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1 Introduction
In this paper, we consider the Cauchy problem of the 3D incompressible magneto-

micropolar fluid equations

Qqu+u-Vu—-b-Vb+V(m +|b>)—xVxw=(u+x)Au, t>0,xecR3
Iw+u-Vw—kVdivw+2xw—xV xu=yAw, t>0,xecR3
db+u-Vb—b-Vu=vAb, t>0,xcR> (L1)
divu=divb =0, t>0,xeR3

u(x,0) = up(x), w(x, 0) = wo(x), b(x,0) = bo(x), xeR3,

where u is the fluid velocity, w is the micro-rotational velocity, b is the magnetic field and =
is the pressure. Equations (1.1) describe the motion of a micropolar fluid which is moving
in the presence of a magnetic field (see [1]). The positive parameters p, x, ¥, k and vin (1.1)
are associated with the properties of the materials: p is the kinematic viscosity, x is the
vortex viscosity, v and « are the spin viscosities and % is the magnetic Reynolds number.

Recently, Yuan [2] investigated the local existence and uniqueness of the strong solutions
to the magneto-micropolar fluid equations (1.1) (see also [3—6] for the bounded domain
cases). Thus, the further problem at the center of the mathematical theory concerning
equations (1.1) is whether or not it has a global in time smooth solution for any prescribed
smooth initial data, which is still a challenging open problem. In the absence of a global
well-posedness theory, the development of regularity criteria is of major importance for
both theoretical and practical purposes. We would like to recall some related results in
this direction.

Note that if the micro-rotation effects and the magnetic filed are not taken into account,
i.e., w=b =0, equations (1.1) reduce to the classical Navier-Stokes equations. The global
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regularity issue has been thoroughly investigated for the 3D Navier-Stokes equations and
many important regularity criteria have been established (see [7-16] and the references
therein). In particular, the first well-known regularity criterion is due to Serrin [14]: if the
Leray-Hopf weak solution u of the 3D Navier-Stokes equations satisfies

T 4 .2 3
/o||u(',t)||Lpdt<oo w1th;1+;:1and3<p§oo,

then u is regular on (0, T']. Beirao da Veiga [8] and Penel and Pokorny [13] established
another regularity criteria by replacing the above conditions with the following ones:

r 2 3 3
Vu(-t t<oo with—+—=2and - <p <o0,
[ Ivutolg, 4 h d
0 q p 2

or

T
/||83u(-,t)||2,,dt<oo with = + = <~ and2 < p < co.
0

RN
N w

Tl w

More recently, Cao and Titi [17] established a regularity criterion in terms of only one of
the nine components of the gradient of a velocity field, that is, the solution u is regular on
[0, TTif

p+3

T
/||8ku/(~,t)||zpdt<oo With§+l§9§ and 3 < p < 00,
0

where k,j=1,2,3 and k #j, or

) i 2,332
/o |j2¢,0)||7, dt <00 with p + P

and 2 < p < oo.

This result on 9z is stronger than a similar result of Zhou and Pokorny [18] in the sense of
allowing for much smaller values of p. These regularity criteria are of physical relevance
since experimental measurements are usually obtained for quantities of the form du;.
The regularity criterion by imposing the growth conditions on the pressure field are also
examined by, for example, Berselli and Galdi [9], Chae and Lee [10] and Zhou [15, 16], i.e.,
if

/T“n(-t)Hq dt < o0 with%+§—2and§< <00
o q p 2 SP=
or
r 2 3
/||Vn(-,t)||zpdt<oo with = + = =3and1<p < oo,
0 q P

then the solution u is regular on [0, T] (see also [14, 17] for the Besov spaces cases). For
the 3D Navier-Stokes equations with boundary conditions, Cao and Titi first introduced
a regularity criterion in terms of only one component of the pressure gradient based on
the breakthrough of the global regularity of the 3D primitive equations [19]. Recently, Cao
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and Titi [20] established a similar regularity criterion for the Cauchy problem of the 3D
Navier-Stokes equations, that is, the solution u is regular on [0, 77 if

