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Abstract
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differential equations with integral boundary conditions. We also obtain some
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1 Introduction
In this article, we consider the existence of a positive solution for the following singular
semipositone fractional differential equations:

Dg u(t)+f(tu()=0, 0<t<l, O
u(0) = u/(0) = u”(0) = 0, u(l) = Afon u(s) ds,

where f € C[(0,1) x [0, +00),(—00,+00)],3 < <4,0<n <1,0< % <1, D§, is the stan-
dard Riemann-Liouville derivative, f(¢, ) may be singular at £ = 0 and/or ¢ = 1. Since the
nonlinearity f(¢,x) may change sign, the problem studied in this paper is called the semi-
positone problem in the literature which arises naturally in chemical reactor theory. Up
to now, much attention has been attached to the existence of positive solutions for semi-
positone differential equations and the system of differential equations; see [1-11] and
references therein to name a few.

Boundary value problems with integral boundary conditions for ordinary differential
equations arise in different fields of applied mathematics and physics such as heat con-
duction, chemical engineering, underground water flow, thermo-elasticity, and plasma
physics. Moreover, boundary value problems with integral conditions constitute a very
interesting and important class of problems. They include two-point, three-point, multi-
point, and nonlocal boundary value problems as special cases, which have received much
attention from many authors. For boundary value problems with integral boundary con-
ditions and comments on their importance, we refer the reader to the papers by Gallardo
[12], Karakostas and Tsamatos [13], Lomtatidze and Malaguti [14], and the references
therein.
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On the other hand, fractional differential equations have been of great interest for many
researchers recently. This is caused both by the intensive development of the theory of
fractional calculus itself and by the applications of such constructions in various fields of
science and engineering such as control, porous media, electromagnetic, and other fields.
For an extensive collection of such results, we refer the readers to the monographs by
Samko et al. [15], Podlubny [16] and Kilbas et al. [17]. For the case where « is an integer, a
lot of work has been done dealing with local and nonlocal boundary value problems. For
example, in [18] Webb studied the nth-order nonlocal BVP

u () +a(t)f(t,u(t)) =0, 0<t<l,
u(0) =/ (0) = --- = u"2(0) = 0, u() = [, u(s)dA(s),

where a(t) can have singularities, and the nonlinearity f satisfies Carathéodory conditions.
Under weak assumptions, Webb obtained sharp results on the existence of positive solu-
tions under a suitable condition on f. In [19] Hao ef al. consider the nth-order singular
nonlocal BVP

u(t) + ra(t)f (t,u(t)) =0, 0<t<l,
uw(0) =/ (0) =+ =u"2(0) =0, u(l) = f01 u(s) dA(s),

where A > 0 is a parameter, 2 may be singular at £ = 0 and/or ¢ = 1, f(¢,x) may also have
singularity at x = 0.

In two recent papers [20] and [21], by means of the fixed point theory and fixed point in-
dex theory, the authors investigated the existence and multiplicity of positive solutions for
the following two kinds of fractional differential equations with integral boundary value
problems:

D u(t) + q@)f (t,u(t)) =0, 0<t<l,
w(©0)=u'(0)=---=u™d0)=0,  u(l)= [, u(s)dA(s),

and

CDu(t) + f(t,u(t)) =0, 0<t<l,
w(©0)=u"(0)=0,  u(l)=xr [, uls)ds,

where 0 < A <2, D%, and D are the standard Riemann-Liouville derivative and the Ca-
puto fractional derivative, respectively.

To the author’s knowledge, there are few papers in the literature to consider fractional
differential equations with integral boundary value conditions. Motivated by above pa-
pers, the purpose of this article is to investigate the existence of positive solutions for
the more general fractional differential equations BVP (1). Firstly, we derive correspond-
ing Green’s function known as fractional Green’s function and argue its positivity. Then a
fixed point theorem is used to obtain the existence of positive solutions for BVP (1). We
also obtain some relations between the solution and Green’s function. From the example
given in Section 4, we know that X in this article may be greater than 2 and 7 may take
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the value 1. Therefore, compared with that in [21], BVP (1) considered in this article has a
more general form.

