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Abstract
A powerful technique based on the sinc-Galerkin method is presented for obtaining
numerical solutions of second-order nonlinear Dirichlet-type boundary value
problems (BVPs). The method is based on approximating functions and their
derivatives by using the Whittaker cardinal function. Without any numerical
integration, the differential equation is reduced to a system of algebraic equations via
new accurate explicit approximations of the inner products; therefore, the evaluation
is based on solving a matrix system. The solution is obtained by constructing the
nonlinear (or linear) matrix system using Maple and the accuracy is compared with
the Newton method. The main aspect of the technique presented here is that the
obtained solution is valid for various boundary conditions in both linear and
nonlinear equations and it is not affected by any singularities that can occur in
variable coefficients or a nonlinear part of the equation. This is a powerful side of the
method when being compared to other models.

Keywords: Maple; sinc-Galerkin approximation; sinc basis function; nonlinear matrix
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1 Introduction
We present here the sinc-Galerkin approximation technique usingMaple to solve systems
of nonlinear BVPs such as

P(x)y′′ +Q(x)y′ + R(x)NL(y) = F(x),

y(a) = , y(b) = ,
(.)

where NL is the nonlinear part of Eq. (.) which can take any form of nonlinearity, and
we investigate the approximate solution on some closed interval [a,b] in R.
We start by casting a given linear or nonlinear BVP into a sinc-Galerkin form accurate

to the order O(N /e–(πdαN)/ ) []. This discretization yields a set of linear or nonlinear
algebraic equations that include all unknown coefficients. These equations are expressed
in a nonlinear or linear matrix form depending on (.). If the equation is linear, the LU
decomposition method can be used to find unknown coefficients. However, if it is not
linear, the coefficients can be found by the Newton interpolation method for nonlinear
equation systems by using Maple. The methodology is illustrated on nonlinear ordinary
differential equations with Dirichlet-type boundaries. Once the solution is obtained, we
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compare its accuracy with the Newton method as a graphical and numerical simulation
by using Maple.
We start with some literature on the sinc-Galerkin methods. The sinc methods were

introduced in [] and expanded in [] by Frank Stenger. Sinc functions were first analyzed
in [] and []. An extensive research of sinc methods for two-point boundary value prob-
lems can be found in [, ]. In [, ] parabolic and hyperbolic problems are discussed in
detail. Some kind of singular elliptic problems are solved in [], and the symmetric sinc-
Galerkin method is introduced in []. The sinc domain decomposition is presented in
[–]. Also, iterative methods for symmetric sinc-Galerkin systems are given in [–
]. Sinc methods are studied thoroughly in []. Applications of sinc methods can also
be found in [–]. The article [] summarizes the results that are obtained by sinc
numerical methods of computation. In [] a numerical solution of the Volterra integro-
differential equation by means of the sinc collocation method is considered. The paper []
illustrates the application of a sinc-Galerkin method to the approximate solution of linear
and nonlinear second-order ordinary differential equations and to the approximate solu-
tion of some linear elliptic and parabolic partial differential equations in the plane. The
fully sinc-Galerkin method is developed for a family of complex-valued partial differential
equations with time-dependent boundary conditions []. In [] some novel procedures
of using sinc methods to compute the solutions of three types of medical problems are
illustrated. In [], the sinc-based algorithm is used to solve a nonlinear set of partial dif-
ferential equations. A new sinc-Galerkin method is developed for approximating the so-
lution of convection diffusion equations with mixed boundary conditions on half-infinite
intervals in []. The work which is presented in [] deals with the sinc-Galerkinmethod
for solving nonlinear fourth-order differential equations with homogeneous and nonho-
mogeneous boundary conditions. In [], the sincmethods are used to solve second-order
ordinary differential equations with homogeneousDirichlet-type boundary conditions. In
the paper given in [], the sinc-Galerkin method is applied to solving Troesch’s problem.
The properties of the sinc procedure are utilized to reduce the computation of Troesch’s
equation to nonlinear equations with unknown coefficients.