T
/ ||83n(-,t)||zp dt <oo with % + § < @,p > E andg > 1.
0 q p 7 16

When the micro-rotation effects are neglected, i.e., w = 0, equations (1.1) become the
usual magnetohydrodynamic (MHD) equations. Some of the regularity criteria estab-
lished for the Navier-Stokes equations can be extended to the 3D MHD equations by mak-
ing assumptions on both u and b (see [21, 22]). Moreover, He and Xin [23, 24] showed that
the velocity field u plays a dominant role in the regularity issue and derived a criterion in
terms of the velocity field u alone (see also [25, 26] for the Besov spaces cases). Recently,
Cao and Wu [27] further proved that if

r 2 3
/ ”83u(~,t)”zp dt<oo with—+—<landp>3,
0 q p
or

’

T 2
(-, <00 with — +
/||a (oY, e >
0

NS

7
< — d >
4Fan p=>

Tl w

then (u,b) is regular on [0, T]. More recently, Liu, Zhao and Cui [28] have adapted the
method of [27] to establish a similar regularity criterion for the 3D nematic liquid crystal
flow.

If we ignore the magnetic filed, i.e., b = 0, equations (1.1) reduce to the micropolar fluid
equations. The theory of micropolar fluid has attracted more and more scholars’ attention
in recent years. In particular, Dong, Jia and Chen [29] recently established a regularity
criterion via the pressure field, which says that if

r 2 3
/ ||n(-,t)HZPdt<oo with — + —=3and1<p < o0,
0 q p

then (u, w) is regular on [0, T] (see also [30, 31] for the Lorentz spaces cases).
For the full magneto-micropolar fluid equations (1.1), Yuan [32] recently showed that
the solution (u, w, b) is regular on (0, T if

T
/ ||u(-,t)||zpdt<oo with§+l§7§1and3<p§oo, (1.2)
0

or
T p 2 3 3
/||Vu(~,t)||l},dt<oo with =+ = <2and = <p < c0. (1.3)
0 q p 2

For other regularity criteria of equations (1.1), we refer to Gala [33], Geng, Chen and Gala
[34], Wang, Hu and Wang [35], Yuan [2] and Zhang, Yao and Wang [36].

In this paper, we establish two new regularity criteria for the 3D magneto-micropolar
fluid equations (1.1) in terms of one directional derivative of the velocity u or of the pres-
sure 7 and the magnetic field b by adapting the method of [27]. Without loss of generality,
we set the viscous coefficients u + x =y =v=x =1.
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We now state our main results as follows.

Theorem 1.1 Assume that (1, wo, bo) € H>(R3) with divug = divby = 0. Let (u, w, b) be
the corresponding local smooth solution to the magneto-micropolar fluid equations (1.1) on
[0, T) for some T > 0. If the velocity u satisfies

r 2 3
f |0su(-,0)||7, dt := M(T) <00 with =+ = <landp >3, (1.4)
0 q p

then (u, w, b) can be extended beyond T.

Note that when p = 3, g = oo and thus the corresponding assumption in (1.4) should be

understood as esssup, ;. [|dsu(-, £) || 3 := M(T) < o0.

Remark 1.1 Theorem 1.1 improves the regularity criterion in [32] (see (1.3)) in the sense

that it depends only on one directional derivative of the velocity u.

Theorem 1.2 Assume that (1, wo,by) € H'(R?) N L*(R3) with divuy = divby = 0. Let
(u, w, b) be the corresponding local smooth solution to the magneto-micropolar fluid equa-
tions (1.1) on [0, T) for some T > 0. If the pressure w and the magnetic field b satisfy

g ) p 2 3 7 12
/0||83(n(-,t)+|b| (~,t))||Lpdt::M(T)<oo wzth;1+251and7§p§4, 1.5)

then (u, w, b) can be extended beyond T.

Remark 1.2 When b = 0, we also obtain a new regularity criterion for the micropolar

equations determined by one direction derivative of the pressure 7 alone.

We shall prove our results in the next section. For simplicity, we denote by || - ||, the
L? norm and by (-, -) the L? inner product throughout the paper. The letter C denotes an
inessential constant which might vary from line to line, but does not depend on particular

solutions or functions.

2 Proof of the main results
In this section, we give the proof of Theorem 1.1 and Theorem 1.2. The following lemma

plays an important role in our arguments. Its proof can be found in [37] or [27].

