Kozlov and Rossmann Boundary Value Problems 2012, 2012:142 0 BOU nda ry Va I ue PrOblemS

http://www.boundaryvalueproblems.com/content/2012/1/142 a SpringerOpen Journal

RESEARCH Open Access

Asymptotics of solutions of the heat equation
in cones and dihedra under minimal
assumptions on the boundary

Vladimir A Kozlov' and Jirgen Rossmann?’

“Correspondence:

juergen.rossmann@uni-rostock.de Abstract

?|nstitute of Mathematics, Universit . . , .

of Rostock, Rostock, D-18051, / In the first part of the paper, the authors obtain the asymptotics of Green’s function of
Germany the first boundary value problem for the heat equation in an m-dimensional cone K.
Full list of author information is The second part deals with the first boundary value problem for the heat equation in

ilable at the end of the articl . . . Lo
avalableatine end otihe oricle the domain K x R™™. Here the right-hand side f of the heat equation is assumed to

be an element of a weighted L, 4-space. The authors describe the behavior of the
solution near the (n — m)-dimensional edge of the domain.

Introduction

The paper is concerned with the first boundary value problem for the heat equation

6;—L;—Au =f inD xR, 1)
u=0 on(dD\M) xR (2)

in the domain
D= {x = (x’,x”) X eK,x' e ]R"’m},

where K = {x' = (x1,...,%,,) : X'/|x'| € Q} is a cone in R", 2 < m < n, Q denotes a sub-
domain of the unit sphere, and M = {x = (x’,x”) : &’ = 0} is the (n — m)-dimensional edge
of D. We are interested in the asymptotics of solutions in the class of the weighted Sobolev
spaces W}i’;; ﬂ(D x R). Here the space W/ o (D x R) is defined for an arbitrary integer / > 0

pa;B
and real p > 1, g > 1, B as the set of all function u(x, t) on D x R with the finite norm

1521 ) = (/(f 2 I

qlp Uq

p(B-21+2k+|a|) |8tk8§‘u(x, t)|P dx) dt) ) 3)
lor|+2k <21
In the case [ = 0, we write W;?, ';;ﬁ = Ly 4. If, moreover, 8 = 0, then we write L, 50 = Ly 4.

For the case of smooth boundary €2 (of class C*°), the asymptotics of solutions was
obtained in our previous paper [1]. For the particular case p = g = 2, m = n, we refer also
to the paper [2] by Kozlov and Maz’ya, and for the case p = g #2, m = n = 2, to the paper
[3] by de Coster and Nicaise. The goal of the present paper is to describe the asymptotics
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of solutions with a remainder in Wli';; 5(D x R) under minimal smoothness assumptions
on the boundary. Throughout the paper, we assume that 9Q € C"'.

The paper consists of two parts. The first part (Section 1) deals with the asymptotics of
the Green function for the heat equation in the cone K. We obtain the same decomposition

k , A +2k
’y t Z Z 8 C](y t)|x | / ¢](wx) +Rg(x/,y/, t)

K Jel
i 45K (o; + k) k)

asin [4, 5] (for the definition of A}f', ¢j, mj, cjand o), see Section 1.1). However, the proofin
[4, 5] does not work if 32 is only of the class C'!. We give a new proof, which is completely
different from that in [4, 5]. Our tools are estimates for solutions of the Dirichlet problem
for the Laplace equation in a cone in weighted L, Sobolev spaces and asymptotic formu-
las for solutions of this problem which were obtained in the papers [6, 7] by Maz’ya and
Plamenevskii. Moreover, we use the estimates of the Green function in the recent paper
[8] by Kozlov and Nazarov. In contrast to the case Q2 € C*, the estimates for the second
order x'- and y'-derivatives of the remainder R, contain an additional factor (|x'|d(x))~*
with a negative exponent —¢. Here, d(x’) is the distance from the boundary of dK.

In the second part of the paper (Section 2), we apply the results of Section 2 in order to
obtain the asymptotics of solutions of the problem (1), (2) for f € L, ;,4(D x R). We show
that, under a certain condition on , there exists a solution of the form

U, ) = Z ZMWW”’(@(%HW(&Q

k1
A*<2ﬁm/pk0 4k(a+k(k

with a remainder w € W2

foy ﬂ(D x R). Here, H; is an extension of the function

/ /c,yt T)® ",y t - 7)f (y, 7) dydr,

® denotes the fundamental solution of the heat equation in R”"~. The proof of this result
(Theorem 2.2) is essentially the same as in [1]. However, the proofs of some lemmas in [1]
have to be modified under our weaker assumptions on 9€2.

At the end of the paper, we show that the extensions of the functions %; can be defined as

Hj(x,t) = (Ehj)(x,t) = / / T(r)R(z”)hj (x” —rZ’ t— rzr) dz' dr,
0 RVI—VVI

where T and R are certain smooth functions on R, and R", respectively (see the begin-
ning of Section 3 for their definition). This extends the result of [1, Corollary 4.5] to the

casep #q.

1 The Green function of the heat equation in a cone
We start with the problem
ou .
E—A/u =f inK xR, (4)

u=0 on (0K\{0}) x R. (5)
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Let G(«',y',t) be the Green function for the problem (4), (5). It is defined for every y € K
as the solution of the problem

BG(x,ry/1 t)
at
G(x,y,t)=0 forx' € 0K\{0},¢€R, G(x,y,t)=0 fort<0.