The rest of this article is organized as follows. In Section 2, we give some preliminaries
and lemmas. The main result is formulated in Section 3, and an example is worked out in
Section 4 to illustrate how to use our main result.

2 Preliminaries and several lemmas
Let E = C[0,1], |||l = maxo<;<1 |u(t)|, then (E,| - ||) is a Banach space. Denote I = [0,1],
=(0,1), R* = [0, +00).
For the reader’s convenience, we present some necessary definitions from fractional cal-
culus theory and lemmas. They can be found in the recent literature; see [14—17].

Definition 2.1 The Riemann-Liouville fractional integral of order « > 0 of a function y :
(0,00) — R is given by

I, y() = / (t—s9)*" 1y(s) ds

T(e)

provided the right-hand side is pointwise defined on (0, c0).

Definition 2.2 The Riemann-Liouville fractional derivative of order @ > 0 of a continuous
function y : (0,00) — R is given by

PR S A R RO
D50 i () [ o

where n = [«] + 1, [«] denotes the integer part of the number «, provided that the right-
hand side is pointwise defined on (0, 00).

From the definition of the Riemann-Liouville derivative, we can obtain the statement.

Lemma 2.1 ([17]) Let o > 0. If we assume u € C(0,1) N L(0,1), then the fractional differen-
tial equation

Dy, u(t)=0

has u(t) = Cit* ' + Cot* 2 4. + Cyt* N, C;€R,i=1,2,...,N, as unique solutions, where

N is the smallest integer greater than or equal to «.

Lemma 2.2 ([17]) Assume that u € C(0,1) N L(0,1) with a fractional derivative of order
a > 0 that belongs to C(0,1) N L(0,1).
Then

I8, D8, u(t) = u(t) + Crt* ™ + Cot™ 2 4+ -+ Cyt* N,
forsome C; e R,i=1,2,...,N, where N is the smallest integer greater than or equal to «.

In the following, we present Green’s function of the fractional differential equation
boundary value problem.
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Lemma 2.3 Given y € C[0,1], the problem

D§,u(t) +y(t) =0,

(2)
u(0)=u'(0)=u"(0) =0, u(1) = A ) u(s)ds,
where0<t<1,3<a<4,0<n<1,0< % <1, is equivalent to
1
u(t) = / G(z,s)y(s) ds,
0
where
971 (1-5)2 L= 2 (=s)* 121 (1- £ ) (e-5)2 ! .
FOE) » O=ss<t=<ls=umn;
ta_l(lfs)a_lf(lfgna)(tfs)a_l 0<np<s<i<l:
_ PO () ’ SH=s=2E25
G(t,s) = -1 o—1_ 1 o po—1 (3)
47 (1-5) Y = 5 (n—s)% ¥ O<t<s<n<l:
PO (@) ’ St=s=n=4
ta_l(lfs)a_l
PO Ost<s<lLnss

Here, p(s) :=1- %(1 —5), G(t,s) is called the Green function of BVP (2). Obviously, G(t,s)
is continuous on [0,1] x [0,1].

Proof We may apply Lemma 2.2 to reduce (2) to an equivalent integral equation
u(t) = =12, y(t) + Crt* ' + Cot® ™% + C3t* 7 + Cut* ™4,

for some Cj, Cy, C3, C4 € R. Consequently, the general solution of (2) is

u(t) = T )/ (t—s)"y(s)ds + CLt* 7 Cot® ™2 + C3t* 2 + Cut* ™.

By u(0) = #'(0) = u”(0) = 0, one gets that C, = C3 = C4 = 0. On the other hand, u(1) =
A [y u(s) ds combining with

/ (lr(;;l 1y(s Yds + Cy,
fo u(s)ds———/ / (x—s)*t (s)dsdx+C1/ *1ds
=—m/0 /S (x—s)""ly(s)dxds+leonso"lds

1 [T(n-9) Cin
__m/o " y(s)ds +

C1—/(; 1,(‘){)(I_M)J’(S)ds )»/0 aF(a)(l—%)y(S)ds'
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Therefore, the unique solution of the problem (2) is

~ t (t_s)a—l (1 a ltat 1
u(t) = —/0 y(s)ds + - )\n )/ y(s)ds

(o)
1 i -9 !
_ - %) /0 T y(s) ds.

