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Abstract

We shall study the existence and multiplicity of nodal solutions of the nonlinear
second-order two-point boundary value problems,

u′′ + f (t, u) = 0, t ∈ (0, 1), u(0) = u(1) = 0.

The proof of our main results is based upon bifurcation techniques.
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1 Introduction
In [1], Ma and Thompson were considered with determining interval of μ, in which

there exist nodal solutions for the boundary value problem (BVP)

u′′(t) + μw(t)f (u) = 0, t ∈ (0, 1), u(0) = u(1) = 0 (1:1)

under the assumptions:

(C1) w(·) Î C([0, 1], [0, ∞)) and does not vanish identically on any subinterval of [0, 1];

(C2) f Î C(ℝ, ℝ) with sf(s) > 0 for s ≠ 0;

(C3) there exist f0, f∞ Î (0, ∞) such that

f0 = lim
|s|→0

f (s)
s

, f∞ = lim
|s|→∞

f (s)
s

.

It is well known that under (C1) assumption, the eigenvalue problem

ϕ′′(t) + μw(t)ϕ(t) = 0, t ∈ (0, 1), ϕ(0) = ϕ(1) = 0 (1:2)

has a countable number of simple eigenvalues μk, k = 1, 2,..., which satisfy

0 < μ1 < μ2 < · · · < μk < · · · , and lim
k→∞

μk = ∞,

and let μk be the kth eigenvalue of (1.2) and �k be an eigenfunction corresponding to

μk, then �k has exactly k – 1 simple zeros in (0,1) (see, e.g., [2]).

Using Rabinowitz bifurcation theorem, they established the following interesting

results:

Theorem A (Ma and Thompson [[1], Theorem 1.1]). Let (C1)-(C3) hold. Assume

that for some k Î N, either
μk

f∞
< μ <

μk

f0
or

μk

f0
< μ <

uk
f∞

. Then BVP (1.1) has two
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solutions u+k and u−
k such that u+k has exactly k – 1 zeros in (0, 1) and is positive near

0, and u−
k has exactly k – 1 zeros in (0,1) and is negative near 0.

In [3], Ma and Thompson studied the existence and multiplicity of nodal solutions

for BVP

u′′(t) + w(t)f (u) = 0, t ∈ (0, 1), u(0) = u(1) = 0. (1:3)

They gave conditions on the ratio
f (s)
s

at infinity and zero that guarantee the exis-

tence of solutions with prescribed nodal properties.

Using Rabinowitz bifurcation theorem also, they established the following two main

results:

Theorem B (Ma and Thompson [[1], Theorem 2]). Let (C1)-(C3) hold. Assume that

either (i) or (ii) holds for some k Î N and j Î {0} ∪ N;

(i) f0 <μk < ... <μk+j <f∞;

(ii) f∞ <μk < ... <μk+j <f0,

where μk denotes the kth eigenvalue of (1.2). Then BVP (1.3) has 2(j + 1) solutions

u+k+i, u
−
k+i, i = 0, . . . , j , such that u+k+i has exactly k + i – 1 zeros in (0, 1) and are posi-

tive near 0, and u−
k+i has exactly k + i – 1 zeros in (0,1) and are negative near 0.

Theorem C (Ma and Thompson [[1], Theorem 3]). Let (C1)-(C3) hold. Assume that

there exists an integer k Î N such that

μk−1 <
f (s)
s

< μk,

where μk denotes the kth eigenvalue of (1.2). Then BVP (1.3) has no nontrivial

solution.

From above literature, we can see that the existence and multiplicity results are lar-

gely based on the assumption that t and u are separated in nonlinearity term. It is

interesting to know what will happen if t and u are not separated in nonlinearity term?

We shall give a confirm answer for this question.