- A¢G(x,y,t) =8(x' —y)8(t) inK xR,

Furthermore, (1 - ¢)G(-,y,-) € Wi‘é(l( xR)IfA] <2—-B-m/2 <) (Ali are defined be-
low), and ¢ is a function in C{°(K x R) equal to one in a neighborhood of the point
(«',t) = (¥,0). Here W;; (K x R) is the space of all functions u = u(x’,£) on K x R such
that |'|f-2+2k+1219%3% 1y € L, (K x R) for 2k + |or| < 2. The goal of this section is to describe
the behavior of the Green function for |x'| < +/Z.

1.1 Asymptotics of Green’s function

Let {A;}75) be the nondecreasing sequence of eigenvalues of the Beltrami operator —§ on
Q (with the Dirichlet boundary condition) counted with their multiplicities, and let {¢; j°=°1
be an orthonormal (in L,(£2)) sequence of eigenfunctions corresponding to the eigenval-
ues A;. Furthermore, we define

M= EJA-m2P A and o= -1e T

This means that )L;—L are the solutions of the quadratic equation A(m—2+21) = A;. Obviously,
)»]T >0andkj‘<2—mforj=1,2,....
By [8, Theorem 3],

k92 aY G(x,/ R - I A 1 IR
|8t 3x’3y’G(x,y,t)| <ct 4 (m) (|y,| +ﬁ)

5 <d(x’))_8°‘ (d(y/))_ey exp(_xlx/ —y’lz) ©)
[’ [y'] ¢

for |a| <2, |y| <2.Here d(x’) denotes the distance of the point " from the boundary dK.

Furthermore, ¢, is defined as zero for || < 1, while ¢, is an arbitrarily small positive real
number if |«| = 2. Actually, the estimate (6) is proved in [8] only for k = 0, but for a more
general class of operators, parabolic operators with discontinuous in time coefficients.
If the coefficients in [8] do not depend on ¢, then one can use the same argument as in
the proof of [8, Theorem 3] when treating the derivatives along the edge of the domain
D = K x R"7. This argument shows that the kth derivative with respect to ¢ will bring
only an additional factor £ ¥ to the right-hand side of (6).

The following lemma will be applied in the proof of Lemma 1.2. Here and in the sequel,
we use the notation r = |«'| and w, = x'/|x/|.

Lemmal.l Let G(x',y,t) be the Green function introduced above, and let Gi(r, p, t) denote
the Green function of the initial-boundary value problem

a,U(r,t) —r ((ra,)2 + (m = 2)ro, — Aj) Ulr,t)=0 forr>0,t>0,

u,t)=0 fort>0, U, 0)=o(r) forr>0.
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Then
/Q Gy, )ty do = |y | " Gi(|«'], [y |, £) #y(e). (7)
Proof The solution of the problem
(0 — Av)u(x',t) =0 forx' € K,t>0, (8)
u(x,t)=0 forx' €dK,t>0,  u(x,0)=¢p(x) )

is given by the formula
u(x,t) = /1; Gy, t)p(y)dy.
We define
Uj(r,t) = /Qu(x/, t)j(wy) doy.
Then it follows from (8) and (9) that
o Uj(r,t) — r2 ((;"8,)2 + (m —2)rd, — Aj)LI}-(r, t)
= /Q(Bt —172((r3,)* + (m = 2)rd, — A)))u(x) pj(wy) dey

- [ @ ) do 0.

Furthermore,

def

Uj(r, 0) = () /Q 6 () y(y) daoy.

Therefore,

U0 = [ G000 do= [ [ G000 dord

= /KGI‘(V: ly/

Comparing this with the formula

i) () |y [ " dy.

0= [ uw, g ddo.= [ [ 665000 dosty)ay,

we get (7). O

In the sequel, o is an arbitrary real number satisfying the conditions

o>, o #a forallj. (10)

Page 4 of 30
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We define G, (x,y',£) = 0 for o < 1], while

Z u; x 3)ci(v,t) foro >Af, (11)

A+<a

where
2uaﬂ
ul® (x &) =r g ¢1(60x) Z m (12)
: 2 a2 (/P 7 yI?

(1, t) = ——— |y , 20, 13
¢(y,t) Fi+a) | < ” ¢i(wy) exp i (13)

+

o—-A;
and m; = [%]. Here, we used the notation

ow=0(c-1)---(c-pu+1) forp=12,... and o =1

We define Vé' 5 (K) as the weighted Sobolev space with the norm

Iullvz (/ Zr”ﬂ el |8°‘u(x)|de>

lor| <l
for 1 < p < oo and integer [ > 0.

Lemma 1.2 Suppose that o is a real number such that o > A and (o - 1;)/2 is not integer
Jor A} <o. Furthermore, let1<p < oo and =2 -0 —m/p. Then

G(x,y,t) =Gy (x,),t) + Ry (5,5, 1),
where 3£ R, (-,y/,1) € V, 5(K) fory € K, >0, [y| <2.

Proof We prove the lemma by induction in m1; = [(o — A{)/2].

First, let A\] < o <A]. Then it follows from [7, Corollary 4.1 and Theorem 4.2] (see also
[6, Theorem 3.2]) that atkayy, G(-,y,t) € v; p(K) for all y’ € K, t >0, |y| <2, where § =
2 — o —m/p. Thus, the assertion of the lemma is true for o < A{.