For t <1, one has

u(t) = - / (t—s)"‘ 1)’()ds+ [(/ / /)(l_salta 1y(s)ds]
1(17 s)et !

- —n)[(/ /) r(@) ()ds}

/t 1 -s) = 2 — ) = (- 2 (e - 9)* ! (5)d
= S)das
0 1= 2 (@) g

_ /0 66 5)y(5) s
For ¢ > 7, one has
w=-(["+[) 5o ly(s)ds
il )]

«
totl

e

9 ds
1——77/0 r() Y

a-1

e —s) = Ay — st — (1 Ayt - )
_/o (1= 27 () YO

t ta—l(l _S)a—l _ (1 _ %na)(t_s)a 1
+/n (1= 20 (@) b / (i- : u)r( >y(s)ds

1
= / G(t,5)y(s) ds.
0

The proof is complete.

Lemma 2.4 The function G(t,s) defined by (3) satisfies
(al) G(t,s) > me(t)s(1 —s)*L, Vt,s € [0,1];
(a2) G(t,s) < Mye(t)1 —5)*"L, Vt,s € [0,1];
(a3) G(t,s) < M;s(1-s)*1, Vt,s € [0,1];
(a4) p(s) >0, and p(s) is not decreasing on [0,1];

(a5) G(z,s) >0, Ve, s € (0, 1)
1, 4y o elt) =171,

1-p(0)
where m = Fap©)’ , M = r(a) + (0)1_
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Proof Fors <t,s<n,

)\' [od a—l _ el
p(O)F(a){ = =9 = p(0)(t - 5) }
{ _ ﬁﬂ (1 £>at“1—p(0)(t—s)“1}
o n
{ (1 -9)]"" = Lo 9~ plo)(e — 5 1}
P(O)F(a) o
(O)F( ){ t(l s) [1——17 1- s)] p(())(t_s)ut—l}
p(O)F( ){[ a- S)] P(S) p0)(t—s)*" 1}
TRy - “ —g) M _ a-1
- F(a){[t(l 9] = (-5} + ey [0
. “ a- (s) - p(0) -
e s
- o ©-pO)
Z F -9 2[t1-s) - (t-5)]) +1; EO)FIZO[) (11 -]
! -l 1-p(0) vl
> Fay - 5)]" sL-8)+ ok -9
1-p(0) o o
Z o A=
: ot )L o por—1 a-1
Gt = o | (A9~ G = = pOe =9 }
) P(O)lI‘(a) (1 - 2’7“ + %”a) [t~ 5)]%1 - g(n — )% — p(0)(¢ - s)“‘l}
i P(O)lF(ot) PO A=) = (£ ~5)*"]

+ &na |:tot—l(l _ S)a—l _ (1 _ E)ata—l:| }
o n

t(1-s)
= m{p(oxa - 1)/ 242 dx

+ &na |:totl(1 _ S)a—l _ (1 _ i)atal(l _ S)otl:|}
o n

= m {p(O)((x - l)t“_z(l _ S)a_zS(l _ 1)

+ &natafl(l _S)a—l |:1 _ (1 B i)oz:| }
* n

= m {p(O)(a - l)t“_z(l _ S)a_zs(l _ 1)

4
+ &nata—l(l_s)a—l[l_ (1_ i) ]}
* n

= m {P(O)(Ot 1)1 —5)%!
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(0 ) (0

- 1
~ p(O)(e)
B |:Ot -1 4&}705—1

o a-1 a-1
@ p(O)r(aJt (=5

{p(O)(oe B A § ) Lt 4gn°“1ta‘l(1 ) }

_ _ a—l_& Qa1 el
G(t,s) = SOT@) [t1-9)] G =9 T = pO)(E-9) }
- 1 _&a &a _ D‘—l_& gl el
- (= B 2 Y- 9) 7 - 29t - oo
_ 1 a=1¢1 _ -1 _ el
= S Or@ pO)[t* (1 -s)* = (£ -5)*7"]
+ &na |:totl(1 _S)a—l _ (1 _ i)atali“
o n
1 t(1-s) v
= PO @) {” =1 / o
+ &na |:t.ot—l(1 _ S)a—l _ (1 _ i)ata—l(l _S)a—l]}
o n
1 a-2 a-2
=< 2O @) {p(O)(a -t (1 -s)*""s(1-1¢)
+ &n“t“‘l(l — )t [1 - <1 - f)a] }
o n
< {p(oxa D21 - 5) 251 - )
4
e - gt [1 - (1 - f) ]}
o n
; _ a-201 _ a2 _
< SOT@) {p(O)(a D= (1-5)*""s(1-1¢)

e () (D (-5 )