2 Sinc basis functions
Let C denote the set of all complex numbers, and for all z ∈ C define the sine cardinal or
sinc function by

sin c(z) =

⎧⎨
⎩

sin(πz)
πz , y �= ,

, y = .
(.)

For h > , the translated sinc function with evenly spaced nodes is given by

sin c(k,h)(z) =

⎧⎨
⎩

sin(π z–kh
h )

π z–kh
h

, z �= kh,

, z = kh.
(.)

For various values of k, the sinc basis function S(k,π/)(x) on the whole real line, –∞ <
x < ∞, is illustrated in Figure . For various values of h, the central function S(,h)(x) is
illustrated in Figure .
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Figure 1 The basis functions S(k,h)(x) for k = –1,0, 1 with h = π /4.

Figure 2 Central sinc basis function S(0,h)(x) for h = π /2,π /4,π /8.
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Figure 3 The relationship between the eye-shaped domain DE and the infinite strip DS .

If a function f (x) is defined over the real line, then for h >  the series

C(f ,h)(x) =
∞∑

k=–∞
f (kh) sin c

(
x – kh
h

)
(.)

is called theWhittaker cardinal expansion of f whenever this series converges. The infinite
strip Ds of the complex w plane, where d > , is given by

Ds≡
{
w = u + iv : |v| < d ≤ π



}
. (.)

In general, approximations can be constructed for infinite, semi-infinite, and finite inter-
vals. Define the function

w = φ(z) = ln

(
z

 – z

)
(.)

which is a conformal mapping from DE , the eye-shaped domain in the z-plane, onto the
infinite strip DS , where

DE = z =
{
x + iy :

∣∣∣∣arg
(

z
 – z

)∣∣∣∣ < d ≤ π



}
. (.)

This is shown in Figure .
For the sinc-Galerkinmethod, the basis functions are derived from the composite trans-

lated sinc functions:

Sh(z) = S(k,h)(z) = sin c
(

φ(z) – kh
h

)
(.)

for z ∈DE . These are shown in Figure  for real values of x. The function z = φ–(w) = ew
+ew

is an inverse mapping of w = φ(z). We may define the range of φ– on the real line as

� =
{
φ–(u) ∈ DE : –∞ < u < ∞}

. (.)

http://www.boundaryvalueproblems.com/content/2012/1/117
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Figure 4 Three adjacent members S(k,h) ◦ φ(x) when k = –1,0, 1 and h = π
8 of the mapped sinc basis

on the interval (0, 1).

For the evenly spaced nodes {kh}∞k=–∞ on the real line, the image which corresponds to
these nodes is denoted by

xk = φ–(kh) =
ekh

 + ekh
. (.)

A list of conformal mappings may be found in Table . [].

Definition . LetDE be a simply connected domain in the complex plane C, and let ∂DE

denote the boundary of DE . Let a, b be points on ∂DE and φ be a conformal map DE onto
DS such that φ(a) = –∞ and φ(b) = –∞. If the inverse map of φ is denoted by ϕ, define

� =
{
φ–(u) ∈ DE : –∞ < u < ∞}

(.)

and zk = ϕ(kh), k = ∓,∓, . . . .

We can use Table  to choose convenient conformal map according to boundary condi-
tions.

Definition . Let B(DE) be the class of functions F that are analytic in DE and satisfy

∫
ψ(L+u)

∣∣F(z)∣∣dz → , as u = ∓∞, (.)

http://www.boundaryvalueproblems.com/content/2012/1/117
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Table 1 Conformal mappings and nodes for several subintervals of R

(a,b) φ(z) zk

a b ln( z–ab–z )
a+bekh

1+ekh

0 1 ln( z
1–z )

ekh

1+ekh

0 ∞ ln(z) ekh

0 ∞ ln(sinh(z)) ln(ekh +
√
e2kh + 1)

–∞ ∞ z kh
–∞ ∞ sinh–1(z) kh

where

L =
{
iy : |y| < d ≤ π



}
(.)

and on the boundary of DE it satisfies

T(F) =
∫

∂DE

∣∣F(z)dz∣∣ <∞. (.)