Suppose the assertion is proved for o < A] + 2/. Now let A{ + 2l <o <A +2(/ +1). We
seto’ =0 —2ifl>0and o’ = A{ —¢ if [ = 0, where ¢ is a sufficiently small positive number.
Then

o/—)L;' O'—)\.;
|: 5 ]:[ 5 ]—I:mj—l fork;<a’.

By the induction hypothesis, we have
G(x,y,t) = Gor (¥, ¥, £) + Ry (¥, 7/, 1),

where G, is given by (11) (with o’ instead of o and m; — 1 instead of ), 8tk ayV,R(,,(~,y’, t) e
V;’ﬁ,(K), B’ =2 -0’ —m/p. The coefficients c;(y/, ) in G, are given by (13) and satisfy the
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equation (9; — Ay)c;(¥/,t) = 0. Therefore,
(0: — Ay)R, (x5, ) =

forx/,y € K, t > 0. Obviously, G,/ (ax’,ay,a’t) = a ™G, (x',y,t) for a > 0. Using the same
equality for the Green function G(«',y, ), we obtain

Ry (ax,ay,a’t) =a "R, (x,y,t) fora>o0.
Furthermore,

ARy (x,y,t) = AvG(x, ), t) = Aw Gy (&, ¥, £)
= (0 — Av)Gor (x5, t) + 3Ry (x5, 2)

mj—1

8kcl(.y/ t) AF+2k
— LI ; + 0 Ry (£, 9, 8).
Z/; 4k (7 +k) (k ¢,(a)x) 2o ( y )
Using the formula
Apr’T () = ak(oy + )T y(wy),
we get
am,'c' /,t rk;+ZMj—2 (w
Ax’Ra/ (x’,y/, t) — Z ,fl l(y ) ¢[( x) n 3th/(x/,y',t)
n 47 (l/l’lj — 1)!(01' + mj — 1)(mv—1)
A/ <o’ 7
=Ay T + 3;R(,/(x/,y/,t), (14)
where

8mj (Y, t + )
s = Z : t C](y ) V)Ljﬂm/(ﬁj(a)x)

m, .1 . .
it 4" m;)(o; + m;)om)
)]

(X’ =0 for [ =0). Let x be a smooth function with compact support on [0, 00) such that
x(r) =1 for r < 1. Using the notation r = |«'|, the function x can be also considered as
a function in K. Since o’ < A/ + 2m; < o for A < o', we have XBZ‘B;’,E/(-,}/, t) e V;ﬂ,(l()
and (1 - x)3k3) /(- y,¢t) € V;ﬂ(l() for all ¥ € K, t > 0. Consequently, afayV,(R(,/(~,y’, t) —
2(-y,t) € v;ﬁ,(K) and
koy
Av 33 (Ror (ny,) = x 2'( Y1)
= 8!‘”8;’,Rg/(-,y/, t) + Ax,afayy,(l — 0T (4y5t) € Vi 4(K).

Applying [7, Theorem 4.2], we obtain

00 (R (€,5,1) - XI5/ (,7,9)

= Z Cuky (y/’ t)r’\ﬁ D (@) +viy (2,9, 8), (15)

’ +
o'<hj <o
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where v, (-9, £) € V; 5(K). The coefficients ¢, are given by the formula

Cujey (V5 8) = / 8k3 (0cR (x,,8) + Ay (L= Y)Z' (¥, 5, 8))vu () d, (16)
K
where v, (x) = - o ﬂ¢>,i(wx) The integral in (16) is well defined, since

aka (0:Ry (35 8) + Ap (L= X)Z' (-7, 8)) € Vi 4 (K) N V3 5, (K)

)24

and v, € V°, ﬁ(l() + V, ﬁ,(l(),p/ =pl(p-1), for o’ <A} <o.The remainder v, and the
coefﬁc1ents Cuky in (15) satisfy the estimate

”VkV( Q/t ”v2 y T Z |CMkVy t

o <)W_<O'

<07y (@uRor(-51) + A =20 (Y ) o gonve oy 17

Obviously, ¢k, (¥, 1) = afa;, c.(y,t) = 8!‘8;/,0#,0,0()/, t). This means that

Ry (€,001) ~ xOB(Wot) = Y a0t +v(¥.5,0),

o'<rf<o
where atkayy, v(, ¥, t) = v, (LY, t) € V;ﬂ (K). Consequently,
Ry (x,y,t) = Z(x,),t) + Ry (5,5, ), (18)

where

. am"c’(y’ t)VA;+2mj¢<(w )

z x/, ,,t =3 x’, /,t + c /,t r}‘ﬂ W) = t YV i\Wx
@7, 0) =E(@ 5 0)+ D el )rtiguen) = ) Pl T
U’<A;’L<U A/fr«, y

and R, (x',y,t) = v(x,y,t) + (x — 1)E'(x',y,£). Obviously, 3k8 R, (-,y,t) € V;ﬁ(K) for
ly| < 2. Using (18) and the equality

Gy (¥, ¥, t) + 2(x,5,t) = G, (x5, ),
we conclude that
G(x,y,t) =G (¥, ), t) + Ry (¥, )/, ) = Go (&, 7, £) + Ry (2, ¥/, 2).

