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Abstract
In this note, we study the existence and multiplicity of solutions for the quasilinear
elliptic problem as follows:{

–div(a(|∇u|)∇u) = f (x,u), in �;

u = 0, on ∂�,

where � ⊂ RN is a bounded domain with a smooth boundary. The existence and
multiplicity of solutions are obtained by a version of the symmetric mountain pass
theorem.
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1 Introduction
In this note, we discuss the existence and multiplicity of solutions of the following bound-
ary value problem:⎧⎨⎩–div(a(|∇u|)∇u) = f (x,u), in �;

u = , on ∂�,
(.)

where � ⊂ RN is a bounded domain with a smooth boundary ∂�. The function a is such
that p : R → R defined by

p(t) =

⎧⎨⎩a(|t|)t, t �= ;

, t = ,

is an increasing homeomorphism from R onto itself and the continuous function f (x, t) ∈
C(� × R,R) satisfies f (x, ) = , x ∈ �. Especially, when a(t) = |t|p–, the problem (.)
is the well-known p-Laplacian equation. There is a large number of papers on the exis-
tence of solutions for the p-Laplacian equation. But the problem (.) possessesmore com-
plicated nonlinearities. For example, it is inhomogeneous and has an important physical
background, e.g.,
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(a) nonlinear elasticity: P(t) = ( + t)γ – , γ > 
 ;

(b) plasticity: P(t) = tα(log( + t))β , α ≥ , β > ;
(c) generalized Newtonian fluids: P(t) =

∫ t
 s

–α(sinh– s)β ds,  ≤ α ≤ , β > .
So, in the discussions, some special techniques are needed, and the problem (.) has been
studied in an Orlicz-Sobolev space and received considerable attention in recent years;
see, for instance, the papers [–]. In paper [], Fang and Tan discussed the problem (.)
under the conditions that f (x, t) was odd in t. They got the first result that when h+ < p–,
and f (x, t) ≥ Ctq– for  < t < δ, q < p–, the problem (.) had a sequence of solutions by
genus theory. The second result is that when f (x, t) satisfies  < αF(x, t)≤ tf (x, t), ∀x ∈ �,
t �= , α > p+ and f (x, t) = o(p(|t|)) as |t| → , the problem (.) has infinitely many pairs
of solutions which correspond to the positive critical values by the symmetric mountain
pass theorem.
Motivated by their results, in this note, we discuss the problem (.) when f (x, t) is still

odd in t but it satisfies weaker conditions than []; and furthermore, we need not know
the behaviors of f (x, t) near the zero. If h+ > p–, we can get multiplicity of solutions by a
version of the symmetric mountain pass theorem.
The paper is organized as follows. In Section , we present some preliminary knowledge

on the Orlicz-Sobolev spaces and give the main result. In Section , we make the proof.

2 Preliminaries
Obviously, the problem (.) allows a nonhomogeneous function p in the differential oper-
ator defining the problem (.). To deal with this situation, we introduce anOrlicz-Sobolev
space setting for the problem (.) as follows.
Let

P(t) =
∫ t


p(s)ds, P̃(t) =

∫ t


p–(s)ds, t ∈ R,

then P and P̃ are complementary N-functions (see []), which define the Orlicz spaces
LP := LP(�) and LP̃ := LP̃(�) respectively.
Throughout this paper, we assume the following condition on P:

(p)  < p– := inf
t>

tp(t)
P(t)

≤ p+ := sup
t>

tp(t)
P(t)

< +∞.

Under the condition (p), the Orlicz space LP coincides with the set (equivalence classes)
of measurable functions u :� → R such that∫

�

P
(|u|)dx < +∞,

and is equipped with the (Luxemburg) norm, i.e.,

|u|P := inf

{
k >  :

∫
�

P
( |u|

k

)
dx < 

}
.

We will denote byW ,P(�) the corresponding Orlicz-Sobolev space with the norm

‖u‖W ,P(�) := |u|P + ‖∇u‖P
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and defineW ,P
 (�) as the closure of C∞

 inW ,P(�). In this note, we will use the following
equivalent norm onW ,P

 (�):

‖u‖ := inf

{
k >  :

∫
�

P
( |∇u|

k

)
dx < 

}
.

Now, we introduce the Orlicz-Sobolev conjugate P∗ of P, which is given by

P–
∗ (t) :=

∫ t



p–(τ )

τ
N+
N

dτ ,

where we suppose that

lim
t→

∫ 

t

p–(τ )

τ
N+
N

dτ < +∞, lim
t→∞

∫ t



p–(τ )

τ
N+
N

dτ = +∞.