The proof of following theorems can be found in [].

Theorem . Let � be (, ), F ∈ B(DE), then for h >  sufficiently small,

∫
�

F(z)dz – h
∞∑

j=–∞

F(zj)
φ′(zj)

=
i


∫
∂D

F(z)k(φ,h)(z)
sin(πφ(z)/h)

dz ≡ IF , (.)

where

∣∣k(φ,h)∣∣z∈∂D =
∣∣e[ iπφ(z)

h sgn(Imφ(z))]∣∣
z∈∂D = e

–πd
h . (.)

For the sinc-Galerkin method, the infinite quadrature rule must be truncated to a finite
sum. The following theorem indicates the conditions under which an exponential conver-
gence results.

Theorem . If there exist positive constants α, β and C such that

∣∣∣∣ F(x)φ′(x)

∣∣∣∣≤ C

⎧⎨
⎩
e–α|φ(x)|, x ∈ ψ((–∞,∞)),

e–β|φ(x)|, x ∈ ψ((,∞)),
(.)

then the error bound for the quadrature rule (.) is given by

∣∣∣∣∣
∫

�

F(x)dx – h
N∑

j=–N

F(xj)
φ′(xj)

∣∣∣∣∣≤ C
(
e–αNh

α
+
e–βNh

β

)
+ |IF |. (.)

The infinite sum in (.) is truncated with the use of (.) to arrive at (.).
Making the selections

h =
√

πd
αN

, (.)

http://www.boundaryvalueproblems.com/content/2012/1/117
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N ≡
�

αN
β

+ 
�
, (.)

where �·� is an integer part of the statement and N is the integer value which specifies the
grid size, then

∫
�

F(x)dx = h
N∑

j=–N

F(xj)
φ′(xj)

+O
(
e–(πα dN)/). (.)

We used Theorems . and . to approximate the integrals that arise in the formulation
of the discrete systems corresponding to the second-order boundary value problem.

Theorem . Let φ be a conformal one-to-one map of the simply connected domain DE

onto DS . Then

δ
()
jk =

[
S(j,h) ◦ φ(x)

]∣∣
x=xk

=

⎧⎨
⎩
, k = j,

, k �= j,
(.)

δ
()
jk = h

d
dφ

[
S(j,h) ◦ φ(x)

]∣∣∣∣
x=xk

=

⎧⎨
⎩
, k = j,
(–)k–j
(k–j) , k �= j,

(.)

δ
()
jk = h

d

dφ

[
S(j,h) ◦ φ(x)

]∣∣∣∣
x=xk

=

⎧⎨
⎩

–π

 , k = j,
–(–)k–j
(k–j) , k �= j.

(.)

3 Convergence analysis
Consider the following problem:

P(x)y′′ +Q(x)y′ + R(x)NL(y) = F(x) (.)

with Dirichlet-type boundary condition

y(a) = , y(b) = , (.)

where P, Q, R, and F are analytic on D. We consider sinc approximation by the formula

y(x) ≈ yN (x) =
N∑

k=–N

ckS(k,h) ◦ φ(x), (.)

S(k,h) =
sin[π

h (x – kh)]
π
h (x – kh)

. (.)

The unknown coefficients ck in Eq. (.) are determined by orthogonalizing the residual
with respect to the sinc basis functions. The Galerkin method enables us to determine the
ck coefficients by solving the nonlinear system of equations

〈
NLyN – F ,S(k,h) ◦ φ(x)

〉
= , k = –N , –N + , . . . ,N – ,N . (.)

http://www.boundaryvalueproblems.com/content/2012/1/117
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Let f and f be analytic functions on D. The inner product in (.) is defined as follows:

〈f, f〉 =
∫

�

w(x)f(x)f(x)dx, (.)

where w is the weight function. For the second-order problems, it is convenient to take []

w(x) =


φ′(x)
. (.)