It remains to show that the coefficients

c (y', t)

prm=1
20“/ / R, (x, Y, t +Ay(1-x)Z ( Xy, t))q&,L(wx)dwr dr (19)

Page 7 of 30
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in (15) have the form (13) for 0’ < 1, < 0. First, note that
(0 — Ay)eu(y,t) =0 fory €K,t>0,

since (39; — Ay )Ry (x,9,t) = 0 and (9, — Ay) X' (x,9,£) = 0.
Obviously, the functions 9,G,(x,y/, t) and

Ax(l - X)E,(x,,j/, t)

=r2((ra,) (1L - )" (¥, 5/, ) + (m = 2)8,(1 - Y)Z' (¥, 5, 2) + (1 - x)8,%")

contain only functions ¢;(w,) with A< o’. Thus, the orthogonality of the functions ¢;

implies
fQ (BRor (,7,) + A1 = )5 (5,7, 8)) By 02) dooy
= L Z)tG(x’,y/, t)d)u (wy) dw, (20)
for 1}, > o’. Applying Lemma 1.1, we conclude that c, (/, ¢) has the form

(v, 2) = 07"l (0, 1), (21)

where p = |y/|. Since R,/ (ax’, ay,a’t) = a "R,/ (x, ¥, t) and ¥/ (ax’, ay’, a*t) = a ™™ X' (x', ¥, t)
for all 4 > 0, it follows from (18) that

Z (a¥ic,(ay,a®t) —ac, (v, ) gu(ws) = a "Ry (X5, £) — Ry (ax', ay, a*t).

’ +
o'<hj <o

The function on the right-hand side belongs to Vp% s(K) forally € K,¢>0,a >0, while the
left-hand side belongs only to sz, 5 (K) if

culay,a’t) =a™ P, (v, t).

Combining the last equality with (21), we get the representation

+ p2 _ ,02
cu(y/st) = p7" i)y <4_t) = p 2P (w))hy, (4_t)

Inserting this into the equation (3; — Ay)c, (', t) = 0, we obtain
rzh;i(r) +(r =0, = V)rh, (r) + (0, + Dhy(r) = 0.
The substitution /,,(r) = e"r?**1u(r) leads to the differential equation

U (r) + (o, + 1=1)rd(r) = 0
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which has the solution
1
u(r)=di +d, / s e ds

with arbitrary constants d; and d,. Consequently,

_ p2 o+l ,02 1
Cu (}/, t) = plu—2¢ﬂ(a)y)<4—t> CXp(—E) (dl +d, /2/(4t) g oulgs ds) (22)
p

Using (6) and (17), one gets the estimate
|9k, (v, 8)| < ) o1~

with certain functions Ci for p = |y| < +/t. Thus, the constant d, in (22) must be zero.
Integrating (19), we get

1

/0 Cu(y,’ t) dt = _VM(J’/) = Epk’j‘d’u(wy)

by means of (20). Hence,

A2 *(p? ot p* 1,
dypi £ E)ar= —pha .
10" ¢>M(wy)/0 (4t) eXp( 4t> 2%’) i (wy)

The integral on the left-hand side is equal to ipzl"(a#). Thus, we get u(r) =d, = 2/T' (0, +1)
and

ou+l —r

2
hu(r):mr e .

This means that the formula (13) is valid for the coefficients ¢; if 6 < )\; < 0. The proof of
the lemma is complete. O

1.2 Point estimates for the remainder in the asymptotics of Green’s function
We are interested in point estimates for the remainder R, (x,y/, £) in Lemma 1.2 in the case

|x'| < /. For this, we need the following lemma.

Lemma 1.3 Suppose that u € L, g(K) and dVu € L, g(K), where p > m. Then
1/p
sup d(x/)m/pr(x)ﬂ lu(x')| < c( P (|d () Vu(a) [P+ |u(x)[") dx’)
xek K

with a constant ¢ independent of u.

Proof Let x;, be a point int K, and let By be a ball centered at x;, with radius d/2 = d(x;)/2.
We introduce the new coordinates y' = dy'x’ and set v(y') = u(dyy’) = u(x’). Obviously, the
point y, = dy'x; has the distance 1 from 9K. Hence,

ol se [ (T s ) )y

[y =yp1<1/2
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This implies

)" < edy” | (o)) + ux)]")

Since dy/2 < d(x') < 3dy/2 and r(x})/2 < r(x') < 3r(x;)/2 for x' € By, we obtain

apr(ay) )| < [ () Tou) P+ u(w)|) o

Bo
The result follows. O
Using the last two lemmas, we can prove the following theorem.
Theorem 1.1 Suppose that o is a real number satisfying (10). Then
G(x,y,t) = Go (¥, 5, t) + Ry (%, )/, 1),

where

o—|a| / AI—\V\—S
aka%a yR oy _(mlal+ 1y D) <|x|> ( [yl )
|0/050] R, (.5, 8)] < et™ i i
dx’ —Eq aw —&y /12
* ( |§§|)> ( |3|)> exp(_ﬂi' ) 2

Sor|x'| </t |a| <2,|y| <2.Heree, =0 for || <1, while &, is an arbitrarily small positive
real number if |a| =

Proof Since G, = G, for small positive &, we may assume, without loss of generality, that
(o= )»}')/2 is not integer for )\;F < 0. We prove the theorem by induction in n1; = [(6 —1])/2].
If \] <o < A{, then the assertion of the theorem follows from [8, Theorem 3]. Suppose
that ] + 2/ <o < A{ +2(/ + 1), [ > 0, and that the theorem is proved for o < A{ + 2/. We
set 0’ =0 — 2 if [ > 0. In the case [ = 0, let ¢’ be an arbitrary real number satisfying the
inequalities A{ <0’ <A} and 6’ > o — 2. By the induction hypothesis, we have