In this article, we consider the existence and multiplicity of nodal solutions for the

nonlinear BVP

u′′ + f (t, u) = 0, t ∈ (0, 1), u(0) = u(1) = 0 (1:4)

under the following assumptions:

(H1) λk ≤ a(t) ≡ lim
|s|→+∞

f (t, s)
s

uniformly on [0, 1], and the inequality is strict on

some subset of positive measure in (0,1), where lk denotes the kth eigenvalue of

u′′(t) + λu(t) = 0, t ∈ (0, 1), u(0) = u(1) = 0; (1:5)

(H2) 0 ≤ lim
|s|→0

f (t, s)
s

≡ c(t) ≤ λk uniformly on [0, 1], and all the inequalities are

strict on some subset of positive measure in (0, 1), where lk denotes the kth eigenvalue

of (1.5);

(H3) f(t, s)s > 0 for t Î (0, 1) and s ≠ 0.
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Remark 1.1. From (H1)-(H3), we can see that there exist a positive constant ϱ and a

subinterval [a, b] of [0, 1] such that a <b and
f (r, s)

s
≥ � for all r Î [a, b] and s ≠ 0.

In the celebrated study [4], Rabinowitz established Rabinowitz’s global bifurcation

theory [[4], Theorems 1.27 and 1.40]. However, as pointed out by Dancer [5,6] and

López-Gómez [7], the proofs of these theorems contain gaps, the original statement of

Theorem 1.40 of [4] is not correct, the original statement of Theorem 1.27 of [4] is

stronger than what one can actually prove so far. Although there exist some gaps in

the proofs of Rabinowitz’s Theorems 1.27, 1.40, and 1.27 has been used several times

in the literature to analyze the global behavior of the component of nodal solutions

emanating from u = 0 in wide classes of boundary value problems for equations and

systems [1,2,8,9]. Fortunately, López-Gómez gave a corrected version of unilateral

bifurcation theorem in [7].

By applying the bifurcation theorem of López-Gómez [[7], Theorem 6.4.3], we shall

establish the following:

Theorem 1.1. Suppose that f(t, u) satisfies (H1), (H2), and (H3), then problem (1.4)

possesses two solutions u+k and u−
k , such that u+k has exactly k – 1 zeros in (0, 1) and is

positive near 0, and u−
k has exactly k – 1 zeros in (0,1) and is negative near 0.

Similarly, we also have the following:

Theorem 1.2. Suppose that f(t, u) satisfies (H3) and

(H′
1)λk ≥ a(x) ≡ lim

|s|→+∞
f (t, s)
s

≥ 0 uniformly on [0, 1], and all the inequalities are

strict on some subset of positive measure in (0, 1), where lk denotes the kth eigenvalue

of (1.5);

(H′
2) lim

|s|→0

f (t, s)
s

≡ c(x) ≥ λk uniformly on [0, 1], and the inequality is strict on some

subset of positive measure in (0, 1), where lk denotes the kth eigenvalue of (1.5), then

problem (1.4) possesses two solutions u+k and u−
k , such that u+k has exactly k – 1 zeros

in (0,1) and is positive near 0, and u−
k has exactly k – 1 zeros in (0,1) and is negative

near 0.

Remark 1.2. We would like to point out that the assumptions (H1) and (H2) are weaker

than the corresponding conditions of Theorem A. In fact, if we let f(t, s) ≡ μw(t)f(s), then

we can get lim
|s|→+∞

f (t, s)
s

≡ μw(t)f∞ := a(t) and lim
|s|→0

f (t, s)
s

≡ μw(t)f0 := c(t) . By the

strict decreasing of μk(f) with respect to weight function f (see [10]), where μk(f) denotes

the kth eigenvalue of (1.2) corresponding to weight function f, we can show that our con-

dition c(t) ≤ lk ≤ a(t) is equivalent to the condition
μk

f∞
< μ <

μk

f0
. Similarly, our condi-

tion c (t) ≥ lk ≥ a (t) is equivalent to the condition
μk

f0
< μ <

uk
f∞

. Therefore, Theorem A

is the corollary of Theorems 1.1 and 1.2.

Using the similar proof with the proof Theorems 1.1 and 1.2, we can obtain the

more general results as follows.