For Eq. (.), we use the notations (.)-(.) together with the inner product given in
(.) [] to get the following approximation formulas:

〈
F(x),S(k,h) ◦ φ(x)

〉
=
∫

�

w(x)F(x)S(k,h) ◦ φ(x)dx ∼= hwkFk
φ′
k

, (.)

〈
R(x)NL

(
y(x)

)
,S(k,h) ◦ φ(x)

〉
=
∫

�

w(x)R(x)NL
(
y(x)

)
S(k,h) ◦ φ(x)dx

∼= h
(
wkRk

φ′
k

)
NL(ck), (.)

〈
Q(x)y′(x),S(k,h) ◦ φ(x)

〉
=
∫

�

w(x)Q(x)y′(x)S(k,h) ◦ φ(x)dx∼= h
(
wkQk

φ′
k

)
c′k

∼= –h
N∑

j=–N

cj
[ (Qw)′j

φ′
j

δ
()
kj + (Qw)j

δ
()
kj

h

]
, (.)

〈
P(x)y′′(x),S(k,h) ◦ φ(x)

〉

=
∫

�

w(x)P(x)y′′(x)S(k,h) ◦ φ(x)dx∼= h
(
wkPk

φ′
k

)
c′′k

∼= –h
N∑

j=–N

cj
[ (Pw)′′j

φ′
j

δ
()
kj +

(
(Pw)′j +

(Pw)jφ′′
j

φ′
j

)
δ
()
kj

h
+ (Pw)jφ′

j
δ
()
kj

h

]
, (.)

where wk = w(xk) etc. The choices h = (πd/αN)/ and w(x) = /φ′(x) yield O(N / ×
e–(πdαN)/ ) [] accuracy for each of the approximations in (.)-(.).
Using (.), (.)-(.), we obtain a nonlinear systemof equations for N + numbers ck .
The nonlinear system with N +  unknowns given in (.) can be expressed by means

of matrices. Let m = N +  and let Sm, cm, NL(cm) be column vectors defined by

Sm(x) =

⎛
⎜⎜⎜⎜⎝

S–N
S–N+

...
SN

⎞
⎟⎟⎟⎟⎠ , cm =

⎛
⎜⎜⎜⎜⎝

c–N
c–N+
...
cN

⎞
⎟⎟⎟⎟⎠ , NL(cm) =

⎛
⎜⎜⎜⎜⎝

NL(c–N )
NL(c–N+)

...
NL(cN )

⎞
⎟⎟⎟⎟⎠ . (.)

http://www.boundaryvalueproblems.com/content/2012/1/117
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Let Am(y) denote a diagonal matrix whose diagonal elements are y(x–N ), y(x–N+), . . . ,
y(xN ) and non-diagonal elements are zero, and also let I()m , I()m and I()m denote thematrices

I()m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

   . . . 
   . . . 
   . . . 
...

...
...

. . .
...

   . . . 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
[
δ
()
jk

]
, (.)

I()m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

 – 
 . . . 

N
  – . . . – 

N–
– 

   . . . 
N–

...
...

...
. . .

...
– 

N


N–


N– . . . 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
[
δ
()
jk

]
, (.)

I()m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

–π



 – 

 . . . – 
(N)


 –π



 . . . 

(N–)

– 



 –π

 . . . – 
(N–)

...
...

...
. . .

...
– 

(N)


(N–) – 
(N–) . . . –π



⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
[
δ
()
jk

]
. (.)

With these notations, the discrete system in (.) takes the form:

〈
NLyN – F ,Sm(k,h) ◦ φ(x)

〉

= h
[
I()m Am

(
(Pw)′′

φ′

)
+

h
I()m Am

(
(Pw)′ + (Pw)φ′′/φ′′) + 

h
I()m Am

(
(Pw)φ′)]cm

– h
[
I()m Am

(
(Qw)′′

φ′

)
+

h
I()m Am(Qw)

]
cm

+ h
[
I()m Am

(
Rw
φ′

)]
NL(cm)

– hAm
Fw
φ′ . (.)