Let p–∗ := inft>
tP′∗(t)
P∗(t) , p

+∗ := supt>
tP′∗(t)
P∗(t) . Throughout this paper, we assume that p+ < p–∗ .

Now, we will make the following assumptions on f (x, t).
(f∗) There exists an odd increasing homeomorphism h from R to R, and nonnegative

constants c, c such that

∣∣f (x, t)∣∣ ≤ c + ch
(|t|), ∀t ∈ R,∀x ∈ �,

and limt→+∞ H(t)
P∗(kt) = , ∀k > , where

H(t) :=
∫ t


h(s)ds.

Let

H̃(t) :=
∫ t


h–(s)ds,

then we can obtain complementary N-functions which define corresponding Orlicz
spaces LH and LH∗ .
Similar to the condition (p), we also assume the following condition on H :

(h)  < h– := inf
t>

th(t)
H(t)

≤ h+ := sup
t>

th(t)
H(t)

< +∞.

In order to prove our results, we now state some useful lemmas.

Lemma . [] Under the condition (p), the spaces LP(�),W ,P
 (�) and W ,P(�) are sep-

arable and reflexive Banach spaces.

Lemma . [] Under the condition (f∗), the embedding W ,P
 (�) ↪→ LH (�) is compact.

Lemma . [] Let ρ(u) =
∫
�
P(u)dx, we have

() if |u|P < , then |u|p+P ≤ ρ(u)≤ |u|p–P ;
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() if |u|P > , then |u|p–P ≤ ρ(u) ≤ |u|p+P ;
() if  < t < , then tp+P(u) ≤ P(tu) ≤ tp–P(u);
() if t > , then tp–P(u) ≤ P(tu) ≤ tp+P(u).

Lemma . [–] Let E = V +X, where E is a real Banach space and V is finite dimen-
sional. Suppose I ∈ C(E,R) is an even functional satisfying I() =  and

(I) there is a constant ρ >  such that I|∂Bρ∩X ≥ ;
(I) there is a subspace W of E with dimV < dimW < ∞ and there is M >  such that

maxu∈W I(u) <M;
(I) consideringM >  given by (I), I satisfies (PS)c for  ≤ c≤ M.

Then I possesses at least dimW – dimV pairs of nontrivial critical points.

Using the version of the symmetric mountain pass theorem mentioned above, we can
state our result as follows.

Theorem . Assume that f (x, t) is odd in t, satisfies (f∗)with p– < h+ ≤ p+ and the follow-
ing assumptions:

(f) there exist η > p+ and  < σ < p–, and a, a > , such that 
η
f (x, t)t – F(x, t) ≥ –a –

a|t|σ for every t ∈ R, a.e. in �.
(f) there is � ⊂ � with |�| >  such that lim inf|t|→∞ F(x, t)/|t|p+ = ∞ uniformly a.e. in

�.

Then for any given k ∈N , the problem (.) possesses at least k pairs of nontrivial solutions.

3 Main results and proofs
In this section, we assume that N ≥  and E =W ,P

 (�), u ∈ E is called a weak solution of
the problem (.) if∫

�

a
(|∇u|)∇u∇φ dx =

∫
�

f (x,u)φ dx, ∀φ ∈ E.

Set

I(u) =
∫

�

P
(|∇u|)dx – ∫

�

F(x,u)dx, ∀u ∈ E

and we know that the critical points of I are just the weak solutions of the problem (.).
For E is a separable and reflexive Banach space, then there exist (see []) {en}∞n= ⊂ E and

{e∗
n}∞n= ⊂ E∗ such that

e∗
n(em) = δn,m =

⎧⎨⎩, if n =m;

, if n �=m.
and e∗

n(v) = αn for v =
∞∑
i=

αiei ∈ E.

Now, we set Vj = {u ∈W ,P
 (�) : e∗

i (u) = , i > j}, Xj = {u ∈W ,P
 (�) : e∗

i (u) = , i≤ j}, so

W ,P
 (�) = Vj ⊕Xj. (.)
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Lemma . Given δ > , there is j ∈N such that for all u ∈ Xj, |u|H ≤ δ‖u‖.

Proof We prove the lemma by contradiction. Suppose that there exist δ >  and uj ∈ Xj

for every j ∈ N such that |uj|H ≥ δ‖uj‖. Taking vj = uj
|uj|H , we have |vj|H =  for every j ∈ N

and ‖vj‖ ≤ 
δ
. Hence, {vj} ⊂W ,P

 (�) is a bounded sequence, and wemay suppose, without
loss of generality, that vj ⇀ v in W ,P

 (�). Furthermore, e∗
n(v) =  for every n ∈ N since

e∗
n(vj) =  for all j ≥ n. This shows that v = . On the other hand, by the compactness of
embeddingW ,P

 (�) ↪→ LH (�), we conclude that |v|H = . This proves the lemma. �

Lemma . Suppose f satisfies (f∗), then there exist j ∈N and ρ,α >  such that

I|∂Bρ∩Xj ≥ α.

