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Abstract

This paper investigates a compressible reactive gas model with homogeneous
Dirichlet boundary conditions. Under the parameters and the initial data satisfying
some conditions, we prove that the solutions have global blow-up, and the blow-up
rate is uniform in all compact subsets of the domain. Moreover, the blow-up rates of
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1 Introduction and main results
In this paper, we investigate blow-up and the blow-up rate of nonnegative solutions for

the following degenerate reaction-diffusion system with nonlocal sources:

u; =V - (u"Vu) + au! ||v||§?al, (x,t) € Bx (0,T),
vy =V - (V'Vv) + by1k ||u||%?a2, (x,t)eBx(0,T), @)
u(x,0) = uo(x), v(x,0) =vo(x), x€B, '

u(x,t) =v(x, t) =0, (x,t)€dBx(0,T),

where B = B(0,R) C RN (N > 1) is a ball centered at the origin with the radius R € R*,
a,b > 0, exponents py,qo, 01,00 > 1, m,n,p1,q1 > 0, and T < oo is the maximal existence
time of a solution, || - [|§, = [, |- |* dx.

The system (1.1) models such as heat propagations in a two-components combustible
mixture gases [1]. This problem is worth studying because of the applications to heat
and mass transport processes (see [2, 3]). In addition, there exist interesting interactions
among the multi-nonlinearities described by these exponents in the problem (1.1).

In the past decades, many physical phenomena have been formulated into nonlocal
mathematical models and studied by many authors. Here, we will recall some of those
results concerning the first initial boundary value problem.

At first, the global solutions and blow-up problems for a single parabolic equation with
nonlocal nonlinearity sources had been studied extensively, see [4—10] and references
therein. As a typical example, in [4] Souplet considered the equation with spatial integral
© 2012 Ling and Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.


http://www.boundaryvalueproblems.com/content/2012/1/101
mailto:lingzq00@tom.com
http://creativecommons.org/licenses/by/2.0

Ling and Wang Boundary Value Problems 2012, 2012:101 Page 2 of 16
http://www.boundaryvalueproblems.com/content/2012/1/101

term

u; = Au +g</f(u(x, 1) dx) 1.2)
Q

and the equation with both local and nonlocal terms
u; = Au+ /f(u(x, t)) dx + h(u(x, t)). (1.3)
Q

These two equations are related to some ignition models for compressible reactive gases.
The author introduced a method to investigate the profile of blow-up solutions of (1.2)
and (1.3) and observed the asymptotic blow-up behaviors of the solutions. In addition,
an important model in the theory of nuclear reactor dynamics can be described by the
following equation with the space-time integral term:

ur=Au +f(/0t/;2g(u(y,s))ﬁ(y) dyds). (1.4)

The blow-up of its solutions was studied by Pao [5], Guo and Su [6].
In 2003, Li and Xie [7] considered the following problem:

Ve = AV" + ay?! / v dx. 1.5)

Q

By introducing some transformations u = v"*, t = mt (1.5) takes the form

Uy = u”(Au + au’/ u’ dx). (1.6)
Q

Then they proved that the solution of (1.6) blows up in finite time for large initial data
and obtained the blow-up rate. Recently, Liu et al. in [8] investigated the blow-up rate of
solutions to diffusion equation (1.6). Their approach was based on sub- and super-solution
methods which were very different from those previously used in the study of the blow-up
rate. They proved, by using the maximum principle, that the solutions have global blow-
up, and the rate of blow-up is uniform in all compact subsets of the domain. Here the
global blow-up means that there exists 0 < T < +00 such that

tgr}l_|u(-,t)} =00 or tgr;l_‘v(-,tﬂ =00 forallx € Q.