=< m {P(O)(oe DA -8 s+ 427705_15(1 ~ s)“—l}

_ [“_-1 e
“T@ " pO) ()

i|s(1 )

Forn<s<t,

Glt,s) = p(o)lr a9 = po)e -
(5 1
= o 19 - g e
- ﬁ ([60-9)]" 80 - 5) = (- )2t - 5)} + ’22))‘;(’3) [t -]
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> r -l -0+ a9
> o -
Glts) = p(o)lr(a) {[t0-9]"" - pO)e -9}
- o | (1= e S =91 —p0-
i p(o)lr(a) {p O A9~ =]+ Sy fet1 - s)]“l}
= p(O)ll"(a) p(0)(e ~1) /t il_S) X7 dx + gn“’lst"‘*l(l - 5)0‘1}
< T (PO =D s 0 Sy s
: Im pO)@ - D (L= + gna'lt"“l(l - S)a_l}
A pa-1
: [?”(—; ' pig)];(a)}tal(l -9
Gle.s) = m{ [t -9]"" - p(O)(E - )"}
- m { (1 U 2’7“)[“1 -5)]"” —p(oxt—s)“l}
= m p(0)(e —1) /t il_S) x72dx + gn“’lst"‘*l(l - s)'“}
< T (PO D=9 -y s o
< pO)@ -1 -5)""s+ &n“‘ls(l - S)a—l}
PO (@) .
A a-1
= [?”(__a; ’ pétg)];(a)}s(l -9

Fort<s<n,
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ULV O [OTRT

p(O)T ()
= %a) [t1-9]"" + % [ta-9]""
> ﬁtalsu —s),
6069 =~ -9 - 2o
fﬁﬁﬁﬁaﬂﬂl_QTA
< [‘;(—_1 + 43)';1(_1)}:“ '1-97,
o9 (O)F( o |- g -sret
ST -]

-1 4'&”“71 a-1
= [W ORE )}(H’ ‘

Forn<s,t<s,

Glt,s) = -]

1
sor@ @
l—p(O) a-1 a-1
= por@’ U

1 a-1
G(t, S) = m [t(l - S)]

a-1 4% na—l
<|=—+
B [F(a) p0)(a)
G(t,s) = [ta-9]""

4)»,701 -1 wl
PO )}(1_“) ‘

:|ta—1(1 _ S)a_l,

_

p(O)T ()
a-1

< | —

- [F(a)

From above, (al), (a2), (a3), (a5) are complete. Clearly, (a4) is true. The proof is complete.
d

Throughout this article, we adopt the following conditions.
(Hy) f € C[(0,1) x [0,+00),(—00,+00)] and there exist a,b € C[J,R*], h € C[R*,R"],
g(t,u) € [J x R*,R*] such that

g(t,u) - bt) <f(t,u) <a(t)h(u), Vte],uecR;

t

(Hy) There exists [a, b] C I such that lim,,_, , g _ 400 uniformly for ¢ € [a, b];

Page9of 17
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(H3) There exists r > 0 such that

1
m
/0 1= s5)* " b(s)ds < AT;r,

1

r

1
-1
M, /0 1-s) (a(s) + b(s)) ds < —maXOSMSr{h(M), I

Let

P= {u|u(t) >0,u eE},

Q-= {u|u € P,u(t) > %Hu”e(t)}.

Obviously, Q is a cone in a Banach space E and (E, Q) is an ordering Banach space.