Theorem . Let c, NL(c) be an m-vector whose jth component is cj and NL(cj) then the
system (.) yields the following matrix system whose dimensions are (N + )× (N + ):

� · c +� ·NL(c) = Am
Fw
φ′ . (.)

Now we have a nonlinear system with (N + ) equations in the (N + ) unknown coeffi-
cients. If we solve (.) with the Newton method (for nonlinear equation systems) by using
Maple, we can obtain cj coefficients for the approximate sinc-Galerkin solution

y(x) ≈ yN (x) =
N∑

k=–N

ckS(k,h) ◦ φ(x). (.)

http://www.boundaryvalueproblems.com/content/2012/1/117
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4 Examples
In this section, three examples are given to illustrate the performance of the sinc-Galerkin
method by solving nonlinear Dirichlet-type boundary value problems. Each of these prob-
lems have been chosen to simulate how the solutions change in different zero boundary
intervals. In the following examples, the discrete sinc system defined by (.) is used to
compute the coefficients cj; j = –N , . . . ,N . The computations are done by the algorithm
which we developed for sinc-Galerkin method by using Maple. The algorithm automati-
cally compares the sinc-method to theNewtonmethod. The following examples show that
the sinc-Galerkinmethod is a very efficient and powerful tool for nonlinear Dirichlet-type
boundary value problems.

Example . Consider the following nonlinear Dirichlet-type boundary value problem
on the interval [–, ]:

d

dx
y(x) + 

d
dx

y(x) + xy(x) sin
(
y(x)

)
= –ex tan

(
x
)
+ x,

y(–) = , y() = .
(.)

We choose the weight function according to [], φ(x) = ln( x+–x ), w(x) =


φ′(x) and by taking
d = π/, h = √

N , xk =
–+ekh
+ekh for N = ,, , , the solutions presented in Figure  and

Table .

Figure 5 The red-colored curve displays the Newton solution and the green one is an approximate
solution of Eq. (4.1).

Table 2 The numerical results for the approximate solutions obtained by sinc-Galerkin in
comparison with the Newton solutions of Eq. (4.1) for N = 48

x Newton Solution Sinc-Galerkin Relative Error

–0.79 –0.04367296498889709080 –0.04367277695575780 1.88033138931166478E–7
–0.59 –0.03819740808174877660 –0.03819740640312920 1.67861962497104996E–9
–0.39 –0.02633354081076150210 –0.02633360882474840 6.80139867594367620E–8
–0.19 –0.01804242984461256610 –0.01804252401568270 9.41710703577436960E–8
0.01 –0.01405035691404465420 –0.01405046008732300 1.03173278485183830E–7
0.21 –0.01240001647814625340 –0.01240012227610340 1.05797957363189950E–7
0.41 –0.01037407556626012560 –0.01037418276112410 1.07194863974841016E–7
0.61 –0.00547925725715721866 –0.00547936685525044 1.09598093266566966E–7
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Figure 6 The red-colored curve displays the Newton solution and the green one is an approximate
solution of Eq. (4.2).

Table 3 The numerical results for the approximate solutions obtained by sinc-Galerkin in
comparison with the exact solutions of Eq. (4.2) for N = 32

x Newton Solution Sinc-Galerkin Relative Error

–0.79 –0.0279198537590887030 –0.0279190996665941 7.54092494600466520E–7
–0.59 –0.0611657628394463374 –0.0611664872171184 7.24377672134392476E–7
–0.39 –0.0973239208356010965 –0.0973261954947172 2.27465911560142520E–6
–0.19 –0.1238852239083363670 –0.1238891553354690 3.93142713083890409E–6
0.01 –0.1237120026631739060 –0.1237176238268980 5.62116372328485409E–6
0.21 –0.0847168119395961262 –0.0847241308368652 7.31889726906482055E–6
0.41 –0.0126466852046787422 –0.0126555978765954 8.91267191663590533E–6
0.61 0.0601106492319938846 0.0601002769211166 1.03723108773924407E–5