Secondly, we should point out that in the case of m = n = 0, the system (1.1) becomes a
semilinear system. To our knowledge, there do not seem to be any results in the literature
on blow-up problems of these types. But other related works of the semilinear case have
been deeply investigated by many authors, e.g., see [11, 12], and the authors of this paper
in [13] studied the system

Uy = Au+ a(x)uP (x, )v1 (0, t), Ve = Av + b(x)V2 (x, H)u?2(0, t),

where the simultaneous and non-simultaneous blow-up criteria were obtained by using
the fundamental solution of the heat equation. On the other hand, there are many known
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results concerning the global solutions and blow-up problems for the parabolic system
with local nonlinearities, localized nonlinearities and nonlinear boundary conditions, see
[14—17] and references therein. In particular, Ling and Wang in [18] considered the follow-
ing degenerate parabolic system:

uy = Au™ + VP |u||B2, V= AV + yf ||V||Z2

in a bounded domain €2, with the help of the super- and sub-solution methods, the crit-
ical exponent of the system was determined. Motivated by the above works, under the
following conditions:

O<m<pi<l, O<n<qi<l, prga>Q-p1)1-q), 1.7)

we consider a more general degenerate parabolic system (1.1) which includes the problems
considered in [7, 8] and [17] as special cases. Employing the ideas in [7, 8], we describe the
blow-up rate of the radially symmetric solutions to (1.1). Here we discuss the blow-up
of radially symmetric solutions as well as derive their blow-up rate. Moreover, we get the
accurate coefficient of the blow-up rate. For the related discussion on a radially symmetric
solution, we refer the readers to [19] and references therein.

In this paper, we always assume that the initial data («o,vo) € V (V is defined by (1.8))
and satisfies the following (H1)-(H3) or (H4):

(H1) uo(x),vo(x) € C***(B) N C(B), € (0,1).

(H2) uo(x), vo(x) > 0 in B, u(x) = vo(x) = 0, 20, 20 < 0 on 3B.

(H3) uo(x), vo(x) are radially symmetric, uy(r), vy(r) < 0 for r € (O,R), r = |x|.

Denote the set of initial data, depending only on the radial variable in the spherical co-
ordinate system of RV:

V= {(uo(r),vo(r))|<1>1(r) >0, Dy(r) > 0}, (1.8)

where

N-1

D, (r) = m(ué)(r))zuf)"_l(r) +uf(r) (ug(r) + u()(r)) +aub (r) ”Vo(f)‘?al,

®(r) = n(vy(1) Vi () + Vi) (V;;m + A%%(ﬂ) + bV (1) |uo ()| 5,

It is noted that the set V is not empty. For example, for the simplest case N =R =1
and a = b =1, for any constant exponents m, n and p;, g;, «;, i = 1,2, there exist positive
constants a4, a, such that (ug,vo) € V with uo(r) = a1/2 — a1r*/2, vo(r) = as/2 — asr?/2,
re[0,1).

(H4) Let 8o, ki, ko be positive constants (will be given in Section 3), and there exists a

constant § > §g such that

k1+1—
Auyg +a(l+m—p1)|vaollg,,, — 8z, >0,

ko +1—
Avyg +b(L+n—q)llunllg,, — vy > =0,

here uyg, V20 and oy, w;, r; are defined by (2.9) and (2.6).
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Then, our main results read as follows in detail.

Theorem 1 Assume that (uo,vo) € V and satisfies (H1)-(H3). If p* > m m, then

the positive solution (u,v) of (1.1) blows up in finite time, where p is defined by (2.12).

Theorem 2 Under the assumptions of Theorem 1, if Aug, Avy <0 on B and (ug, vo) satis-
fies (H4), then the following statements hold uniformly on any compact subset of B:

P (x, t)

. V9 (x, t)
Iim —————
t=T (1 - p1)Gi(2)

=a, im——" =},
=T (1-q1)Ga(2)

(1.10)

where 51(t) and éz(t) are defined by (3.1).