Theorem 1.3. Suppose that (H3) holds, and either (i) or (ii) holds for some k Î N and

j Î {0} ∪ N:
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(i) 0 ≤ c(t) ≡ lim
|s|→0

f (t, s)
s

≤ λk < · · · < λk+j ≤ a(t) ≡ lim
|s|→+∞

f (t, s)
s

uniformly on [0, 1],

and the inequalities are strict on some subset of positive measure in (0,1), where lk
denotes the kth eigenvalue of (1.5);

(ii) 0 ≤ a(t) ≡ lim
|s|→+∞

f (t, s)
s

≤ λk < · · · < λk+j ≤ c(t) ≡ lim
|s|→+∞

f (t, s)
s

uniformly on

[0, 1], and the inequality is strict on some subset of positive measure in (0, 1), where

lk denotes the kth eigenvalue of (1.5).

Then BVP (1.4) has 2(j + 1) solutions u+k+i, u
−
k+i, i = 0, . . . , j , such that u+k+i has exactly

k + i – 1 zeros in (0,1) and are positive near 0, and u−
k+i has exactly k + i – 1 zeros in

(0,1) and are negative near 0.

Using Sturm Comparison Theorem, we also can get a non-existence result when f

satisfies a non-resonance condition.

Theorem 1.4. Let (H3) hold. Assume that there exists an integer k Î N such that

λk−1 <
f (t, u)

u
< λk (1:6)

for any t Î [0, 1], where lk denotes the kth eigenvalue of (1.5). Then BVP (1.4) has no

nontrivial solution.

Remark 1.3. Similarly to Remark 1.2, we note that the assumptions (i) and (ii) are

weaker than the corresponding conditions of Theorem B. In fact, if we let f(t, s) ≡ w(t)

f(s), then we can get lim
|s|→+∞

f (t, s)
s

≡ w(t)f∞ := a(t) and lim
|s|→0

f (t, s)
s

≡ w(t)f0 := c(t) . By

the strict decreasing of μk(f) with respect to weight function f (see [11]), where μk(f)

denotes the kth eigenvalue of (1.2) corresponding to weight function f, we can show

that our condition c(t) ≤ lk < ... <lk+j ≤ a(t) is equivalent to the condition f0 <μk < · · ·

<μk+j <f∞. Similarly, our condition a(t) ≤ lk < · · · <lk+j ≤ c(t) is equivalent to the con-

dition f∞ <μk < ... <μk+j <f0. Therefore, Theorem B is the corollary of Theorem 1.3.

Similar, we get Theorem C is also the corollary of Theorem 1.4.

2 Preliminary results
To show the nodal solutions of the BVP (1.4), we need only consider an operator

equation of the following form

u = λAu. (2:1)

Equations of the form (2.1) are usually called nonlinear eigenvalue problems.

López-Gómez [7] studied a nonlinear eigenvalue problem of the form

u = G(r, u), (2:2)

where r Î ℝ is a parameter, u Î X, X is a Banach space, θ is the zero element of X,

and G: X = R × X → X is completely continuous. In addition, G(r, u) = rTu + H(r, u),

where H(r, u) = o(||u||) as ||u|| ® 0 uniformly on bounded r interval, and T is a linear

completely continuous operator on X. A solution of (2.2) is a pair (r, u) ∈ X , which

satisfies the equation (2.2). The closure of the set nontrivial solutions of (2.2) is

denoted by ℂ, let Σ(T) denote the set of eigenvalues of linear operator T. López-

Gómez [7] established the following results:
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Lemma 2.1 [[7], Theorem 6.4.3]. Assume Σ(T) is discrete. Let l0 Î Σ(T) such that

ind(0, l0T) changes sign as l crosses l0, then each of the components Cν
λ0
, ν ∈ {+,−}

satisfies (λ0, θ) ∈ Cν
λ0 , and either

(i) meets infinity in X,

(ii) meets (τ, θ), where τ ≠ l0 Î Σ(T) or

(iii) Cν
λ0
, ν ∈ {+,−} contains a point

(ι, y) ∈ R × (V\{0}),

where V is the complement of span{ϕλ0},ϕλ0 denotes the eigenfunction corresponding

to eigenvalue l0.
Lemma 2.2 [[7], Theorem 6.5.1]. Under the assumptions:

(A) X is an order Banach space, whose positive cone, denoted by P, is normal and has

a nonempty interior;

(B) The family ϒ(r) has the special form

ϒ(r) = IX − rT,

where T is a compact strongly positive operator, i.e., T(P\{0}) ⊂ int P;

(C) The solutions of u = rTu + H(r, u) satisfy the strong maximum principle.

