Fang and Duan Boundary Value Problems 2012,2012:138 0 BOU nda ry Value PrOblemS

http://www.boundaryvalueproblems.com/content/2012/1/138 a SpringerOpen Journal

RESEARCH Open Access

Existence of nontrivial weak homoclinic orbits
for second-order impulsive differential
equations

Hui Fang” and Hongbo Duan

“Correspondence:
kmustfanghui@hotmail.com Abstract

Department of Mathematics, . . . . . .. .
Kuﬁmmg University of Science and A sufficient condition is obtained for the existence of nontrivial weak homoclinic

Technology, Kunming, Yunnan orbits of second-order impulsive differential equations by employing the mountain
650500, China pass theorem, a weak convergence argument and a weak version of Lieb's lemma.

1 Introduction

Feckan [1], Battelli and Feckan [2] studied the existence of homoclinic solutions for im-
pulsive differential equations by using perturbation methods. Tang et al. [3—6] studied
the existence of homoclinic solutions for Hamiltonian systems via variational methods.
In recent years, many researchers have paid much attention to multiplicity and exis-
tence of solutions of impulsive differential equations via variational methods (for example,
see [7-12]). However, few papers have been published on the existence of homoclinic so-
lutions for second-order impulsive differential equations via variational methods.

In this paper, we consider the following impulsive differential equations:

q't)+V'(t,q(0) =0, ae.te(tn)jE (1.1)
q7(¢)-4(5)=1(aw), jez (1.2)

where V:R x R — Ris of class C, V(£,0) = V'(¢,0) = 0 with V’(t,x) = (V/3x)(¢, %), and
I € C(R,R) with I(0) = 0. Z denotes the set of all integers, and ¢; (j € Z) are impulsive
points. Moreover, there exist a positive integer p and a positive constant 7" such that 0 <
to<ti< <ty <T,tup=t+kT,Vke€Z,1=0,1,...,p—1. q’(t],*) = limy_.o+ 4'(t; + h) and
q'(t7) = limy,_o+ q'(¢; - h) represent the right and left limits of ¢'(¢) at = ¢; respectively.

We say that a function ¢(z) is a weak homoclinic orbit of Egs. (1.1) and (1.2) if g satisfies
(1.1) and

g€1q€ CRR): > |q(t)|* < +00,q4 € L*(R), q(+00) = 0,q(KT) = 0,k € Z.

j==00

Motivated by the works of Nieto and Regan [7], Smets and Willem [13], in this paper we
study the existence of nontrivial weak homoclinic orbits of (1.1)-(1.2) by using the moun-
tain pass theorem, a weak version of Lieb’s lemma and a weak convergence argument. Our
method is different from those of [8, 9].
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The main result is the following.

Theorem 1.1 Assume that Egs. (1.1) and (1.2) satisfy the following conditions:

(Hy) There exists a positive number T such that
V'(t+T,x) = V'(t,x), V(t+T,x)=V(t,x), V(x)eR%:

(H) limyo @ = 0 uniformly for t € R;
(H3) There exists a constant p > 2 such that

xV'(t,x) > uV(t,x) >0, V(,x)eR xR\ {0};
(Hy) There exist constants ag > 0 and a; > 0 such that

V(t,x) > aolx|", foranyl|x| >1,teR;

V(t,x) <ap|x|*, forany|x|<1,teR;

(Hs) There exists a constant b, with 0 < b < (T “22 , such that
w+2)Ip
|1(x)| < blxl,
and

2‘/0X1(t)dt—1(x)x§ 0.

Then there exists a nontrivial weak homoclinic orbit of Eqs. (1.1) and (1.2).
Remark 1.1 (H;) implies that g(¢) = 0 is an equilibrium of (1.1)-(1.2).

Remark 1.2 Set V(t,x) = (2 + sint)x?, I(x) = o E It is easy to see that V/(¢,x), I(x) satisfy
(Hy)-(Hs).

2 Proof of main results
Lemma 2.1 (Mountain pass lemma [14]) Let E be a Banach space and ¢ € C*(E,R), e € E,
r> 0 be such that |le|| > r and

b:= Hiyrulfrw(ﬂ > (0) = ¢(e).

Let

I'={y eC([0,1,E): ¥(0) =0,y (1) = e},

d:= inf sup ¢(y(t)).
Vel tef0,1] ( )

Then, for each ¢ >0, § > 0, there exists y € E such that
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(V1) d-2e <¢p(y) <d+2¢
(v2 dist(y E) < 26;
) Il )l < 5.