Theorem 3 Under the assumptions of Theorem 2, if 1 — q1)(1 + m — p1) < p2(q2 — m) and
1I-p)A +n—-q1) <q2(ps — n), then

1
lim u(x, £)(T —t)k
t—>T

1 g )
_(+m-p)T|B" ( B ) a ( B ) ¢ (L11)
Jk a(l+m—py) bl+n-q)) ' '
1
lim v(x, t)(T — t) %
t—>T
1-p a2

_(1+n—q1)11ﬂ|3|92( B )—( B, ) 12
B % bA+n-q) al+m-py)) (L12)

uniformly on compact subsets of B, where

(0'1 o1 <0'2 (o] )) 1

91 =+ ———-— —,
pr Bo\m2 /) ki
( (o)) (o)) < o1 (o)) )) 1

O=——+—(——-—1|)—
o B\ u2)/)k

This paper is organized as follows. The result pertaining to blow-up of a solution in finite

time is presented in Section 2, while results regarding the blow-up rates are established in
Section 3. Some discussions are given in Section 4.

2 Proof of Theorem 1
In this section, we will discuss the blow-up of the solution to (1.1) and prove Theorem 1.
By a simple computation, we have

V- (u"Vu) = mu" 7 Vul® + u” Au, (2.1)

AU = 1+ m—p)(m - p)u" P Vul® + (1+ m - p1)u” P Au. (22)
Since 1+ m — p; >0, m < py, from (2.2), we can derive the inequality

u" P Ay >

— Ayt (2.3)
T l+m-p;
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Moreover, by (1.1), (2.1) and (2.3), we have

1 duln Lo
= u P uy = uw P (| Vul® + u” Au+ au ||vIIE,)
1 -p1 Jat oL
1
> ———— Au"" Py gy
l+m-py L

Thus,

1-py
1+m —p; O(u"+m=Pr)Tmpr

l—pl ot

> AUk a(l+ m - py) VI, - (2.4)
Similarly,

1-q1
1+n—q 0" 0)TFma
>

1+n— q2
> AvTTN 4 b(L+n—qu) | ullg, - (2:5)
1- q1 dat
Denote u; = ul*"P1, y; = y1*"~01 and

_ — b2 — o]
n= 1+m-py’ 01= 1+n-q;’ M1 = 1+n—-q1’ (2 6)

— n — q2 _ o2
= l+n—q1’ 02 = 1+m—p1’ M2 = 1+m-p1°

Then 0 <1y, rp <1, 01,09, 41, 2 > 1 and uy, v; satisfy

ue = uy (Auy +a(l+m—p1)nlizg,,)

r ) (2'7)
vie = Vi (Av + b(L + n— qi) |lmllg,,)-
Consider now the following problem:
Uy = uy (Aug + a(l+ m—p1)|nallg,),  (xt) e Bx(0,7),
vy =V (Avy +a(l+n—q)lluall,,),  (x8) € Bx(0,T), 2.8)
MQ(.?C, t) = VZ(xr t) = 0) (x; t) € 0B x (0) T))
MZ(xr 0) = MZO(x): Va (.X, O) ="V (x)! X € B;
where
Ivallg, = VI, luallz, = lullf,,, 29)
ug0(x) = (s (X)L, wao(x) = (vo(x))" 741,

Since ug(x), vo(x) satisfy (H1)-(H2), then (2.8) has a unique classical solution (u5, v5) (see

[20]). In the meantime, by the comparison principle, we observe

s (0, 1) < Ul (x, t), Vo, t) < VN (x,8),  (x,£) € B x (0, T). (2.10)
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Let G be a bounded domain of RY. Consider the problem

w; =do’ (Aw +ag [;wdx), x€G,t>0,
w(x,t) =c, x€0G,t>0, (2.11)

w(x,0) =c, x €@,

where 0 < 7y <1 and d, ag, ¢ > 0 are some constants. By the standard method (see [3]), we
can show that (2.11) has a unique classical solution w(x, t) and w(x, t) > c. Denote by ¢o(x)

the unique positive solution of the linear elliptic problem
-Apox) =1, x€G; @olx)=0, x€0G.
Set po = [ ¢o(x) dx, then we have:
Lemma 1 If pg > 1/ao, then the positive solution w(x,t) of (2.11) blows up in finite time.