Let
1
x0(t) = / G(t,s)b(s)ds, tel,
0
where b(t) is defined as that in (H;). It follows from Lemma 2.4 and (H3) that
1
0 <uxo(t) < Mle(t)/ (1-s)*"'b(s)ds < +00, tel
0

So, xy € P and it satisfies

Dg, xo(t) +x0(£) =0, 0<t<]l,
%0(0) = x,(0) =x3(0) =0, x0(1) =1 [y xo(s)ds

Page 10 of 17

(4)

(5)

(6)

7)

Foranyu € Q\{6}, u(¢) > z\% l|le(2), t € I. Consequently, by (6) and Lemma 2.4, we have

1
xo(t) < Mle(t)f (1-5)*"b(s)ds
0

my _ ool

< Mlul et ” /(1 9 b(s) ds
2

PRIOR / (1= )" b(s) ds.

llacll my

For any k € E, denote

k(t), k(t) =0,

k@] =
[ ( )] 0, k(t) < 0.

We define an operator A as follows:

1
(Au)(t) = /0 G(t, s)(f(s, [u(s) —xo(s)]+) + b(s)) ds, VYueP.

(8)

)


http://www.boundaryvalueproblems.com/content/2012/1/123

Zhang Boundary Value Problems 2012, 2012:123 Page 11 of 17
http://www.boundaryvalueproblems.com/content/2012/1/123

Lemma 2.5 Suppose that (H;)-(Hs) hold. Then A : Q — Q is completely continuous.

Proof For any u € P, it is clear that [u(s) —xo(s)]* < u(s) < |lu||. By (H;), we get

F (s, [us) = x0(5)]") + b(s) < a(s)h([uls) = xo(s)]") + b(s)
< max {h(r),l}(a(s) + b(s)), Vse]. (10)

o< |ul

By (10) and Lemma 2.4, we have

1
/o G(t,s)(f (s, [uls) —x0(s)]") + b(s)) ds

< Me(t) fl(l —s)*t (a(s) + b(s)) ds- max {h(r),l} <+o00, te€], (11)
0

o<r<|lull

which together with (H3) means that operator A defined by (9) is well defined.
Now, we show that A: Q — Q.
For any u € Q, by (H;) we have by (9) and Lemma 2.4 that

1
(Au)(t) < M; / s(L—s5)* M [f (s, [uls) - xo(s)]+) +b(s)]ds, Veel,
0

which means that

1

lAu|l < M; /0 s(L =) [f (s, [uls) = x0(s)]") + b(s)] ds. (12)

It follows from (12) and Lemma 2.4 that

1
(Au)(t) = /o G(t, s)(f(s, [u(s) —xo(s)]+) + b(s)) ds
1
> mye(t) /0 s(1 - s)“_l[f(s, [u(s) — X (s)]+) + b(s)] ds

—ﬂ(t)/lM 1 —9)* [ (s, [uls) - x0(5)]") + b(s)]d
_Mle ; 1s(1-s f (s, | u(s) —xo(s +b(s)|ds

m
> —e(t)||Au]|.
_Mle()ll ul|

Thus, A maps Q into Q.

Finally, we prove that A maps Q into Q is completely continuous.

Let D C Q be any bounded set. Then there exists a constant L; > 0 such that |lu| < L;
for any u € D. Notice that [u(s) —xo(s)]* < u(s) < Ly, for any u € D, s € I, by (H3) and (11),

we have

|(Au)(t)| §M1f1(1 —s)“’l(a(s) + b(s)) ds - max {h(r),l} < +00.
0

0<r<Lj

Therefore, A(D) is uniformly bounded.
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On the other hand, since G(¢, s) is continuous on [0,1] x [0, 1], it is uniformly continuous
on [0,1] x [0,1] as well. Thus, for fixed s € / and for any ¢ > 0, there exists a constant § > 0
such that for any #;,£, € [0,1] and |t — £ < 6,

&

G(t1.5) - G(ta, ’
’ (t1,5) (t2 S)‘ < maxo-,<z, (h(r), 1) fol(a(s) +b(s))ds

(13)

Therefore, for any x € D, we get by (10) and (13)
|[(Au)(tr) — (Au)(t2)|

1
< / 1G(t1,9) — Gty )| (F (5 [us) — x0(9)]) + b)) di
0

& 1
b(s))ds - h(r),1) = ¢,
- maXosrsm{h(r),l}fJ(a(s)+b<s>)ds/o (als) +b(s)) ds - max {h(r),1} =

which implies that the operator A is equicontinuous. Thus, the Ascoli-Arzela theorem
guarantees that A(D) is a relatively compact set.