Lemma 2.1 Let the parameters ry, ry, r3 and r satisfy

1 1 1
1<r,r,r3,r<oo and 1+—-=—+—+—,
r r ry r3

and suppose that ;¢ € Li(R3) (i = 1,2, 3). Then there exists a constant C = C(ry,r3,13) > 0
such that

1 1 1
lelly < Clidwpl 1820115 11951133
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In particular, when ry = r, =2 and r3 = p € [1,00), there exists a constant C = C(p) such
that

1 1 1
lellsy < Clldrplly 1920115 1001,

for any ¢ satisfying 0,9, 9,9 € L*(R3) and d3¢ € LP(R3).

Proof of Theorem 1.1 Observe that for any (uo, wo, bo) € H>(R?) with divug = divb, = 0,
there exists a unique local smooth solution to equations (1.1) (see [2]). Let T, be the max-
imum existence time. To prove Theorem 1.1, it is sufficient to show that the assumption

(1.4) implies T < Ty. Indeed, we shall prove that under the condition (1.4), there exists a
constant C > 0 such that

tim sup(| V(6 I3+ |Vw@)|2 + | VeO)|;) < C. 2.1)

which implies that T is not the maximum existence time and thus the solution (u, w, b)
can be extended beyond T by the standard arguments of continuation of local solutions.

Firstly, we derive the energy inequality. For this purpose, we take the L2(R?) inner prod-
uct of u, w and b with equations (1.1), respectively, sum the resulting equations and then
integrate by parts to obtain

| o

1
5 3t 101+ w5 + [6@)]3)

[aW

t
+([u@|; + [ VWO + [ VO 13) + |divw@)]; + 2 |wio)];

= x(u, Vxw)+ x(w,V X u)
< (v 2+ [vw]) + (@ 2+ [wio]2)

where we used divu = divb = 0 in the first equality and Hoélder’s inequality in the last
inequality. Thus,

d
3 =015+ [wol + [20]3)
+([va@ |3 + [ Vw5 + [Ve@)]5) + | divwe)]; + x [w)|;

< C(Jlu@)];+ [wo)-
It follows from Gronwall’s inequality that
[u@[; + [wo)]; + o]
+ [Tl + 9w+ [95; + Jaivwto) ]+ xwto) ) e
< Ce“(lluoll3 + Iwoll3 + +11Boll3)- (2:2)

Now we split the proof of the estimates (2.1) into two steps.
Step 1: Estimates for fOT(||V83u(~,t)||% +[IVasw(, )13 + IVIsb(-, £)[13) dt.
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To this end, differentiating the first three equations in (1.1) with respect to x3, taking the
L?(R3) inner product of d3u, 33w and d3b with the resulting equations, respectively, and

then performing a space integration by parts, we get

1d
2dt
= —(83”, 83u . Vu) + (Bgu, 83b . Vb) + (83”,]9 . Vagb) + X(33I/£, V x 83W),

|5u(®)|; + 1V 330113

|

2 .
|Bsw(@) ||, + IVaswll3 + [l div dswll3 + 2x 193wl

N =
o

t

= —(03w, d3u - Vw) + x (03w, V X d3u),

| e

[ agb(t)”j +[|V3b|13 = —(33b, 831 - Vb) + (33, 83b - Vi) + (33, b - Vzu),

N =
o

t

where we used the facts

(031, u - Vsu) = (331/!, Vag(n + |b|2)) = (03w, u - Vosw) = (3b,u - Vozb) =0
by div & = 0. Noticing that

(031, V x 93w) = (03w, V x d3u) and (93u,b - Vizb) + (33b,b - Vozu) =0

by divb = 0, we can sum the above equations to obtain

o (s} + oo + 55002
+ (IVosull3 + IVaswl3 + [VIsbl3) + Il div os w3 + 2 [[0s w3

= —(03u, 03u - Vu) + (03u, 93b - Vb) — (93w, d3u - Vw) + 2x (33w, V X d3u)
— (03D, 031 - Vb) + (33b,33b - Vu)

=h+hL+13+14+15 + 1.