G(x,y,t) = Gy (x,y,t) + Ry (¥, 5, 1),

where G, is given by (11) (with ¢’ instead of o and m1; —1 instead of m1)). Since G/ = G,
for sufficiently small 8, it follows from the induction hypothesis that

Koo v ket +iy i X1 ol olal I\
0( ! / —K=m+|x|+|y R
010505 Ror (7 1) < et (ﬁ) (Iy’|+x/f>

d / —Ea d / —&y /12

[« [y'] t

for |&'| < 24/t, o] <2, |y| < 2. As was shown in the proof of Lemma 1.2, the remainder
R,/ admits the decomposition

Ror(,/,8) = 2(,5,0) + Ro (+,5',0),
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where

7 ()3, ¢y, )
4mfm/!(aj + le)(mj)

T(x,y,t) = Z

2 <o
]

and Bfa;,Rg(-,y’, ) e V2,(K) fort>0,y €K, |y| <2.Here =2 - o —m/p. Furthermore
(cf. (14)),

AyR, (x’,y’, t) =Ay (Rg/(x/,y’, t) - Z(x’,y/, t)) =Ay (R(,/(x/,y/, t) - E’(x/,y’,t))

= a[RJ/ (x/,y/, t).

Let x be a smooth cut-off function on the interval [0,00), x =1 in [0,1) and x = 0 on
(2,00). We define 1 (x/,t) = x(t2|«’]) for &' € K, t > 0. Then

A (0 (¥, 0)3L05R, (x,/,8)) = £ (4,9, 1),
where
f=xd) Ry + 2V, x1 - V) (R, — Z) + (Ay x1)d), (R, - 2).
Thus, by [7, Theorem 4.1], there exists a constant ¢ such that
0735 Re (43 0) |2 g =€l (70 o 25)

forally e K, t>0, |y| < 2. We estimate the norm of f. Using (24), we get

k+1q¥ k=1—(m+|y|+0’+8)/2 ly'| Hlrie "|)’,|2
a * a/Rrr/ %y /1t <ct” —ioimlylto s E—— (), —_
”Xl t y ( y )“ V[gB(K) - <|y,| + \/Z> p< ¢ >

/ - 1/p
> (d()/)) 4 </ |x/|p(ﬂ+a/+8) dx/) )
|y/| |’ |<2/t

Here, p(B + ¢’ + 8) > —m. Thus,

I XlatkHa;Rv’ (1) VO, (K)

<Ct_k_<m+|y|+a>/z< vl )*f"y'*(d(y/))'”ex <_x|y/|2>
= . p .
v+ Ve 4 t

Since V, x; vanishes outside the region +/z < |x'| < 2+/¢ and [0% (', )] < ct™1472 the es-
timate (24) also yields

9011 0 Ro (0) |y, e+ 1B 0R (0 g,

/ A -lyl-e A\ € /12
Sct—k—(m+|y|+a>/z< 'l ) e (d(y)) Vexp(-—ldy| >
ly'| + +/t 1yl t

Page 11 of 30
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Finally, it follows from the inequality

A=yl /12
k k- s 1YY" Iyl
|0y 0fc, (v, )| <t (WWHMZ(E) exp| ~~c

that
k / k /
| Vaxa - Vad) 8 2 ( 1) | Vo * Ay x)d) o= (-5 1) | Vo @)
7N\ A -y /12
—k—(m+|y|+0)/2 |y|)/ ( |y| >
<c t — exp| —
) (%) (%
i <o
/ A=yl /2
Sct‘k‘(m*“"“’)”(ily' ) 1 exp(— bl )
ly'l + vt 8t
Consequently, by (25),

s Lo\
>t 3 okR Syt < 7k (m+|y+0)/2<7
”Xl( )y ¢ a( J )Hv;ﬁ(zo— ]+ i

X (d(y,)>£y exp (—M) (26)
1yl t

with a positive constant «. Applying the estimate

S (o, )R (5 8) | < €00 .0

le|=1

for p > m (cf. [9, Lemma 1.2.3]), we obtain (23) for |«| <1.
It remains to prove the estimate (23) for || = 2. Let p(«') be the “regularized distance” of

the point x’ to the boundary 9K, i.e., p is a smooth function in K satisfying the inequalities
ad(x) < p(x') < cd(x)

with positive constants ¢; and ¢; (¢f [10, Chapter VI, § 2.1]). Moreover, p satisfies the

inequality
950 (<)] = erl) .
We consider the function
v(&,5,8) = (%, 8)p ()0, 0) 0, R (%', 7, )

for 1 <j < m. It follows from the equation Ay R, = 9;R,’ that

Ayv=fi+fo+fs
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where fi = x1005,0),9f'Ro1, fo = (A (X10))05,0), Ry and f = 2V (x10) - Vir 05,0 0f Ry .

x; Oy Xty
Using (24) and (27), we obtain

1OV )\ (P
‘ t_k e ( |y | ) ( ) (_ )’
WGl g0 = Y1+ Ve v ) P\

Let x2(x',£) = x (|x'|/(24/%)). The inequalities | A, (x10)| < cr™* and |V (x10)| < ¢ yield

”fZ (-y,1) ” VO, () + ”ﬁ‘("y/’ t) “ VO, (K)

= el 028, ()