In what follows, /2 denotes the space of sequences whose second powers are summable

on Z (the set of all integers), that is,

Z|a]| <+0o, Va={a}[* el
jE€L

The space /2 is equipped with the following norm:
1
9 2
nmm=<§jm|).
JEL
We now prove some technical lemmas.

Lemma 2.2 The space

H:={qe CR,R): {q,(t,)};jfoo €’,q € I*(R),q(+00) = 0,q(kT) = 0,k € Z}

is a Hilbert space with the inner product

(%@M=A%@%@M

and the corresponding norm

gl = </R|q/(t)|2dt)2.

2.1)

(2.2)

(2.3)

Proof Let {g,} be a Cauchy sequence in H, then {g,} is a Cauchy sequence in L*(R) and

there exists y € L*(R) such that {g,} converges to y in L*(R). Define the function g(t) as

follows:

t
q(t)=/ y(s)ds, kT <t<(k+1)T,keZ.
KT

It is easy to see that
kT
hlir{)1+ q(kT — h) = / y(s) ds.

(k-1)T

Since g,(kT) = 0, k € Z, we have

kT
/ y(s)ds
(k-1)T

\ / 3(6)ds - [0 KT) - (k- nT)]]
(k-1)T

‘ [¥(s) - q,,(s)] ds
k-1)T

Page3of 13
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kT
< / 19(6) - d(5)| ds

k-1)T

kT ) )
[ / 15(5) - 2,5 ds}
(k-1)T

T} [ /R Iy(s) - q;(s)|2ds] ’

which implies that f(::)T y(s)ds = 0, that is, g(kT~) = 0, k € Z. Therefore, g is continuous.
Thus, g € C(R,R) and ¢’ = y.
Noticing that, for kT <t < (k +1)T, we have

¢ 2 (k+D)T 2
‘ / y(s)ds| < [ / |y(S)|dS]
kT kT

(k+1)T ) +00 ) +00 9
T/ |y(s)| ds = T/ |y(s)’ ds—T/ |y(s)| ds,
kT kT (

k+1)T

IA
I

T

IA

| 2

|a(2)

IA

which implies g(£00) = 0. On the other hand, since

+00 p-1 +o00
Z |q(tj)|2 = Z Z |q(t1+kp)|2,
j=—00 1=0 k=-o00

and kT < tjp =t + kT < (k+1)T (I=0,1,...,p — 1), we have

2 (k+1)T )
<T / |y(s)| ds.
kT

2 tl+kp
i) = ‘ f »(s)ds
kT

Therefore,

pr-1 +o0

+00 (k+1)T
Z|q(t,~)|2§Z Z T/kT |y(s)|2ds:pT/D;|y(s)|2ds<+oo.
Jj=—00

1=0 k=-00
Consequently, g € H and {g,} converges to g in H. The proof is complete. d

Lemma 2.3 For any q € H, the following inequalities hold:

1 2
|qloc = sup|q(®)| < T2llqller,  gla:= [ f |q(t>|2dt} <Tlqllu-
teR R

Furthermore, q € H(R) and

gl := [/R(M(t)l2 + !q’(t)lz)a’t]7 <[7*+ 1]% gl z,

+00
> la@®)[* < Tpliql?-

j==00
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Proof For any t € R, there exists an integer k such that (k —1)T < ¢ < kT. Then it follows

from Cauchy-Schwarz inequality that

kT kT
40| = |akT) - q(0)] < / Iq/(6)| ds < / 1/(5)| ds
¢ *k-1)T

kT 1
1 N2 2 1
<T> |7 )| ds) <T2lqllu
(k-1)T

which implies |g|c < T: llgllz-

Furthermore, from the above argument, we have

+00 kT ) +00 kT )
> [ awPasty [ q@Pd=,
ke—oo Y k=1)T ke—oo Y (-DT

thatis, |gl> < Tllqllx.
Since

7|, = ( /R M(t)!zdr) = liqll
gl = U}R(|tz(t)|2 + Iq’(t)|2)dt] T < [1% + 1]% gl

Finally, we obtain that

-1 +o0 p-1 +o0

dola@)” =3 3 latw+ k1) =
Jj=—00

(k+1)T
/ q(s)ds
1=0 k=—00 1=0 k=—oo! kT

pr-1 +o0

(k+1)T
S E ([ wela]

2

= pTllqll3;-
The proof is complete.

Define the functional ¢ : H — R as follows:

1 0 raly)
= §/R|q/(t)|2dt_/RV(t'q(t))dt +;§o-/0 I(s)ds, qe€H.