Then the following assertions are true:

(1) Spr (T) is a simple eigenvalue of T, having a positive eigenfunction denoted by ψ0

> 0, i.e., ψ0 Î int P, and there is no other eigenvalue of T with a positive eigenfunction;

(2) For every y Î int P, the equation

u − rTu = y

has exactly one positive solution if r <
1

Spr(T)
, whereas it does not admit a positive

solution if r ≥ 1
Spr(T)

.

Lemma 2.3 [[10], Theorem 2.5]. Assume T : X ® X is a completely continuous

linear operator, and 1 is not an eigenvalue of T, then

ind(I − T, θ) = (−1)β ,

where b is the sum of the algebraic multiplicities of the eigenvalues of T large than 1,

and b = 0 if T has no eigenvalue of this kind.

Let Y = C[0, 1] with the norm ‖u‖∞ = max
t∈[0,1]

∣∣u(t)∣∣ . Let
E = {u ∈ C1[0, 1]|u(0) = u(1) = 0}

with the norm

‖u‖E = max
t∈[0,1]

|u| + max
t∈[0,1]

∣∣u′∣∣ .
Define L: D(L) ® Y by setting

Lu := −u′′(t), t ∈ [0, 1], u ∈ D(L),
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where

D(L) = {u ∈ C2[0, 1]|u(0) = u(1) = 0}.

Then L-1: Y ® E is compact. Let E = R × E under the product topology. For any C1

function u, if u(x0) = 0, then x0 is a simple zero of u, if u’(x0) ≠ 0. For any integer k Î

N and ν Î {+, –}, define Sν
k ⊂ C1[0, 1] consisting of functions u Î C1 [0, 1] satisfying

the following conditions:

(i) u(0) = 0, νu’(0) > 0;

(ii) u has only simple zeros in [0, 1] and exactly n – 1 zeros in (0,1).

Then sets Sν
k are disjoint and open in E. Finally, let φν

k = R × Sν
k .

Furthermore, let ζ Î C[0, 1] × ℝ) be such that

f (t, u) = c(t)u + ς(t, u)

with

lim
|u|→0

ς(t, u)
u

= 0 and lim
|u|→∞

ς(t, u)
u

= a(t) − c(t) uniformly on [0, 1]. (2:3)

Let

ς̄(t, u) = max
0≤|s|≤u

∣∣g(t, u)∣∣ for t ∈ [0, 1],

then ς̄ is nondecreasing with respect to u and

lim
u→0+

ς̄(t, u)
|u| = 0.

If u Î E, it follows from (2.3) that

ς(t, u)
‖u‖E

≤ ς̄(t, |u|)
‖u‖E

≤ ς̄(t, ‖u‖∞)
‖u‖E

≤ ς̄(t, ‖u‖E)
‖u‖E

→ 0, as ‖u‖E → 0

uniformly for t Î [0, 1].

Let us study

Lu − μc(t)u = μς(t, u) (2:4)

as a bifurcation problem from the trivial solution u ≡ 0.

Equation (2.4) can be converted to the equivalent equation

u(t) = μL−1[c(t)u(t)] + μL−1[ς(t, u(t))].

Further we note that ||L-1[ζ(t, u(t))] ||E = o(||u||E) for u near 0 in E.

Lemma 2.4. For each k Î N and ν Î {+. – }, there exists a continuum Cν
k ⊂ φν

k of

solutions of (2.4) with the properties:

(i) (λk, θ) ∈ Cν
k ;

(ii) Cν
k\{(λk, θ)} ⊂ φν

k ;

(iii) Cν
k is unbounded in E , where lk denotes the kth eigenvalue of (1.5).