Example . Let us have the following form of nonlinear Dirichlet-type boundary value
problem on the interval [–, ]:

e–x
d

dx
y(x) + x

d
dx

y(x) + xe–y(x) = cos(πx),

y(–) = , y() = ,
(.)

where φ(x) = ln( x+–x ), w(x) =


φ′(x) and by taking d = π/, h = √
N , xk = –+ekh

+ekh for N =
,, ,  we get the solutions presented in Figure  and Table .

Example . In this case, we take the problem to be given on the interval [, ]

d

dx
y(x) +

d
dx

y(x) –
e– sin(y(x))(y(x))

 + y(x)
= cos

(
πx

)
x,

y() = , y() = ,
(.)

where we chose φ(x) = ln( x––x ), w(x) =


φ′(x) and by taking d = π/, h = √
N , xk = +ekh

+ekh for
N = , , ,  we get the results presented in Figure  and Table .

5 Discussion
A new efficient computer application of sinc-Galerkin method has been presented for
nonlinear BVPs. The main advantage of our technique compared to other methods (e.g.,
Newton’s method) is that the solution is independent of the singularity conditions and
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Figure 7 The red-colored curve displays the Newton solution and the green one is an approximate
solution of Eq. (4.3).

Table 4 The numerical results for the approximate solutions obtained by sinc-Galerkin in
comparison with the Newton solutions of Eq. (4.3) for N = 48

x Newton Solution Sinc-Galerkin Relative Error

4.01 0.0000819807184737612502 0.0000855970440948756 3.616325621114482100E–6
4.11 0.0103179812858067658000 0.0103251970537185000 7.215767911801503840E–6
4.21 –0.0011116378549017658700 –0.0011221143338274400 1.047647892566533000E–5
4.31 0.0030747524654397085400 0.0030712556170523700 3.496848387328578060E–6
4.41 0.0010377464582858838400 0.0010372904397433000 4.560185426059223020E–7
4.51 –0.0034415082789204937200 –0.0034511540521152400 9.645773194724025980E–6
4.61 0.0018479414405554888800 0.0018722669507933500 2.432551023786393470E–5
4.71 –0.0072577349999568422200 –0.0072485697536300800 9.165246326795330540E–6
4.81 0.0010544514520660040800 0.0010554094005589100 9.579484929011514780E–7
4.91 –0.0092573478518260567200 –0.0092581760507376400 8.281989115607653900E–7

valid for Dirichlet-type boundary conditions. The order of accuracy used in this paper is
O(N /e–(πdαN)/ ). We have used different N node points for all figures presented in this
paper. Even though the numerical solution looks complex for even N >  node points,
Maple handles it very well. In the Appendix, a useful Maple program is given to explain
the technique and to show how the same solution can be used for different boundary con-
ditions. By using the same program, substituting N and other parameters (like equations,
boundaries), different solutions and graphics can be produced. The total time taken on
a . GHz Pentium I processor with  Core and  GB RAM for producing figures and
numerical results is less than  seconds.

6 Conclusion
In this study, the sinc-Galerkinmethod has been employed to find the solutions of second-
order nonlinear Dirichlet-type boundary value problems on some closed real interval and
the method has been compared to the Newton method. Our main purpose is to find the
solution of boundary value problemswhich arise from the singular problems for which the
Newton method does not converge at singular points. The powerful side of our method
is that it can easily compute solutions even if the equation has singularities. The Newton
method can fail when computing some complicated forms of governing equations; on the
other hand, ourmethod can easily handle this situation. The examples show that the accu-
racy improves by increasing the number of sinc grid pointsN . Themethod presented here
is simple and gives a numerical solution, which is valid for various boundary conditions.
We have developed a very efficient algorithm to solve second-order nonlinear Dirichlet-
type boundary value problems with sinc-Galerkin method in Maple Computer Algebra

http://www.boundaryvalueproblems.com/content/2012/1/117
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System. Several nonlinear BVPs have been solved by using our technique in less than 
seconds. All computations and graphical representations have been prepared automati-
cally by our algorithm.