Proof Set H(t) = [, ' ¢o dx, then

1
H'(t) = d(/ Awgoodx+a0/wdx/ <ﬂodx>
1—}"0 G G G

2d(aopo—l)/Gwdxzd(aopo—D(/wao dx)/M,

where M = max,¢ ¢o(x). Let z = ™0, then

/ (%, )0 (x) dx > d(1 - ro)(aopo — 1) (/ =0 g, dx) /M.
G G

Since 1/(1 - rp) > 1, from Jensen’s inequality, it follows that

1/(1-rg)
/ 2%, )0 (%) dx > d(1  ro)(@0 po — 1)(po) "/ (/ 20 dx) /M.
G G

That is H'(t) > CoHY1=70)(¢). In view of H(0) > 0, it follows that there exists T < oo such
that lim,_, 7 H(¢) = +00, and hence w(x, ) blows up in finite time. O

Let ¢(x) be the unique positive solution of the following linear elliptic problem:
-Apx)=1, x€B, p(x)=0, x€0dB
and
p =min{po1 = lgllz,,, po2 = @15, }- (2.12)

Lemma 2 If p? > m m, then for the solution (uy,v,) of (2.8), there exists a suf-

ficiently small constant € > 0 such that
epx) Sma(x, 1), ep(x) < wvax,0)

forall (x,t) € Bx [0, T).

Page 6 of 16
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Proof From (H1) and (H2) we see that there exists a sufficiently small constant ¢ > 0 such
that

ep(®) up(x),  ep(x) <vylx), x€B (2.13)
and
1-o op—1 -1
al+m—-p))p>e > > (b(1+n—ql)p) . (2.14)
Let s1(x, t) = e@(x), s2(x, ) = e¢(x), then we have by (2.14)

si =8 (Asy + a(l + m—p)lsallg,,) <51 (e —a(l+ m—p1)e” p) <0,
sy =55 (Asy + b1+ n—q)lsill3,,) <0, x€B0<t<T, (2.15)
six,t) =sy(x,t)=0, x€9B,0<t<T.

Thus it follows from (2.13) and (2.15) that (s;,s;) is a sub-solution of (2.8). Hence,
(@, e9) < (uz,v,) by the comparison principle. d

1 1

a(l+m-p1) b(1+n—q1) and

Lemma 3 The solution (uy,v2) of (2.8) blows up in finite time if p* >
uo, vo satisfy (H1)-(H3).

Proof In view of p? >
that

m m, we can choose a smooth sub-ball B; CC B such

1 1
pr

> )
al+m—-p1) bQ+n-q)
where p; = min{on = [l@11l5, . 212 = ll@1ll5,,,} and @1 (x) > O satisfies
-Api(x) =1, x€By p1(x) =0, x€dB.

On the other hand, there exists a sufficiently small &y > 0 such that

/B p1(x)dx > eoll@nllz 5 / o) dx > gollenllz .- (2.16)
1

By

Let 1 = e ming, ¢, here ¢ is determined by Lemma 2. Then 1 > 0 and
wx,t)>n,  wnxt)>n (@t)eB x(0,7)
by Lemma 2. Therefore, (43,v;) in B; x (0, T) satisfies

ug = uy (Auy +a(l + m—p1)lvallg,,)
> uy (Auy + a(l + m—p1) vl ),
var = Vi (Avy + b1+ n— q)l|uallz,,) = vy (Avy + b(L+ n—q)l|lual3 ) (2.17)

us(x, t) > 1, va(x,t) > 1, (x,t)€dB; x(0,T),

Uy (x,0) = uzo(x) > 1, Va(x,0) =vyo(x) >n, x€B.
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Now, consider the following system:

uzs = us (Auz +a(l+ m—p)|lvslg ), *€B,t>0,
3 =V (Avs +b(L+ n—q)llusly ), x€B,t>0, (2.18)
uz(x,t) = v3(x,£) = 1, x € 3By, t>0,

M3(x10) = V?:(x’ 0) =n, X € Bl-

Similarly, we can show that there exists a nonnegative classical solution (us,vs) of (2.18)
for (x,t) € By x (0,T’), where T” denotes the maximal existence time. The standard com-
parison principle for a parabolic system implies that 7° > T and

us(x, t) > us(x, t), Vo, t) > va(x,t), (x,8) € By x (0, 7). (2.19)

Therefore, it suffices to show that (u3,v3) blows up in finite time, because if so, its upper
bound (u,, v») does exist up to a finite time 7.