Proof. It is easy to see that the problem (2.4) is of the form considered in [7], and

satisfies the general hypotheses imposed in that article.
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Combining Lemma 2.1 with Lemma 2.3, we know that there exists a continuum

Cν
k ⊂ E of solutions of (2.4) such that:

(a) Cν
k is unbounded and (λk, θ) ∈ Cν

k ,C
ν
k\{(λk, θ)} ⊂ φν

k ;

(b) or (λj, θ) ∈ Cν
k , where j Î N, lj is another eigenvalue of (1.5) and different

from lk;
(c) or Cν

k contains a point

(ι, y) ∈ R × (V\{0}),

where V is the complement of span{�k}, �k denotes the eigenfunction corresponding

to eigenvalue lk.
We finally prove that the first choice of the (a) is the only possibility.

In fact, all functions belong to the continuum sets Cν
k have exactly k – 1 simple

zeros, this implies that it is impossible to exist (λj, θ) ∈ Cν
k , j ∈ N .

Next, we shall prove (c) is impossible, suppose (c) occurs, then Cν
k is bounded and

without loss of generality, suppose there exists a point (ι, y) ∈ R × (V\{θ}) ∩ C+
k .

Moreover, it follows from Lemma 2.1 that

C+
k ∩ {(λ, θ) : λ ∈ R} = {(λk, θ)}.

Note that as the complement V of span{�k} in E, we can take

V := R[IE − λkL].

Thus, for this choice of V, the component C+
k cannot contain a point

(ι, y) ∈ R × (V\{θ}) ∩ C+
k .

Indeed, if

(ι, y) ∈ R × (V\{θ}) ∩ C+
k .

then y > 0 in (0, a0), where a0 denotes the first zero point of y, and there exists u Î E

for which

u − λkLu = y > 0, in (0, a0).

Thus, for each sufficiently large a > 0, we have that u + a�k >> 0 in (0, a0) and

u + αϕk − λkL(u + αϕk) = y > 0 in (0, a0).

Define

P = {u ∈ E|u(t) ≥ 0, t ∈ [0, a0]}.

Hence, according to Lemma 2.2

Spr(λkL) < 1,

which is impossible since Spr(L) =
1

λkf0
.

Lemma 2.5. If (μ, u) ∈ E is a non-trivial solution of (2.4), then u ∈ Sν
k for ν and

some k Î N.
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Proof. Taking into account Lemma 2.4, we only need to prove that

Cν
k ⊂ 
ν

k ∪ {(λk, θ)} .
Suppose Cν

k 
⊂ 
ν
k ∪ {(λk, θ)} . Then there exists (μ∗, u) ∈ Cν

k ∩ (R × ∂Sν
k) such that

(μ∗, u) 
= (λk, θ), u 
∈ Sν
k , and (μj,uj) ® (μ*, u) with (μj, uj) ∈ Cν

k ∩ (R × Sν
k) . Since

u ∈ ∂Sν
k , so u ≡ 0. Let cj :=

uj∥∥uj∥∥E , then cj should be a solution of problem,

cj = μjL−1

[
c(t)cj(t) +

ς(t, uj(t))∥∥uj∥∥E
]
. (2:5)

By (2.3), (2.5) and the compactness of L-1, we obtain that for some convenient subse-

quence cj ® c0 ≠ 0 as j ® + ∞. Now c0 verifies the equation

−c′′0(t) = μ∗c(t)co(t), t ∈ (0, 1)

and ||c0||E = 1. Hence μ* = li, for some i ≠ k, i Î N. Therefore, (μj, uj) ® (li, θ)
with (μj, uj) ∈ Ck ∩ (R × Sν

k) . This contradicts to Lemma 2.3.

3 Proof of main results
Proof of Theorems 1.1 and 1.2. We only prove Theorem 1.1 since the proof of Theo-

rem 1.2 is similar. It is clear that any solution of (2.4) of the form (1, u) yields a solu-

tion u of (1.4). We shall show Cν
k crosses the hyperplane {1} × E in ℝ × E.

By the strict decreasing of μk(c(t)) with respect to c(t) (see [11]), where μk(c(t)) is the

kth eigenvalue of (1.2) corresponding to the weight function c(t), we have μk(c(t)) >μk
(lk) = 1.