< ct—k—(WIwa)/z( b’/_' )kl_m_s (d(y/))_gy exp(—KWlZ)
B | + V¢ 1yl t

(see (26)). Consequently by [7, Theorem 4.1], the function v = VL 8y 8kR satisfies the

estimate

[vC7 D) vz o < ellf+ o + g,

< Ct—k—(m+|7|+o)/2< |)"| )Al_y_g(d(y/)>_8y eXp(_K|y/|2>
- Iy + V/t 1yl 4

Applying Lemma 1.3 to the function u(x’,y’,t) = x1(x',£)9;, 8;, athg («,%',t) with an arbi-

trary multi-index « with length || = 2, we get

sup d(x/)Wp |x/|'3 Ixa («,2)0% Byy, IR, (x,,1)|

x'eK
1/p
c(/ e perxlaa‘j‘,Z);atha)(x’,y’, t) ‘p + ‘(xlaﬁay)iafRa)(x',y’, t) ’p) dx’)
K

< VR ()2 o+ LR () Lz )

< Ctk(m+|1/|+d)/2< |J’/| )kl ~lrl-e (d(y/)>_5y exp<—K |)"|2)
- Y|+ vt 1yl t

for |a| =2, |y| <2, p > m. Since p can be chosen arbitrarily large, the estimate (23) holds

IA

in the case || = 2. The proof is complete. g
2 Asymptotics of solutions of the problem in D

Now we consider the problem (1), (2) in the domain D. Throughout this section, it is
assumed that f € L, ,,5(D x R), where p and 8 satisfy the inequalities

2-B-mlp>r]=2-m-A] and 2—ﬂ—m/p#k}’ forj=1,2,..., (28)

and q is an arbitrary real number > 1. Let G(x',/, £) be the Green function of the problem
(4), (5). Furthermore, let

~ |x//_y//|2
® //, ”,t - (4 t(m }’1)/2e _
(x",y",2) = (4mt) xp( ————

Page 13 of 30
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be the fundamental solution of the heat equation in R”. Then
Gx,y,t) = G(x,y, )P (x",, 1)
is the Green function of the problem (1), (2). We consider the solution
t
u(x,t) = / / G,y t—1)f(y,T)dydr (29)
-0 JD
of the problem (1), (2).

We again denote by G, («', ), £) the function (11) introduced in Section 1. In the sequel,
o is an arbitrary real number such that

o>2-f-mlp, A ¢[2-p-mip,o] forallj (30)
and
o—A 2-B-r—ml

Then G, («',¥',£) = Ga—p_m/p(¥’, ¥, £). Let x be an infinitely differentiable function on R, =
(0,00) equal to one on the interval (0,1) and vanishing on (2, 00). We define

Obviously,
Uu=X+v,

where
(1) = / Oo /D 112G (¥ = D) D ( 5" = TV, ) dy (32)
)= | oo [ -7) - x50 )

x ®(x",y",t—1)f (9, 7) dydr. (33)

We also consider the decomposition

u=x"+w,
where
(my)
2= > w (W0 - Av)H(x,0) (34)
k;’<2—f5—m/p

and

Hj(x,t) :/ /DXI () ) (1) (Y, t — )@,y t - T)f (9, T) dydr (35)
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is an extension of the function

/ /c]yt T)®(x",y" t - T)f (y, T) dydr (36)

with ¢; defined by (13). Our goal is to show that both remainders v and w are elements of
the space W/Ii’;; 5(D x R). We start with the case p = q.

2.1 Estimates in weighted L, Sobolev spaces
Let W2 foyi ﬁ(D x R) be the weighted Sobolev space with the norm (3). Furthermore, let

WD xR) = Wb (D xR),  Lys(D x R) = W (D x R).

In this subsection, we assume that f € L, 3(D x R), where p and B satisfy (28). First, we
prove that ¥ — ¥’ € W;é (D x R). This was shown in [1, Corollary 2.3] for the case 92 €
C®. In the case 32 € C'!, we must keep in mind that the second-order derivatives of the
eigenfunctions ¢; must not be bounded. Then we have the estimate

0% ()] < el (FE) (37)
|05 y(x)| < c|x|

x|

for |a| <2, where ¢, = 0 for |o| <1 and &, is an arbitrarily small positive real number if

|| <1. However, this requires only a small modification of the proof in [1].
Lemma 2.1 Suppose that f € L, g(D x R). Then 9 Btk(E - X') € Lyp-s+jaj+2k(D x R) and
k
||8§‘B, (E - E/) ||L 2+ lals2k(DXR) = =< clfllz, s oxw)

for|a| <2 and all k.

Proof A simple calculation (see the proof of [1, Corollary 1]) yields

SN N R Gl B Tes)

A+<U

x ®(x",y", 6= 1)f (9, 7) dydr,

where [u; (', 0¢), x2] = u (x ) X2 — qu ’(x 0;) denotes the commutator of

u" (¢, ;) and xs. Obviously, the inequalities
W[ <2ly| and Vi-T<|¥|=<2vEi-T
are satisfied on the support of the kernel
Ky t,7) = () [ (%, 0), xa ) (07, £ - 7)) @ (9, £ = 7). (38)

Since, moreover, the eigenfunctions ¢; satisfy the inequality (37) for |«| < 2, we obtain

_ dx)\"°|  clal-2k-0| 1o y/[* + " = y"|?
aqk / /
|02 0F K (x, 3,8, 7)| < et —7) MZ(W) || 1" exp o8-t
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for || < 2. Using Holder’s inequality, we obtain