Lemma 2.4 If (H)-(Hs) hold, then ¢ € C'(H,R) and

(2.4)

(¢'(q),h) = /R q O (t)dt - / V'(t,q(0))h(t) dt + Z (q())h(t), YheH. (25)

j=—c0
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Proof From the continuity of V, V' and (H;)-(Hs3), we see that, for each y > 0, there exists
C, >0, such that

|V'(t,%)| < C, Ixl, \mes%gmﬁ VteR,|x| <y.
Since g(¢) — 0 as t — oo, there exists p,, > 0 such that

’q(t)’ <y, whenever [t| > p,.
Therefore, we have

[V'(t.a®)| < C

1
|V(L‘,Q(t))‘ = EC)/|Q(’:)}2: forall |£] > Py -

It follows from (Hs) that, Vg, k € H,

+00

> I(g)h(y)| <

j=—c0

Z 1(9(®)) Z bla(t)| |n(®)|

j=—o0

Sb(Z|Q(tf)|2> (Z|h(t;’)|2> < +00,
Jj=—00 j=—00

and

Z ‘/q(t; (s)ds

+00 max{0,q(¢)}
<§:/' |HMdy<—§:M@ﬂ<+m> (2.6)

Thus, ¢ and the right hand of (2.5) is well defined on H. By the definition of Fréchet deriva-
tive, it is easy to see that ¢ € C'(H,R) and (2.5) holds. a

Lemma 2.5 [fq € H is a critical point of the functional ¢, then q satisfies (1.1).

Proof If g € H is a critical point of the functional ¢, then for any # € Cj°(R), we have
@)= [ doned- [ vieaomod S 1{g(t))ice).
R
=0

Vj € Z, take h € C3°(R) such that /() = 0 for any ¢ € (-o0,] U [tj,1,+00), and & €
C5°([t, tjs1]). Therefore, we have

o:/M4mem—/Mvﬁ4mwmm,

J J
by the definition of the weak derivative, which implies

q' () + V'(t,q(t)) =0 a.e. on (4, 4:1). (2.7)

Hence, the critical point ¢ € H of the functional ¢ satisfies (1.1). The proof is complete.
O
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Lemma 2.6 Under the assumptions (Hy)-(Hs), there exists e € H and r > 0 such that
llelly > r and

b:= inf @(y)>@(0) > ¢ple).

Iyllp=r

Proof If ¢ € H and ||q|ly < -, then, by Lemma 2.3, |g|o < 1. Hence, by (Hs) and
T2

max{(0, q(t,)}
/ s)’ ds

min{0,q(¢)}

Lemma 2.3, we have

i /q(t)
j=—00 0

AM§ gMS

1 1
=~ > blaw)]* = — bIpliqll, 2.8)
j=—00
and
+oo +00 .
Z q(t))q(t) < Z 11(a@®)]|a@)] < Y bla@)|” < bTpliqli;. 2.9)
Jj=—00 Jj=—00

It follows from (2.8), (H4) and Lemma 2.3 that

~ 1 5 00 rq(ty)
v(q) = EIIqIIH—/RV(t,q(t)) dt +,§o/0 I(s)ds

v

1
lalf -~ [ [ao]" de - 5bplald
R

v

B 2 1
gl — ailql’s? / |q(®)] dt—Eprnqnz
R

nt2
A-bIp)lqllz; —ar T Nl

v
N = N= N

Therefore, as 0 >2 and b < %p' there exists 7 > 0 such that inf4,,-- ¢(g) > 0.

u+2)Tp
Now, let v e H \ {0} and A > 1. Then there exists a subset (4, 5) of R and X large enough

such that
k|v(t)’ >1, forallte(a,b).

Since V' (¢, Av()) > 0, by (2.4), (H4) and Lemma 2.3, we have

2

A b +00 )\V(tj)
pOw) < = / V@ de - / V(Lavo)de+ Y / 1(s)ds
a j=—00 0
)\’2 b u )\’2
< vl —aon [ o) de+ S otpivi

)\2 b
- ?(1+pr)||v||?,—aok“/ lve)|" dt.

Since p > 2, the right-hand member is negative of A sufficiently large, and there exists
e:=Av € H such that |le||y > r, ¢(e) < 0. The proof is complete. O


http://www.boundaryvalueproblems.com/content/2012/1/138

Fang and Duan Boundary Value Problems 2012,2012:138 Page 8 of 13
http://www.boundaryvalueproblems.com/content/2012/1/138

Lemma 2.7 Under the assumptions (Hy)-(Hs), there exists a bounded sequence {q,} in H
such that

o(qn) — d, ¢'(gn) = O, dist(g,, H) = 0,

where d := inf, cr sup,c(o1; 9(v (2)), T' = {y € C([0,1], H) : y(0) = 0, (1) = e}. Furthermore,
qn does not converge to 0 in measure.