Since the initial data (n, n) is a sub-solution of (2.18), the standard super-solution and
sub-solution methods assert that u3; > 0, v3; > 0, which implies that

Auz +a(l+m—p)|vslz =0, Avz +b(1+n—q)lusllz, ., > 0.
Hence us,v3 > 1 for (x,t) € By x [0, T"). Thus, (u3,vs) satisfies

uze = " uh(Auz + a(l+m—py)|vslz ), (%) € By x (0, T), (2.20)

var > 27 V5(Avs + b(L+ n—qi)llusllz, ), (x,t) € By x (0,T")

with the corresponding initial and boundary conditions and 0 < r < min{ry, 5}.

Since ,012 > m m, there exist positive constants /[, [, with 1,/ > 1, and [ such
that
} 1
a(l +m—p1)pr > 1—1 > Yo’
l %__12 Mgl g o0
1 11Bil M1 1 2Bl

pL> l > soa(l+m—p1)lgl ’ pr> / > sob(1+n—q1)lf2 ’

Let
w1(x,t) = ho(x,t), wy(x,2) = ho(x, t),

where w(x, £) is a unique positive solution of (2.11) with

l 11
d:min{nrl_r,nrz_r}, ro=r, ap=—, c:min =5 (" G:Bl'
&o h'ly
From (2.21) and Lemma 1, we know that w(x, £) blows up in finite time T < co. Moreover,
w; > 0, that is, Aw + ag '[Bl wdx > 0, since the initial data is a sub-solution of (2.11). In

addition, from o1, 03 > 1 and Holder’s inequality, we have

m-1 1 g mL
oy o < Bl 7 (Jy 0 )P < (Bl ol

11 o ml (2.22)
Jp, @dx < |Bi| 72 ([ 02 dx)"2 < |Bi| 72 |0l ,,-
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Thus, a series of computations yields

w1t =N ol (Awy +a(l + m _p1)||w2||§§11 “1)

=hdo" (Aw + — fB a)dx) "7 (ho) (Aw +

1+m p1
2wl

< hLdo' (Aw + i|BI| i ||w||B1 m)
1
L (o) (Aw + TGy <o, (2.23)
wy =" wh(Awy + b(1 + 1 — QI)”CUIHBI,M) <0, x€B;,0<t<Ty,

w1 (%, t) =he<mn, wy(x,8) =lhc<n, x€0dB,0<t<Ty,

wi(x,0)=hLc<n, wy(x,0)=lhc<n, x€B.

It follows from (2.20), (2.23) and the comparison principle that (w;, w,) < (u3,v3). Hence
(u3,v3) blows up in finite time, and so does the solution (i3, v;) of (2.8) from (2.19). The
proof now is completed. O

Considering Lemma 3 and (2.10), we directly obtain the results of Theorem 1.

3 Proofs of Theorems 2 and 3
In this section, we assume that the solution (u, v) of (1.1) blows up in finite time 7" and will
prove Theorems 2 and 3. We use ¢ or C to denote the generic constant depending only on
the structural data of the problem, and it may be different even in the same formula.

For the problem (1.1), denote

GO=V2,  BO=

- - ¢ (3.1)
G = 1(s) ds, G = g ds.

() /0 &) (1) /0 &)

Then we have

Lemma 4 Suppose that uy, vy satisfy (H1)-(H3), then we have
}er% Gi(t) = }LH} supg;(t) =oco, i=1,2.