A\ “lel-2k-o /
|8f8tk(2—2/)(x,t)| §C< |(7f|)> |x/| lor|-2k Al/pBl/p,
x
where
-2 /4 |y/|2 + |x//_ 12
a2 Yl
A:/ /(t—r) n2 |,/ PP 1) ex (——)d dr
|| D |y | VU ‘ P 8(t-1) Y
and
t—\x/|2/4 /12 /! /2
—nf2|./|P/(@=p) [y 1= + 12" = 5"
B:f / (t-1)"2y )P ex (—— dydr.
t—|x/|2 D }y { P 8(t-1) 4

Iy'|>1%'1/2

The substitution y' = 2/s/t — 7, ¥’ =x" + 2"/t — T yields

t—lx’|2/4 , ' (o—B) |Z/|2
ch/ (t—r)“"‘ﬂ)/zdr/ |z’|p exp(— )dz’
L

_l¥|2 2/]51/2 8
12
12"
X exp| - dz’,
Rn*m 8

i.e., B <clx'|''“P*2, Consequently,

/ / o [P0 ek (52 5 (, )| et
RJD

o (dE@)\
5chfD|x| (M) (A, 0)| e

/B 2
<c[ [ 0.0 Doy,

where
T4y |2 2
poo= [ [, \|(
T JVi—t<|¥ |<2/t-T

|y/|2 + |x//_y//|2
-~ ) dxdt.
X exp( S(t—t) X

d(x'))'”(t — oy

%]

Substituting ' = z'\/t — t and x” = y" + z”\/t — T, we obtain

r+|y/\2 /12 ~ d / —pe
D(y,r):/ (t—r)lexp<—8(|§}_|r))dt/ © |z/| 2<%> dz.

1<|Z/|<2
This means that D(y, ) is a constant. This proves the lemma. O

Next, we estimate the first-order x-derivatives of the remainder v. For this, we employ
the following lemma (cf. [11, Lemma A.1]).
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Lemma 2.2 Let K be the integral operator

(Kf)(x, 1) :/ /1;” K(x,y,t,7)f(y,t)dydz (39)

with a kernel K(x,y,t, T) satisfying the estimate

/ a+r b I p—r _ B 5
e () () A (),
Wievi-t/ \yl+vi-t/ Iyl =

wherelc>0,0<r§2,a+b>—m,—%—a<u<m—%+b. Then K is bounded on
L,(R" xR).

In the proof of the following assertion, we use another decomposition of the remainder
vasin [1, Lemma 2.4]. This allows us to apply directly the estimate in Theorem 1.1.

Lemma 2.3 Let p and B satisfy the condition (28). Furthermore, let v be the function (33),
wheref € Lyg(D x R),1<p<00. Then 93v € Lyg_2,4)(D x R) for || <1 and

DI L P 1 Pt

o<1
with a constant c independent of f. The same is true for the function w.

Proof Obviously,

3 ot
V=;/_mfp‘lﬁ(x:y:t,f)f(y,r)dydr,

where

W (%,9,8,7) = x2 (', 6, 7)(G = Go ) (¥, ¥, t = T) (", )", £ — T),

Uy (x,0,8,7) = (1 - x2 (%, 6,7))G(¥,y, t — 7))@ ("), t - T)
and

Ws(x,9,5,7) = (1- 1 (%, y)) x2 (%, £,7) Go (5,5, t = ) D (2,5, t - T).
We show that the integral operators with the kernels

K956 = ¢y | Poewx0,t,7)

are bounded in L,(D x R) forj=1,2,3 and |«| < 1. Using Theorem 1.1, we get

B-2+|| / o—|e| / A e
(@) |x/| (n+|ot)/2( |x | ) ( |y | )
K" xyt1) <c—— (-1 — _
K2, 9) ly'|f =) JE—1 Iyl +vt—1

_ 2
X exp(_lctci‘y|>,
-7
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where ¢ is an arbitrarily small positive number. Applying Lemma 2.2 withr =2 — ||, u = 8,
a=0 -2,b=2{ — ¢, we conclude that the integral operator with the kernel Kl(“)(x, Y, £, T)
is bounded in L,(D x R) for |o| <1.

Since |x'| < |x'| + +/t — T <2|#'| on the support of Kz(a) , the estimate (6) implies

B-2+|a| / a ’ A e
() |x/| —(n+|a)/2( |x| ) ( |y| )
K7yt t)| <c— (-1
’ 2 (o) )| ly'|# ( ) || +E—T ly'| +VE—T
icloc —yI?
x exp| - ————
Xp( = )

with arbitrary real a. Thus, by Lemma 2.2, the integral operator with the kernel K (x, y,t, T)
is bounded in L,(D x R) for |a]| <1.
We consider the kernel Kéa). Since G, («/, ¥, t) has the form

/(2
x,y,t) ZZCI | \A +2k|y|"151(“’96)@(‘”)')8/( e xp<—%),

A+<a k=0

we get the representation

K( x,y, tt ZZK, (%9t 1),

A+<a k=0

where

|x/|ﬂ—2+|a\

Ko, 0)| < e

’
|x

o
,\;+2k|a‘y,‘xlf(t_r)k)\;n/zexp(_ldx 9 )

t—t1

Here we used the fact that |y'| < |x'| < 24/t — 7 on the support of the function (1 — 1) x2
The inequalities |y'| < |x'| <2+ -7 and A + 2k < o imply

|Kjx(x, 9,8, 7)] < |xqﬁ_zw(t )—<n+|a>/2< 'l )“'“( 'l )2'\{0
ik LT) < C—UI0L—T M A
ik \ X Y ly'|8 N N
_ a2
xexp<_m>_
t—-t