We now estimate the above terms one by one. To bound I;, we first integrate by parts

and then apply Holder’s inequality to obtain
1| = |(u, 31 - V)| < IVosull2lidsull oy llsllzp- (23)
e

It follows from the Gagliardo-Nirenberg inequality that

1 -1
2l & = ClIVasully 19sull,
=

and from Lemma 2.1 that

1 1 1 2 1
3 3 3 3 3
lllsp < Cllowuelly 92ully 10sull; < ClIVully 1931l .
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Substituting these two estimates into (2.3) and then using Young’s inequality, we see that

forp>3

R T Ty
IL] < ClIVasully " ll8sully “Vally 1052l

1
= 7 IVsull3 + Clidsul; 19l sl

[

2
Z”VB?»u”z + Clldsull 3 (1Vulls + 1952057 ), (2.4)
and that forp =3
4 2 2 1
1| < ClIVasully 19sull; [IVully |95ulls
1
= Envaaun% + Cll9sull3 (I Vaell3 11834 3). (255)

For I, by Holder’s inequality, the Gagliardo-Nirenberg inequality and Young’s inequal-
ity, we have for p > 3

L] < ”VbHZHaBMHp”aSb”!%

1-3 3
< CIIVbll2[10sull, 195D, * 1V asblly

2 2p 2p—6

V33112 + CIIVBIL” 18sull,” 18:b1,7°

IA

Q| = 0| |k

217 2p-6

IVasb1% + C(IVBIZ + N3sully ) 13:b11,7"°

A

IA

2p
IVasb13 + C(IIVDI3 + sully ™) (1 + 1355113), (2.6)
and for p =3

| < [IVDIl21105ull31193b1l6 < ClIVDI2 105311V 95b]12

1
< gnvaabn% + ClVbII3 119313 (2.7)

Applying similar procedure to I3 and I5, we have for p <3

21ﬂ
5] < —||V33W||2 + C(IVwII3 + l10sully™ ) (L + 19swl13) (2.8)
and
2p
5] < —||V33b||2 +C(IVDI3 + 18311y ) (1 + 11855113), (2.9)
and for p =3

1 1
|13|sgnvaswn%+C||VW||%||agu||§, |15|sgnvagbn%+C||Vb||%||agu||§. (2.10)

Page 7 of 14
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For the term Iy, by using Holder’s inequality and Young’s inequality, it can be bounded

as follows:
_ 1 2 2
4] = 2x (93w, V x d3u) < ZI|V33M||2 + Cllaswll3. (2.11)

Finally, we can follow the steps as in the bound of I; to estimate Ig. Precisely, by integra-

tions by parts and Holder’s inequality, we have
\ls| = |33, 35b - Vu)| = |(, 03 - VI3b)| < IV3sbl219501 e lleelzp-
o

Then the Gagliardo-Nirenberg inequality, Lemma 2.1 and Young’s inequality yield that for
p<3

1+1 1-1 2 1
[Is] < C|[V33bll, " 1183blly *IIVully || 33l

1 2 2 % %
= 7 IV3sbI3 + Cllasbll3 1 Vaell, ™™ 1dsull, ™
1 2 2 2 27175
= 7 IVasbl3 + Cllasbl3 (Va3 + 13sull5 ™), (2.12)
and for p =3
3 3 3 3
Is] < CIIVasbI13 13:b115 | Vull3 195215
1
< vaagbn% + Cllasbl3 (IVull3119513). (2.13)

Combining the estimates (2.4)-(2.12), we see that for p > 3

d
3 o) [ + [aswd)[; + |as0(0)]15)

+ (IV3sull3 + IVBzwll3 + IV33b135) + Il div s w3 + x | s wll

2p

< C(1+ 1833 + 105 wll3 + 133113) (1 + 1Vull3 + Vw3 + VDI + 1951157 ),
and that forp =3
P 4o 24 lasb()|?
E(H su(®) |5 + | 9w, + [8:6() ;)
+ (IV3sull? + IVaswl2 + |Vasb12) + I div s wll3 + x |ds w2
< C(1+ [135ull3 + 13swl3 + 135B113) (1 + [ Vaell3 + Vw3 + I VBII3) (1 + [18343).

Thus, Gronwall’s inequality together with the energy inequality (2.2) and the assumption
(1.4) implies that for p > 3

(|os@)] + | aswi@) | + |3sb(®)]3)
2p
< (1+ 13510112 + 135w 2 + |5 |12)eC BAHIVHEBHIVHEIR VB (el ) oo
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Cct 2 2 2 “lgd-q 1
= (L 105m0ll3 + 15 woll3 + [[95bo13) e 1otz imollelfoly s CHBTHEEE