Proof Allwe have to prove is that any sequence {g,,} obtained by taking & = 1/n* and § = 1/n
in Lemma 2.1 is bounded and ¢,, does not converge to 0 in measure. For # sufficiently large,
it follows from (H3), (Hs), (2.4), (2.5), (2.8) and (2.9) that

1
d+1+gulln = (qn) - ;< (qn), qn)

1 1 L,
:(Ejﬁ/|uﬂﬁ /[@%my;v@%mmmﬁw

+ Z foqn ) I(s)ds — — Z H(qu®)) (5
-0 17_00

(1.1 » 1 v
= (2 M)IanIIH M/R[Mv(t,qn(t)) V' (t,qu(t))qa()] dt

S (" 1 ds— 2 S o) an)
—_ nt. nt,
Zoo/ Dds= s 3 Haneaty

1 1 bTp Tp
2(2 M)MAH———MAH g1l

1 1 bIp bIp )
ol G 12

Since b < ﬁ, {g,} is bounded in H.
Let ay := sup,cn{llgnllx}. By (Hz) and (Hs), we have

1
EV/(t, wu—V(t,u) = o(uz), asu — 0,

which implies

% V' (t, u)u — V(t, u)
5 <00
u

as:= sup

1
|u|<T2ap

For any ¢ > 0, there exists § > 0 such that, for |u| < §, we have

1
‘5 V'(t, u)u— V(t,u)| < eu.

Therefore, by Lemma 2.3, we have

]{%Vm%mﬁvm%ﬂw
R

t Wqn — V (2, n)] dt
|:/|;In #)>8 /qn(t <5] |: qn)qn — q


http://www.boundaryvalueproblems.com/content/2012/1/138

Fang and Duan Boundary Value Problems 2012,2012:138
http://www.boundaryvalueproblems.com/content/2012/1/138

< meas{|q,(t)| > 8 }aslqul’ +€lqnl>

<meas{|qg.(0)| > 8} Tasas + e T*a3. (2.10)

If g, converges to 0 in measure on R, then it follows from (Hs) and (2.10) that

0<d-= QD(qn) - %((/)/(Qn)’ %) + 0(1)

1 +00 an(t) 1 &2
- [[3v e -viea|as X [ 19ds- 5 3 1@ ow
. 0 X
J==00 Jj==00
< meas{|q.(t)| > 8} Tajas + e T°a)
1 +o0 qn(tj)
+3 > [2 / I(s) ds-z(qn(tj))qn(t,»)} +o(1)
= 0
j=—00
< meas{ |q,,(t)| > 5}Ta§a3 + stag +0(1)
= o(1),
a contradiction. The proof is complete. d

The following lemma is similar to a weak version of Lieb’s lemma [15], which will play
an important role in the proof of Theorem 1.1.

Lemma 2.8 If {u,} is bounded in H and u, does not converge to 0 in measure, then there
exist a sequence {x,, } C Z and a subsequence {u,, } of {u,} such that

Un (- +%, T) = u#0 in H'\(R).
Proof If

lim sup sup |un(t)| =0,
n=>0 4eZ te[qT-T,qT+T)

then, for any ¢ > 0, there exists 7y > 0 such that, for n > n,, we have

sup  sup  |uu(0)] <e.
qeZ telgT-T,qT+T]

Therefore, for all £ € R and n > ng, we have
|un(t)] <,

which implies
nli)rglomeas{t eR: |u,,(t)| > 8} =0,

a contradiction. Therefore, there exist a constant p > 0 and a subsequence {#;} of {n} such
that

sup sup |u,,k(t)| >p, keN,
x€Z te[xT-TxT+T)

Page9of 13
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where N denotes the set of all positive integers. So, for k € N, there exists x,,, € Z such that

sup |unk (t)| > p.
te[xnk T—T,x,,k T+T]

Let vy, (£) = up, (t +x,,T), t € R. Since {u,} is bounded in H, by Lemma 2.3, it is easy to see
that {v,, } isbounded in H'(R). Therefore, {v,, } has a subsequence which weakly converges
to u in H'(R). Without loss of generality, we assume that Vy, = uinH L(R). Thus, Vg — U
in H'([-T, T]). Therefore, v,, uniformly converges to u in [-T, T']. Noticing that

sup |v,,k(t)| = sup |unk(t+xnk T)| = sup |unk(t)| > p,
te[-T,T) te[-T,T] t€lwn, T-Ttny T+T)
we have
sup |u(t)| > p,
te[-T,T]
that is, u # 0. O

Proof of Theorem 1.1 By Lemma 2.7, there exists a bounded {g,} in H such that
olan) —>d,  ¢'(g)—>0,  distgnH) >0,

and {g,} does not converge to 0 in measure on R, where d is the mountain pass value. By
Lemma 2.8, there exists a sequence {x,, } in Z such that

Wk = @u (- + %5, T) =~ 0 #0  in H'(R).