Appendix: A computer application of numeric solutions for nonlinear
boundary value problems (NBVPs)
We demonstrate below how to solve and simulate for a nonlinear BVP. For example, the
following Maple code computes and simulates Example ..
Set all parameters as default values

> restart:
For drawing approximation graphics, we must type the following line
> with(plots):
A user has to specify with (linalg) for linear algebra operations in Maple
> with(linalg):
A user can define the grid point size N for sinc-Galerkin approximation
> N:=:
The boundary conditions are given as Eq. (.).
> a:=:
> b:=:
> Boundaries:=y(a)=,y(b)=;

Boundaries := y(a) = , y(b) = .

P, Q and R are the variable coefficients of Eq. (.). In Maple for Eq. (.) they are defined
as follows:
> P(x):=;

P(x) := .

> Q(x):=;

Q(x) := .

> R(x):=;

R(x) := .

F is right side of Eq. (.)
> F(x):=cos(Pi*x^)*x;

F(x) := cos
(
πx

)
x.

We can write a nonlinear part of Eq. (.) as follows. User can define any form of nonlin-
earity in this section.

http://www.boundaryvalueproblems.com/content/2012/1/117
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> NLPart:=-exp(-sin(y(x)))*y(x)^/(+y(x));

NL
(
y(x)

)
=NLPart := –

e– sin(y(x))(y(x))

 + y(x)
.

The main form of Eq. (.)
> Equation:=P(x)*diff(y(x),x$)+Q(x)*diff(y(x),x$)+R(x)*NLPart=F(x);

d

dx
y(x) +

d
dx

y(x) –
e– sin(y(x))(y(x))

 + y(x)
= cos

(
πx

)
x.

If the user needs, the main equation can be written in the latex format
> latex(Equation);

{\frac {d^{}}{d{x}^{}}}y \left( x \right) +{\frac {d}{dx}}y \left( x
\right) -{\frac {{{\rm e}^{-\sin \left( y \left( x \right) \right) }
} \left( y \left( x \right) \right) ^{}}{+y \left( x \right) }}=

\cos \left( \pi \,{x}^{} \right) x
In order to compare our method with the Newton interpolation (for nonlinear ODE)
method, we first solve Eq. (.) numerically as follows:
> NewtonSolution:=dsolve({Equation,Boundaries},y(x),

type=numeric,method=bvp);
Prepare the plot of the Newton solution
> PlotNewtonSolution:=odeplot(NewtonSolution,a....b):
To define I()m = [δ()jk ], I()m = [δ()jk ] and I()m = [δ()jk ] matrices given in Eqs. (.)-(.), we use
piecewise functions in Maple in the following way:
> delta[]:=unapply(piecewise(j=k,,j<>k,),j,k):
> delta[]:=unapply(piecewise(j=k,,j<>k,((-)^(k-j))/(k-j)),j,k):
> delta[]:=unapply(piecewise(j=k,(-Pi^)/,j<>k,-*(-)^(k-j)/(k-j)^),j,k):
The parameters for sinc-approximation given []
> d:=Pi/:
> h:=/sqrt(N):
The evenly spaced nodes given (.) and Table  are defined as follows:
> xk:=unapply((a+b*exp(k*h))/(+exp(k*h)),k);

xk := k �→  + ekh

 + ekh
.

The conformal map in Table  for sinc-Galerkin method and its derivatives is computed
as follows:
> phi:=unapply(log((x-a)/(b-x)),x);

φ(x) := x �→ ln

(
x – 
 – x

)
.