Let (μj, uj) ∈ Cν
k with uj 
≡ 0 satisfies

μj +
∥∥uj∥∥E → +∞.

We note that μj > 0 for all j Î N, since (0,0) is the only solution of (2.4) for μ = 0

and Cν
k ∩ ({0} × E) = 
 0 .

Step 1: We show that if there exists a constant M > 0, such that

μj ⊂ (0,M]

for j Î N large enough, then Cν
k crosses the hyperplane {1} × E in ℝ × E.

In this case it follows that∥∥uj∥∥E → ∞.

Let ξ Î C([0, 1] × ℝ) be such that

f (t, u) = a(t)u + ξ(t, u)

with

lim
|u|→+∞

ξ(t, u)
u

= 0 and lim
|u|→0

ξ(t, u)
u

= c(t) − a(t), uniformly on [0, 1]. (3:1)
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We divide the equation

Luj − μja(t)uj = μjξ(t, uj), (3:2)

set ūj =
uj∥∥ūj∥∥E . Since ūj is bounded in C2 [0, 1], after taking a subsequence if neces-

sary, we have that ūj → ū for some ū ∈ E with ||u||E = 1. By (3.1), using the similar

proof of (2.3), we have that

lim
j→+∞

ξ(t, uj(t))∥∥uj∥∥E = 0 in Y.

By the compactness of L we obtain

−ū′′ − μ̄a(t)ū = 0,

where μ̄ = lim
j→+∞

μj , again choosing a subsequence and relabeling if necessary.

It is clear that ū ∈ Cν
k ⊆ Cν

k since Cν
k is closed in ℝ × E. Therefore, μ̄(a(t)) is the kth

eigenvalue of

u′′(t) + μa(t)u(t) = 0, t ∈ (0, 1), u(0) = u(1) = 0.

By the strict decreasing of μ̄(a(t)) with respect to a(t) (see [11]), where μ̄(a(t)) is

the kth eigenvalue of (1.2) corresponding to the weight function a(t), we have

μ̄(a(t)) < μ̄(λk) = 1 . Therefore, Cν
k crosses the hyperplane {1} × E in ℝ × E.

Step 2: We show that there exists a constant M such that μj Î (0, M] for j Î N large

enough.

On the contrary, we suppose that

lim
j→+∞

μj = +∞.

On the other hand, we note that

−u′′
j = μj

f (t, uj)

uj
uj.

In view of Remark 1.1, we have μj
f (t, uj)

uj
> λk on [a, b] and for j large enough and

all t Î [0, 1]. By Lemma 3.2 of [12], we get uj must change its sign more than k times

on [a, b] for j large enough, which contradicts the act that uj ∈ Sμ

k .

Therefore,

μj ≤ M

for some constant number M > 0 and j Î N sufficiently large.

Proof of Theorem 1.3. Repeating the arguments used in the proof of Theorems 1.1

and 1.2, we see that for ν Î {+, –} and each i Î {k, k + 1,..., k + j}

Cν
i ∩ ({1} × E) 
=
 0.

The results follows.
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Proof of Theorem 1.4. Assume to the contrary that BVP (1.4) has a solution u Î E,

we see that u satisfies

u′′(t) + b(t)u(t) = 0, t ∈ (0, 1),

where b(t) =
f (t, u)
u

.

Note that c(t) ≡ lim
|s|→0

f (t, s)
s

≤ λk+1 < ∞ and hence
f (t, u)

u
can be regarded as a con-

tinuous function on ℝ. Thus we get b(·) Î C[0, 1]. Also, notice that a nontrivial solution

of (1.4) has a finite number of zeros. From (2.8) and the above fact lk <b(t) <lk+1 for all
t Î [0, 1].

We know that the eigenfunction �k corresponding to lk has exactly k – 1 zeros in [0,

1]. Applying Lemma 2.4 of [13] to �k and u, we see that u has at least k zeros in I. By

Lemma 2.4 of [13] again to u and �k+1, we get that �k+1 has at least k + 1 zeros in [0, 1].

This is a contradiction.
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