Proof Now suppose that ‖u‖ > . From (f∗), we know that

I(u) =
∫

�

P
(|∇u|)dx – ∫

�

F(x,u)dx

≥ ‖u‖p– –C|u|h+H –C.

Consequently, considering δ >  to be chosen posteriorly by Lemma ., we have for all
u ∈ Xj and j sufficiently large,

I(u) ≥ ‖u‖p–( –Cδ
h+‖u‖h+–p–) –C.

Now, taking ‖u‖ = ρ(δ) = ( 
Cδh+

)


h+–p– and noting that ρ(δ)→ +∞, if δ → , we can choose
δ >  such that 

ρ
p– > C, ρ > , and I(u) >  for every u ∈ Xj, ‖u‖ = ρ , the proof is com-

plete. �

Lemma. Suppose f satisfies (f).Then givenm ∈N , there exist a subspaceW ofW ,P
 (�)

and a constant Mm >  such that dimW =m and maxu∈W I(u) <Mm.

Proof Let x ∈ � and r >  be such that B(x, r) ⊂ �, and  < |B(x, r) ∩ �| < |�|
 .

First, we take v ∈ C∞
 (�) with supp(v) = B(x, r). Considering � = � \ [B(x, r) ∩

�] ⊂ �̂ = � \ B(x, r), we have |�| ≥ |�|
 > . Let x ∈ � and r >  be such that

B(x, r) ⊂ �̂, and  < |B(x, r) ∩ �| < |�|
 . Next, we take v ∈ C∞

 (�) with supp(v) =
B(x, r). After a finite number of steps, we get v, v, . . . , vm such that supp(vi)∩supp(vj) = ∅,
i �= j, and | supp(vj) ∩ �| >  for all i, j ∈ {, , . . . ,m}. Let W = span{v, v, . . . , vm}, by con-
struction, dimW =m, and

∫
�

|v|p+ dx >  for every v ∈W \ {}.
Since maxu∈W\{} I(u) = maxt>,v∈W∩∂B()(

∫
�
P(t|∇v|)dx –

∫
�
F(x, tv)dx), if t > , then

I(tv)≤ tp+ –
∫
�
F(x, tv)dx = tp+( – 

tp+
∫
�
F(x, tv)dx). Now, it suffices to verify that

lim
t→∞


tp+

∫
�

F(x, tv)dx > .

From the condition (f), given L > , there is C >  such that for every s ∈ R, a.e. x in �,

F(x, s)≥ L|s|p+ –C.
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Consequently, for v ∈ ∂B()∩W and t > ,∫
�

F(x, tv)dx≥ Ltp
+
∫

�

|v|p+ dx –Cth
+
∫

�\�

H(v)dx –C,

and

lim
t→∞

∫
�
f (x, tv)dx
tp+

≥ L
∫

�

|v|p+ dx –C
∫

�\�

H(v)dx≥ Lr –CR,

where r = min{∫
�

|v|p+ dx, v ∈ ∂B() ∩ W } and R = max{∫
�\�

H(v)dx, v ∈ ∂B() ∩ W }.
Observing that W is finite dimensional and we have R < +∞, r > , the inequality is ob-
tained by taking L > 

r ( +CR); the proof is complete. �

Lemma . Suppose f satisfies (f), then I satisfies the (PS) condition.

Proof We suppose that ‖un‖ > ,

M + o()‖un‖
≥ I(un) –


η
I ′(un)un

=
∫

�

P
(|∇un|

)
dx –


η

∫
�

p
(|∇un|

)∇un dx +
∫

�

(

η
f (x,un)un – F(x,un)

)
dx

≥
(
 –

p+

η

)
‖un‖p– – a|�| –C‖un‖σ .

Noting that  < σ < p–, η > p+, {un} is bounded. By [], Lemma ., we know that I satisfies
the (PS) condition. �

Proof of Theorem . First, we recall that W ,P
 (�) = Vj ⊕ Xj, where Vj and Xj are de-

fined in (.). Invoking Lemma ., we find j ∈ N , and I satisfies I with X = Xj. Now,
by Lemma ., there is a subspaceW ofW ,P

 (�) with dimW = k + j = k + dimVj and such
that I satisfies (I). Since I() =  and I is even, we may apply Lemma . to conclude that
I possesses at least k pairs of nontrivial critical points. The proof is complete. �
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