Proof According to the hypotheses, we know that 1(0, £) > u(x, £), v(0,£) > v(x,t), (x,2) €
Bx(0,T). Let

U(t) = maxu(x, t) = u(0,¢), V(¢) = max v(x,¢) = v(0,1). (3.2)
xXEB

xeB

Then, U(¢), V(2) are Lipschitz continuous (see [21]) and VU = Vu(0,t) =0, VV =
Vv(0,t) = 0. Since (ug,Vvp) is radially symmetric and non-increasing in r = |x|, (u,v)
is also a radially symmetric and non-increasing function, i.e., u.(r,t),v,(r,£) < 0 with
r = |x|. Thus, u(x,¢) and v(x,t) always reach their maxima at x = 0, which means that
Au(0,t), Av(0,t) <0 forany 0 <t < T, ie, Afl, AV <0 for any 0 < ¢ < T. Therefore, it
follows from (2.1) and (1.1) that

') <ald” @)@, V() <bVI©z0). (3.3)

Page9of 16
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Integrating (3.3) over (0, ), we obtain

- 071 (0) < aGi(8) + - U1(0),

e ~ e (3.4)
q Vl_ql (t) < ng(t) + q Vl_ql (0)
From lim;_, 1 fl(t) =lime, 1 \N/(t) =ooand 0 < fl(O), V(O) < 00, we get
tll)n} Gi(t) = tll)n} supg;(t) =oco, i=1,2. a

Next, we first give some auxiliary lemmas about the solutions of (2.8), which will be used
in the proofs of theorems. Similar to (3.2), we let

U(t) = maxuy(x,£), V(£) = maxvy(x, £). (3.5)

xeB xeB

By (2.8), we see that U(t) and V() satisfy

U, < a(l + m - py)|B|A UV,
. (3.6)
Vi<bQ+n—-q)|Bl2 VU, aete(0,T).

Let 1 =1—r1 + 09, B2 =1 —ry + 03, then By, B2 > 0. By Young’s inequality, we have
RRT a A Ry
(U +vP), < (Bia(l + m—p1)|BI"™ + fob(1+ n— q1)|Bl72 U™ L V72 P
<cUuh+ vﬁz)%*%.
Integrating the above inequality over (¢, T'), we obtain
bifa
Ul + v >c(r-o- 7, (3.7)

where d = 0105 — (1 —r1)(1 — ;) > 0 by (1.7).

Lemma 5 Suppose that ug, vo satisfy (H1)-(H3) and the solution (uy,v,) of (2.8) blows up
in finite time T. Then, we have

li () = lim G;(t) =00, i=1,2,
firysupg() = iy i) =0,

where
a(®) = vz, &(t) = lluzllz,,
t ¢ (3.8)
Gi(t) = / gi(s)ds, Ga(t) = / &(s)ds.
0 0
Proof Let U(t), V() be as (3.5), then from (2.8), we have
U'(t) <a(l +m—p)U (g (t),
(3.9)

V(@) <b(l+n-q)V"?(t)g(¢), ae.tel0,7).

Page 10 of 16
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Integrating (3.9) over (0, t), we obtain

ﬁul”l(t) <a(l+m-p))Gy(¢) + ﬁul”l (0),

TR V20 < b1+ n—-q)Ga(t) + 1= V' 72(0). 210
- T
Similar to the proofs of Gi(t) and gi(t), we have
hm Gi(t) = hm supgl(t) oo, i=1,2.
O
Lemma 6 Suppose that uy, v satisfy (H1)-(H4). Then, we have
Uy — 8 >0, vy -8V >0, (x,t)€Bx(0,7), (3.11)

here ki = d/ B, ko = d/ .

Proof Set Ji(x,t) = uy; — Sué”l, Jo(x,8) =ty — 6u12<2+1. Then,

lir51311(x, t) >0, lirgB]z(x, t)>0; Ji(x,0)>0,/2(x,0)>0,x € B.
X—> X—>

A series of computations yields Ji; = uoy — §(ky + 1)1412(l Uy and

g = iy (2 + 28u5 Ty + 823 %) + ub ATy + 8(ky + Dkyus' ™" [V |2
+8(ky + l)uzlmAuz +a(l +m—p)owuy |vo]| 717 / A= 1(] + 51/k2+1) dx
B