Let u,,ug € Q, u, — ug (n = 00). Then {u,} is bounded. Let Ly = sup{||u,l|,n =
0,1,2,...}, by (10), we get

f(s, [u,,(s) —xo(s)]+) +b(s) < ( max {h(r),l})(a(s) + b(s)), n=0,12,.... (14)

0<r<Ly

By (9), we have
| () (2) — (Auso) (0)]

1
< /0 G(t,9)|f (s, [1n(s) — %0 (s)]+) —f (s, [0 () — %0 (s)]+) | ds

1
<My [ o= 109 = 509]) 5 [10) - (9] ) . (15)
0

It follows from (14), (15), (H;), (Hs), and the Lebesgue dominated convergence theorem
that A is continuous. Thus, we have proved the continuity of the operator A. This com-
pletes the complete continuity of A. d

To prove the main result, we need the following well-known fixed point theorem.

Lemma 2.6 (Fixed point theorem of cone expansion and compression of norm type [22])
Let 21 and 2, be two bounded open sets in a Banach space E such that 0 € Q, and Qc
Q,A : PN (Q\Q1) — P be a completely continuous operator, where 0 denotes the zero
element of E and P a cone of E. Suppose that one of the two conditions holds:

(i) NlAull < llull, Vu € PN oS2xu; |Aull > |lull, Yu € PN 9S2;

(i) [|Aull = llull, Vu € PNOQ; [|Aull < |lull, Vu € PN 0Q,.
Then A has a fixed point in PN (Q,\1).

3 Main result
Theorem 3.1 Assume that conditions (Hy)-(Hs) are satisfied. Then the singular semiposi-
tone BVP (1) has at least one positive solution w(t). Furthermore, there exist two constants
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M >m > 0 such that

me(t) < w(t) < Me(t), tel (16)
Proof Firstly, we show that the operator A has a fixed point in Q. Let

Q, = {u € El||ul| < r},

where r is the same as that defined in (H3). For any u € 92, N Q, by (10) and (12), we have
that

1
(Au)(t) = /o G(t, s)(f(s, [u(s) — X0 (s)]+) + b(s)) ds

1
< MI/ s(1-s)*t (a(s) + b(s)) ds - max {h(u),l} <+00, tej.
0

0<u<r

Therefore,

<r

lAul| < M, /O 1 s(1-5)*(a(s) + b(s)) ds - [nax {h(w),1} <,
which together with (Hs) implies that

lAul| <r=|lull, Yued,NQ. 17)
For [a, b] in (H,), it is clear that

e(t)>a*", telab). (18)

By (H3), we know that there exists a natural number n1y big enough such that

/0 1(1 — 9% b(s)ds < m’o" i - A’%n (19)
Choose

M> Mitmo +1) . (20)

ma® mingeqp [y G(£,5)ds

By (Hy), we know there exists R; > r such that

g(t,u) > Mu, Vtela,bl,u>R;. (21)
Take

R>max{r,l,w}. (22)

a*m

In the following, we are in a position to show that

Aull = llull, VYuedQerNQ. (23)
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For any u € 9Qz N Q, by (8) we get

N1 o—1
o<t>_” ” f (1— )" Lb(s) ds,

which together with (18), (19), (22), and (H3) implies that

u(t) — xo(t)
2 pl
> <1 - % Amii /0 (1-s)*b(s) ds) u(t)

1 my 1
1-— ru(t) > —e(t
< Romo 1)()_m0+ fle IIMI()
. R Wll ozl
_Wlo+1M1

>Ry, telab]

Foru € 0Qr N Q, t € [a, b], it follows from (H;), (20), (21), (22), and (24) that

1
40 = [ 6075 [u5)-xo9]") + 09 s

1

> / G(t,9)g(s, [u(s) = x0(s)]") ds
0
1

> f G(t,5)M (u(s) — xo(s)) ds
0

R m

1
12! min / G(t,s)ds>R, telab).
mo + 1M telabl Jo

>M

(24)