= G,,(M(t)) <o (t<T)
with ¢" = 2p/(p - 3), and

2 2 2
(losu@]; + |osw@]; + |0:6@)][,)
t 2 2 2 ‘ 2
< (1 + ||83u0||§ + ||83w0||% + ”33b0”§)ecfg(1+I\Vu(r)||2+l\VW(f)H2+||Vb(f)llz)(l+\|0314(!)\\3)dr
Ct 2 2 2 2
< (1 + ||33u0||% + ||83w0||§ + ||33b0||§)e(?e A+lluo NIz +llwo I3 +11bo l13) (+M(£)")

= Gg(M(t)) <o (t<T).
Then

T
/0 (||V83u(r)H§ + HVBSW(I)HE + HVng(r)”i + ||diV 83w(r)||§ + X || 83w(t)H§) dr

< G(M()) < oo, (2.14)

which is the desired estimates.
Step 2: Estimates for (||Vu(¢)|l2 + |VW(@) |2 + | VD(©)]l2)-
For this purpose, taking the L2(R?) inner product of Au, Aw and Ab with the first three

equations in (1.1), respectively, and then performing a space integration by parts, we have

1d
E&HVu(t)Hj +lAu)? = (A, u - Vi) — (A, b - Vb) — x (Au, V x w),

1d
2dt
1d
2dt

||Vw(t)||§ + [ Aw|3 + |[Vdivw| 2 + 2x | VWI[Z = (Aw,u - Vw) — x(Aw,V X u),

|Vb@)|; + 1AbI3 = (Ab,u - Vb) - (Ab,b - Vu).

Noticing (Au, V x w) = (Aw, V X u), we sum the above equations and integrate by parts

to obtain
Ld 9wl + [vwo | + Ve |2
S (IVu; + [vw@]; + Vb))
+ (lAul3 + [ AWl3 + [1ADI3) + IV divw]3 + 2x | Vw3

=(Au,u-Vu) — (Au,b-Vb) + (Ab,u - Vb)

—(Ab,b-Vu)+ (Aw,u-Vw) =2x(Aw,V X u)

3 3 3
= (- > (O, Ogta - V) + > (s, b - V) + Y (0, dih - V)
k=1 k=1 k=1
3 3
- Z(akb, oxu - Vb) — Z(akw, ot - Vw)) —2x(Aw,V x u)
k=1 k=1

1
< (IVull3 + 31 Vulls VB3 + [ Vulls [ Vwli3) + ZnAwn% +Cl|Vull3. (2.15)
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By using the interpolation inequality and taking p = 2 in Lemma 2.1, we have
; b vuldy 1o, vutd 15, v’
IVull3 < CIVull; 1IVullg)™ < C(IVull;y V5 Vull; 185 Vuly )",
where V, = (31, 3;). Then Young’s inequality yields

1
IVul3 < Z”VhVM”% + ClIVull3 1195 V>

1
< IV Val3 + C(IVaI3 + 115 Varll3) [ Va3,

Similarly,
3IVullslIVoI3 + [ Vulls I Vw3
<4||Vul +3IIVDI3 + Vw3
1
< E(nwwn% + | VaVbI5 + 1V, Vwl3)
+ C(IVall? + 18 Vaul3) IVl + C(IVDIE + 19:VDII3) [ VD2

+ C(IVWII3 + 1135 Vw3) I Vw3

Substituting the above two estimates into (2.15), we have

d
V=[5 + Vw5 + [veol3)

+(1Aul + 1 AWIG + 1 ABIZ) + IV divwl + x| VWl
< CL+ Va3 + 195 Vaell3 + IVWIl3 + 85V wly + [VBII3 + 85V b][3)

x (IVull3 +1IVwl3 + [VB]3).

By using Gronwall’s inequality, the energy inequality (2.2) and the estimate (2.14), we con-
clude that

([vu@]; + [vwo]; + [vo0)]2)
+ / (Jau@]; + [aw@)[; + [ab@)]; + |V divw@)]; + x [ Vw(o) ;) de

< (IIVuo I3 + IVwoll3 + | VBol|3)

s € JoWHIVu@)I3+1183 Va0 I3+ T w(@)13+103 V(@) 13+ VB(D) 3 +1133 Vo()I13) de

< CG(M(2)) < o0

for any ¢t < T, which implies that the desired estimates (2.1) hold and thus the solution
(u, w, b) can be extended beyond T. O

Now we turn our attention to proving Theorem 1.2. We will first transform equations
(1.1) into a symmetric form.

