and u? € L?((0, T), H}(£2)). Taking into account that
B() = B(12) and Va(u}) = Va(i3), we get
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((B(u') = B(u*))ve + V(a(u') — a(u®))Vu,) dxdt

/

+

IO\

/(d(t, x, u', Va(u')) —d(t, x, u?, Va(u?)))Vvdxdt
& (4.4)

(K(u') — K(u?), v) dt

Cit— s T —

T
= //(f(t, x, ut) —f(t, x, u?)) vdxdt.
0 Q

Choosing in (4.4) the test function

Vs(t) - {ft ((l(u (T)) - a(uz(f)))df t<s

t>s

and since v(s) = O then integrating by parts it yields

f (But) - B(2), aul) - a(u?)) dt
0

+//—Va(ul) — Va(uz)—2 dxdt
0 Q

N N
C
8//—Va(u1) — Va(u*)—? dxdt + 5 //—Vvs—2 dtdx.
0 Q 0 Q

On the other hand, we have

//—Vvs didx < C///—Va(u (x, 7)) — Va(u?(x, t))—? dxdrdt.

0 0 Q

Applying Gronwall lemma we get
N
//—Va(ul) — Va(u?)—?* dxdt = 0
0 Q

consequently %' = u”. This achieves the Proof of Theorem 2.
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