(25)

By (25), we know that (23) holds. So, (17), (23), and Lemma 2.6 guarantee that A has at

least one fixed point zo(¢) in (Qz\2,) N Q and r < ||z|| < R. Furthermore,

1
zo(t) = /0 G(t, s)(f(s, [zo(s) —xo(s)]+) + b(s)) ds, tel

By simple computation, we have that

DE,zo(t) +f(t, [zo(t) —x0(£)]*) + b(£) =0, 0<t<],
20(0) = z,(0) = z5(0) = 0, zo(1) = A [ zo(s) ds.

(27)

Secondly, we show BVP (1) has a positive solution. It follows from (8) and the fact ||zo|| >

r that

2 1 2 1
xo(t) < 2O M / (1= 5)*b(s)ds < Z"Tm% / (1= 5)*b(s) ds,
1 J0

llzoll 721 Jo

which combined with (19) implies that

2
ZO(t)—xo(t)z<1—lAi / (1— s 1b(s)ds>zo(t)>

zo(t) > 0.
+1o()_

(28)

Page 14 of 17
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By (27) and (28), we have

D, zo(t) +f(t, [z0(t) —x0(®)]) + b(t) =0, O0<t<],
20(0) = z4(0) = z5(0) = 0, zo(1) = A [ zo(s) ds.

Let w(t) = zo(£) — xo(t), t € I. It follows from (28) and zg € Q that

w(t) > Lzo(t) e(t)>0, tel. (30)

17
> -
T mp+1 = (mg + )M,

By (7), (29), and (30), we obtain

D, w(t) +f(t,w(t) =0, 0<t<l,
(0) = @'(0) = w”(0) = 0, w(1) =1 [ w(s)ds.

Thus, we have proved that w(¢) is a positive solution for BVP (1).
Finally, we show that (16) holds. From (26) and Lemma 2.4, we know that

1
zo(t) < Mye(t) /0 a- s)"‘_l(f( , [zo (8) —x0 (s)]+) + b(s)) ds, tel (31)

Since w(t) < zo(t), (30), and (31) mean that (16) holds for m = (m::llr)Ml and M = M, fol(l -

$)*7(f (s, [z0(s) — %0(s)]*) + b(s)) ds holds. This completes the proof of Theorem 3.1. O

4 Example
Consider the following singular semipositone fractional differential equations:

DEu()+f(t,ul) =0, 0<i<l,
u(0) = u/(0) = u”(0) = 0, (32)
u(1) = 165/2 [} u(s)ds,

1
where f(t,u) = &;—ij”% + #it)(u —ud - %). It is clear (32) has the form of (1), where

o= %, A =164/2, n= % By simple computation, we know that 0 < % ~ 0.5714 < 1, p(0) =
0.4286. Let

e
B

0-_" d bt) = ——
a = + ) = T
81—t 20(1-1¢) 20(1-1¢)
2 5 5 11
(t,u) = uz, h(u)=u? +u—u? +—.
¢ 8V1-t 4
Notice that
1 3 11
-1<u-u?>--<u-u?+-,
4 4

we have

- < (u—u% - E) < t (u—u% + l) (33)
2001-1) — 20(1-1¢) 4) ~201-1) 4 )
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It follows from the left side of (33) that

=b(t) < f(t,u) - g(t,u). (34)

N 1
Considering u — u2 + + > 0, we get

ft,u) < 7y %) < a(t)h(u). (35)

£ s ti (
u2 + u-—-u
81—t 20(1-1)

By (34) and (35) we know (H;) holds. Obviously, (H,) holds for [a,b] = %, 2

4241

Now, we check (Hs). By simple computation, we have m; = 0.4012, M; = 3.9619, % =
1

0.0256, [, (1 — 5)*'b(s) ds ~ 0.0136, M, [, (1 — 5)*"(a(s) + b(s)) ds ~ 0.1245. Take r = 1,
then maxo<,<,{h(u),1} ~ 1.2500, % ~ 0.8000. Thus, (H3) is valid. It follows

Max0 <y (A0 1

from Theorem 3.1 that BVP (32) has at least one positive solution.
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