=uy AJi + (2r18u2 +8(ky + l)u2 Y+ riuy JE + 8(ky + l)kluk1 B Vg 2

+ (18% + (ko + 1)62)14§k1+1 — (ki +Da(l +m - p1)8u21 T vy 1%L

1
+a(l+m - pr)oyuy |7 “1/1/’2”_1]2dx
B

p1+ky

Iy
+a(l+ m = p)orsiy [vall 7 v 12702,

From the condition (1.7), it is easy to calculate that k; + 1 > r1. Then, it entails

e =y Ay = 2r18us i — a(l+ m - py)oyuy v, |7 / A7, dac
B

u1+ky

2 2/(1+1
=18 Uy H1+ko

a(l+m — pr)o18uy [va||7EH v

— (ki + Da(l + m - pp)suy " [[v2 |15

2y 41—
rduy

=a(l +m—py)(ki +1)8uy (a(l +m—p1)(ki +1)

+ ui+ky

0 k
k || o1 123 s — 5! vl ) (3.12)
1+
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By the Holder inequality, for any 0 < 0 < 1, it follows that

kaloy—(o1-11)6]

o1—4 BTy ey e
[Vall7L = [vall S0 vy |07 < [y || (17 IIVzII,me1 VBRI il )

Furthermore, by Young’s inequality, for any ¢ > 0 and 4, > 1 satisfying 1/} + 1/I; = 1, the

following inequality holds:

ki 0] ki 0] )0 (o1-p1)0 broytm )
IVl < ! v 5 o |37 1By )
koloy~(o1-11)0] fyn 1 1 b
< gy ot (e L (L ey, ot ) 7,
A L\e p1+ky

Now, we take

91

L= , )= , |B| oo

- ’
kz o1 kz + 01 kz + 01

ky + o1 / ky + o1 0 = o] 8—(k1+1 k2"1))k2+<71

Therefore, by (3.12) and (3.13), it follows that

Jie =y Ay = 2r18us i — a(l+ m — py)oyuy [[v2 ]| 7 / A7, dac
B
> rd(s - 51)”31(”2 >0,

where

8=

a(l +m - p1)k; |B|“ (/<1+1> +1.

r k2 + 01

(3.13)

We can determine a number §; in the similar way. Let 8o = max{4;, 2}, similar to the

above, one has

Jat =V Do = 2r8V52 s — b1+ 11— q1)oaVi | u || 2272 / by dx > 0.
B

By the comparison principle of Lemma 1 in [20], we have /;,/> > 0. This completes the

proof.

O

Lemma 7 Suppose that uy, v satisfy (H1)-(H4), then there exist positive constants ¢ and

C such that

¢ <max, g Ua(x, £)(T — ik < C,

¢ <max, gva(x, t)(T - )% < C.
Proof 1t follows from (3.11) that
u, > sux+, V,> sVt re(0,T).
Combining with (3.6), we can obtain

Bl v, yheon < PO @) — W 3% .

Uk1+17r1 < d(]‘ +m _pl)
- 8

(3.14)

(3.15)

(3.16)
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The direct computation yields k1 + 1 —r; = 0181/82, ko + 1 — 11 = 0282/ B1. It follows from
(3.16) that

lir} A
ub < (W) o |B|% vh, vE < (m) ” |B|’%U‘31. (3.17)
Therefore, combining (3.17) with (3.7) gives
csUWT -0, c< V(T -t

Integrating (3.15) from ¢ to T, we end the proof. d

Lemma 8 Suppose that uy, v satisfy (H1)-(H4) and Aug, Avy <0, then

=a(l+m-py), b(l+n-aq) (3.18)

SHI-nGO PG
uniformly on compact subsets of B.
Proof Here we consider the first eigenvalue problem
-Ap(x) = M0(x), x€B; ¢(x)=0, xe€0B.

Normalize ¢(x) as ¢(x) > 0 in B and fB ¢(x) dx = 1. Define

z(x,t) = a(l + m — p1)Gy(t) - . —lrl ué x,t), y@) = /z(y Ho(y)d

A series of computations yields

y'(t) /B(u(l +m - p1)g(t) — uy  uze)p(y) dy

. / Aur(3, 06 () dy = i f (3, () dy

B B
:kl(l—rl)ﬁ/B( 1+m—p1)Gi(2) z(yt)1L o(y)dy
sm—rl)ﬁ/]g( L+ m=p)Gi(t) + 2 (,8) T $(3) dy
<C( “1 t)+/( (yt)% (ydy),

where z~ = max{-z, 0}. By (3.10), we know that infz z(x, £) > —C, which means z~(x, ) < C.
Then

y'(t) < CGII'L“ (t)+C. (3.19)