> Dphi:=unapply(simplify(diff(phi(x),x)),x):
> Dphi:=unapply(simplify(diff(phi(x),x$)),x):
The weight function and its derivatives are computed for using an inner product to dis-
cretization Eq. (.)
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> w:=unapply(/Dphi(x),x):
> Dw:=unapply(simplify(diff(w(x),x$)),x):
> Dw:=unapply(simplify(diff(w(x),x$)),x):
By using sinc-discretization in (.), the matrix system with (N + )× (N + ) dimen-
sions defined in (.) is obtained by the following iteration:
>MatrixSystem:=[]:

for p from -N to N
do
MatrixSystem:=[op(sys),
h*(
sum(c[j]*( (/h^)*delta[](p,j)*(

Dphi(xk(j))*subs(x=xk(j),P(x)*w(x)))+ (/h^)*delta[](p,j)*(
(Dphi(xk(j))/Dphi(xk(j)))*subs(x=xk(j),P(x)*w(x))+*subs(x=xk(j),
diff(P(x)*w(x),x))) + (/h^)*delta[](p,j)*((subs(x=xk(j),
diff(P(x)*w(x),x$))/Dphi(xk(j))))),j=-N..N)

-sum(c[j]*( (/h^)*delta[](p,j)*(subs(x=xk(j),Q(x)*w(x)))+
(/h^)*delta[](p,j)*(subs(x=xk(j),diff(Q(x)*w(x),x))) /Dphi(xk(j))
),j=-N..N)

+subs(y(x)=c[p],NLPart)*subs(x=xk(p),w(x)*R(x))/Dphi(xk(p))
-subs(x=xk(p),w(x)*F(x))/Dphi(xk(p)))=]:

od:
If we want to obtain solutions of linear BVPs, we can use the following lines. They can
reduce time complexity. Here, the linear solution is given as a comment (“#”).
> #for Linear system
> #vars:=seq(c[i],i=-N..N):
> #A,b:=LinearAlgebra[GenerateMatrix](evalf(MatrixSystem),[vars]):
> #c:=linsolve(A,b);
In this paper, we want to solve nonlinear problems. Then we use fsolve function given by
Maple to find unknown cj coefficients (.)-(.) from nonlinear matrix systems. This
function can solve any nonlinear systems by using the Newton method (for nonlinear
equation systems).
> c:=fsolve(evalf(MatrixSystem)):
Finally, we have unknown cj coefficients for the approximate sinc-Galerkin solution (.)
>ApproximateSol:=unapply(sum(’rhs’(c[j+N+])*sin(Pi*(phi(x)-j*h)/h)/(Pi*(phi(x)-

j*h)/h),j=-N..N),x):
We define plot of Eq. (.) obtained by the sinc-Galerkin solution
> Sinc-GalerkinPlot:=plot({ApproximateSol(x)},x=a..b,color=green,thickness=):
Simulation: Figure , Figure , and Figure  are obtained as
> display({Sinc-GalerkinPlot, PlotNewtonSolution }, title =

"Sinc-GalerkinApproximation",
labels=["x","y"]);

Enter the number of digits here
> Digits := :
Tables , , and  are obtained by the following code:
> Exact:=[]:Apprx:=[]:Err:=[]:XPoint:=[]:
> for s from a+. by . to b-.
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do
XPoints:=[op(XPoints),s]:
NewtonOutputArray:=[op(Exact),rhs(NewtonSolution (s)[])]:
ApprxmOutputArray:=[op(Apprx),evalf(ApproximateSol(s))]:
ErrOutputArray:=[op(Err),evalf(abs(ApproximateSol(s)-
rhs(NewtonSolution(s)[])))]:

od:
> latex(XPoints);

[., ., ., ., ., ., ., ., ., .]

> latex(NewtonOutputArray);
[., .,–., .,

.,–., .,–.,

.,–.]

> latex(ApprxmOutputArray);
[., .,–., .,

.,–., .,–.,

.,–.]

> latex(ErrOutputArray);
[., ., .,

., ., .,

., ., .,

.]
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Davutpasa, İstanbul, 34210, Turkey. 2Department of Mathematics, Faculty of Art and Sciences, Yildiz Technical University,
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