For any fixed k € N, set s = t +x,,, T and J(s) := h(s —x,, T). Then s; := t; + x,, T (j € Z) are
impulsive points and

Wil = ( /R |h’k(s>|2ds>2 - ( /R |h’(s)|2ds>2 = Il

For any & € C3°(R) with A(kT) = 0, we have

((p’(wk),h):/Rw,’((t)h’(t)dt—/RV’(t,wk(t))h(t)dt+ Zl(wk(t,))h(tj)

j=—00

= /R (4}, (& + %0 TV () = V' (8, G, (¢ + %, T)) 1(2)] dlt

+ 3 1(qn (& + %0, T)) ()

j=—00

= /[q;k(s)h/(s—xnkT)—V’(s—x,,kT,q,,k(s))h(s—x,,kT)] ds
R

+00

+ > (g (5))hls; = %, T)

jm—o0
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= /ﬂ;[q;k (M (s =%, T) =V’ (s, Gy (s))h(s — Xy T)] ds

+00

+ > 1 (5))hls; = %, T)

jm—00

[ [0, 109~ V' (5.0, ) s

+00

+ Z 1(qng (57)) ()

j=oc

= (' (qu), hi).

Hence, we have
(@' (@x), )| = (@' @) )| < (@@ || - Wkl = @' (@) || - NNy
which implies
(@' (i), h)—> 0 ask — oc. (2.11)

Since H C H'(R), wx — w in H, therefore

/w;(h/e/w/h/. (2.12)
R R

As wp — w in HY(R), {wy} is bounded in H'(R) and hence |wg|s < ¢ for some ¢ > 0 and all
k € N. Also, {wx} uniformly converges to w on supp(/#) and, V' being uniformly continuous
on supp(h) x [—c¢, c], V' (¢, wi)h uniformly converges to V'(t, w)h on supp(/) x [—¢, c]. By the

Lebesgue dominated convergence theorem, this implies that

‘/V/(t,a)k)h—>/\//(t,a))h. (2.13)
R R

For any 4 € H and ¢ > 0, take Jp sufficiently large such that

+00 % -Jo-1 %
(th(t»lz) <e, (Zlh(t»ﬁ) <e.

v=lo+1

Y

Since wx — @ in H'(R), wx —  in H([¢_y,, t},]), therefore wi uniformly converges to » in
[t_j,» t5,]. By the continuity of I, there exists K > 0 such that, when k > K, we have

Jo

2 (ox®) - 1(w(6)) ]t

j==Jo

<e.

Since

’

[I(wi(8))] < blex(®)

, o [H(e®)] < blo)
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it follows from Lemma 2.3 that

1

(}f [1(w()) ~1 (w(ti))]z) j

i=Jo+1

< ﬁ”( 5 [lonto)]* + I”(”"Z])

v=Jo+1
1
< V20 Tp(lloxl?; + i) ]2

<2b\/Tp max{sup lwiell > IIwIIH}-
k

Similarly, we have

Jo-1 2
(Z [F(ex(5)) -1 (w(t;))]2> < 2by/Tpmax{sup ol ol |

j=—00

By the Cauchy-Schwarz inequality, we have

> [1(ex) - Hw(e) Jits)
j=—00
+00 Jo
< | Y [Hex®) - 1{®) ]h@)| + | D [H(()) - (o)) ]h(s)
j=Jo+1 j==Jo
-Jo-1
+1 2 [(on() = 1(w0(6)) ] (1)
j=—00
+00 % +00 % Jo
< ( Z o) -ste)F) (S o) +| Sltone) oty
v=lo+1 y=Jlo+1 j==Jo
~Jo-1 —Jo
+ (Z [[(wr(@®)) - 1(w(t))) ) (Z |h(t))| )
Jj=—00
< [1 + 4b\/T_pmax{sup lwk |l s ||a)||H”8, Vk > K.
k
Therefore,
Jlim Z (e (8))h(t)) = Z I((8))h(t). (2.14)
Jj=—00 Jj=—00

From (2.11)-(2.14), we have

(¢'(@), ) = lim {¢/ (@), ) = 0.

k— 00

Thus, ¢’'(w) = 0 and w is a nontrivial weak homoclinic orbit of (1.1)-(1.2). a
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