Integrating (3.19) from O to ¢ yields

y(t) < C<1+ /th%”(s)ds)
0
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That is

/|z(y,t)|¢(y)dy§ C<1+/thlrl(s)ds). (3.20)
B 0

Denote B, = {y € B: ¢ < |y| < R}. Since —Az < 0, using Lemma 4.5 in [4], we obtain

C e
supz(x, t) < W (1 + /0 G11 L(s) ds). (3.21)

Bo

It follows from (3.21) and (3.10) that

1

u;rl - CQ+ fot Gl171 (s)ds)
(1-r)Gi(t) ~ Gi(t)

<a(l+m-py) - (3.22)

C
Gi(2)
for any x € B,. On the other hand, we know from (3.10), (3.14) and Aug, Avy < 0 that

(A-r)(A-rg+0q

c< (-G <.

Therefore,

l-ro+o1 ﬁ
c<(T-t)y 4 G1 e <C,
(A-ry)(A-ry+oq

c<(T-p Y7 g @ <c.

Noting that

l-r+0 (Q-rn)Q-ry+o0oy)
+

p < p 1 < 1-rn<oloy-n).
Then
o o
G—rl d -r
lig G @ G@
t—>T Gi(t) =T Gi(t)
Thus
1-r
LUy (1)
lim —2—""— = a(l +m—py).
i oG~ AArm e
Similarly,
v;_rz(x,t)
=b(l+n-aq). |

lim —————
T (1= 15)Ga (0

Proof of Theorem 2 According to u; < ul*"71, it follows from (2.9), (3.1), (3.8) and (3.18)
that

1-p1 iy ¢ 1
lim inf % (x,2) LUy (x2)

—————— >1lim =a (3.23)
=T (1-p)Gi(t) ~ =T (1-m)Gi(t) 1+ m—p;
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On the other hand, from (3.4), we estimate

. ()
fim sup —— " <a. (3.24)
=T (1-p1)Gi(2)

Combining (3.23) with (3.24), we obtain

wP1(x, t)

lim ———— =
t=>T (1 - p1)Gi(2)
Similarly,

Vi1 (x, £)

lim ———— =
=T (1 - q1)Ga(¢)
This completes the proof of the theorem. d
Proof of Theorem 3 By Theorem 2, we have that,as t — T,
~, 1) 22~ P
Gy () = VI, ~ |BIE (b1 - q1)) =0 G, ™ (),
/ 2 P
Gy(t) = lll g, ~ 1BI% (a(1 = p1)) =71 G, (2),

where the notation u ~ v means that lim,_, 7 u(¢)/v(¢) = 1. Hence, we obtain

dGl _2 ~= 7 ~ 1{72
Freai aa (a0 -p))” v (b0 -q))™ G, G2 "
2
A series of computations yields
Ba(-p1)
~ N |B\91(1*1’1)d’i7_ a P1 )1-q1) £ pr2(-p1) _Ba(l-py)
Gi(t)~ ety ) Gnn) @ (T-807 7,
B1(-q1)
~ 1B|P2(-a1) g~ T A-p1)(1-q1) B2 72(-q1) _A-q1)
GZ(t) b(1-q1)(A+n—q1) (b l+n q1) ) a (a(1+m—p1)) ? (T_ t) 4 .
Combining with Lemma 7, we obtain the results of Theorem 3 immediately. O

4 Discussions

The results in this paper show the interactions among the multi-nonlinearities in the
reaction-diffusion system (1.1). Roughly speaking, either large exponents m, n, large cou-
pling exponents p,, g, or large constants a, b benefit from the occurrence of the finite
blow-up. For example, to make a finite blow-up to the problem (1.1), for fixed m, p1, p2,
a1 and n, q1, g2, 2, constants a and b should be properly large such that the following

inequality

1 1
p* >

al+m-p1) bQ+n-q)

holds.
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