Page 10 of 14
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Proof of Theorem 1.2 Following from Serrin type criteria (1.2) with p = 4 and g = oo on
the 3D magneto-micropolar fluid equations (1.1), it is sufficient to prove that

Jim (Ju@l, + [w@], + [6@)],) < o0 (2.16)

To do this, we set

vi=u+b, v =u-b,
and then equations (1.1) are converted to the following symmetric form:

AVt + Vv VIV + V(T + [bY) - xV xw=Av', t>0,xeR3
oW + %(V+ +v7)-Vw-Vdivw + 2xw
—AVx (W +v)=Aw, t>0,x€R3
IV +v -V +V(m +|b>) - xV xw=Av", t>0,xeR? (2.17)
divvt =divy~ =0, t>0,xeR?,
v (x,0) = uo(x) + bo(x), w(x, 0) = wo(x),
v (%,0) = up(x) — bo(x), xeR3

Firstly, taking the L2(R?) inner product of v*, w and v~ with the above equations, respec-
tively, and integrating by parts, we can obtain the energy estimates similar to (2.2).

Next we take the L2(IR?) inner product of [v*|?>v*, |w|>w and |v|2v~ with the first three
equations in (2.17), respectively, and then integrate by parts to obtain

1d _ 1 _
2 POl + ol + @l + S AV IS+ IvwPls + 19 [5)
([ 9 5+ Twvwls + [[v[9v[5) + 2wl + 1wl div ]
=/ (71+|b|2)(v+~V|v+|2+v’-V‘v’|2)dx—/ (divw)(w- VIw|*) dx
R3 R3
+ X/ |v+}2v+ (Vxw)dx+ 5/ lw|*w - (V X (V+ +V_)) dx
R3 2 R3

+ X/ ‘v"zv_ (V xw)dx
R3

=1L + 1, + I3 + 11y + IIs.
We now bound the above terms one by one. For II,, we have
LA T N A e A R [P
It follows from the integration by parts, we see

1= | [ w9 x ) as] <t 90 I

< [ [vv |5 + Clwlg + v .

N =
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Similarly, we have

3 = 3 iV + Clwtd + v [+ €l
and

\ll5| < %IIIV‘IWIIE + Clwlg +Cv

The process for estimating II; is more subtle. It follows from Hoélder’s inequality and
Lemma 2.1 that

R BIN(A N R T AR

< o (e + 162 |} G +1P) Hi(llf LI Pl + 1 19 L)

8p
p—4

To estimate the term involving V(i + |b|?), we take the divergence of the first equation of
(2.17) and find

7+ |b)?=(-A)'V- (V’ . Vv*)

by divv* = div(V x w) = 0. Then the Calderén-Zygmund inequality, Holder’s inequality
and the interpolation inequality imply that

[V +16P)] sz, = IV - (v - V)

HB_p
7p—4

< ||V’-VV’r || 8p
7p—4

1
< Clvv [ s, =V Ll Pl
3p-4
B2 o
=l LIl vl
Similarly, we have
2 B ooy
[V 1) e, < IV LI L™ (VT

Ifp> %, combining the above two estimates, we see

2 % + % - 7%_;12 -2 44;; + +2
| = Clas(r + 161) [ Ivvt I3 1v- ™ IV Pl v e v P,

7p-12 4

1 2 Zp-12 '
+ Clas(r + P 21w 13 v 17 19 P17 v LIV P,

1 1
S U

b|? 3(5?74) + % - 43((751;7_—142)) + 5271—74
+ Clas(mr +1617) | 76 v 5 v 2 v

e e oy
+Cll3 (r + 1B12) [ 350 [ 9w |77 v |3
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1 1
o T MR
o ([ 2L 2 43—((731’_,142)) 4
+ C([[as(m + 1612) | 772 + [V D) (v 5+ vr,)
sy 5 4;(7319—342) .
+C(Jas( +162) | 7772 + 9w [ ) (v [ + v )

1 1
S N L

FC(las(r + 1P+ v [+ [0 ) e [+ [ 1))

The case p = % can be similarly dealt with.
Summarily, we conclude that

|

1
2 POl + wol + @)

o

t

2\ || a2 +]12 -2 — |4 4 +||4
= C(U [as o+ 16P) [ 772+ [V [y + v ) (L v Ly + i + v ])-

Thus, Gronwall’s inequality together with the assumption (1.5) and the energy estimates
gives the desired L* estimates (2.12) and thus the solution (, w, b) can be extended be-
yond T. 0
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