It is no restriction to assume that ¢ < 2A{ + m — 8 — m/p in addition to (30) and (31).
Therefore, we can apply Lemma 2.2 with r =2 — |a|, a = ¢ — 2 and b = 2A] — o to the
integral operator with the kernel Kj . It follows that the integral operator with the kernel
Ks(a)(x, ¥,t,7) isbounded in L,(D x R) for |a| < 1. Consequently, the integral operator with
the kernel

|x/|ﬂ—2+|a\

3
K@ J(x,9,t,7) = ZI (%, 9,£,7) = WZE)“ (%9, t,T)
j=1

Jj=1

is bounded in L,(D x R) for |a| < 1. This proves the lemma. (|
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Furthermore, the assertions of [1, Lemmas 2.5, 2.6, Theorem 2.7] are also valid if 02
is only of the class C*'. The proof under this weaker assumption on € does not require
any modifications of the method in [1]. We give here only the formulation of [1, Theo-

rem 2.7].

Theorem 2.1 Let f € L,g(D x R), where p and B satisfy the condition (28). Then there
exists a solution of the problem (1), (2) which has the form

U= Z u;m/) (x/, O — Aw ) Hj(x, £) + w,
)L;'<2—,B—m/p

where w € W;’;(D x R) and ul(.k), mj, H; are given by (12), (31) and (35), respectively. The

Sfunctions H; depend only on |x'|, x" and t and satisfy the estimates

lorolHil,

p;ﬁ+k;'+2k+\y\—2 (DxR)

< iy If l,p0xm) (40)
for2k+|y|>2-8 - —m/p and

kaaqV 7. <
” at ax, ax//l—[] ||Lp;ﬁ+}»/'++2k+|a\+|y\72(DXR) = Chay ”f”LPi/s(DXR) (41)

forallk, o, y, |a| > 1.

2.2 Weighted L, 4 estimates for the remainder

We assume now that f € L, ;,3(D x R) and consider the decomposition
u=%"+w
of the solution (29), where X' is defined by (34). Our goal is to show that w € W;’;;ﬁ(D x R)

if p and B satisfy the condition (28). For the proof, we will use the next lemma which

follows directly from [12, Theorem 3.8].

Lemma 2.4 Suppose that K is a linear operator on L,(R" x R) satisfying the following
conditions:
(i) AL, @ xr) < c1llllL, @ xr) for all h € L,(R" x R),
(ii) f\:7¢0|>25 I(ICR) (- )|, vy dE < €3 [ Wh(- E)1,, ) dit for all & > O and for all functions
h with support in the layer |t — to| < 8 such that f]R h(x,t)dt=0.
Then the inequality

KA, ®ixr) < cllhllL,, @xr)
holds for arbitrary q, 1 < q < p. Here the constant c depends only on c1, ¢z, p and q.

The condition (ii) of the last lemma can be verified in some cases by means of the fol-

lowing lemma (¢f. [8, Lemma 10]).
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Lemma 2.5 Suppose that the kernel of the integral operator (39) satisfies the estimate

|K(x,9,t,7)|

o, ( | )( ly| )"(d(x/))“(d(y/))”
T(t-T)m A2\ |y + T Iyl +Et—1 | [y']
y |x/|/4—r exp —le—y|2
[y t—t

fort >ty + 28, Ir—tol58,where/c>0,0§r§2,a+b>—m,—%—a</x<m—%+b,
0<e1<1l/p,0<ey<1-1/p. Then

f 1)), iy i = el o
£

0+28

forallh e L, (D x R) with support in the layer |t — ty| < 5. Here, the constant c is indepen-
dent of ty and 5.

It is more easy to estimate the remainder v = u — ¥, where X is defined by (32). For this
reason, we estimate the difference X — X’ first.

Lemma 2.6 Let X and X' be the functions (32) and (34), respectively. If f € Ly, 5.,3(D x R),
then Bfa,‘j‘(E - E,) S Lp,q;ﬁ—2+2k+|a\(D X R) and
ooz (> - =)

“Lp,q;ﬂ—2+2k+\a\(DXR) < ckallfllz,5Dxm)

forallk and o, || < 2. Here, the constants cx are independent of f. In particular, ¥ - %' €
W s(D x R).

Proof We have
t
R M W R L 2
areg VYD
]

where K; is given by (38). Let Cjx be the integral operator with the kernel

B—2+2k+|c| ’
J

Kjka(%3,6,7) = || ’y”sagaﬁ(,(x,y, t,7),

where |o| < 2. As was shown in the proof of Lemma 2.1, this operator is bounded in

L,(D x R). Now let & be a function in L,;(D x R) with support in the layer |t — t,| < §
satisfying the condition [ /(x,t) dt = 0. Then

t T a
(Kjkah)(x,t) = / / (/ —Kjjo(x,9,t,5) ds)h(y, T)dydr.
—00 JD to 0s

Analogously to the proof of Lemma 2.1, we obtain

_oy-lenf2 d(x/)>_s x|~ 2 <_|x—y|2>
<=9 ( 95 i P8 )

ad
%Ig,k,a (x, Y, t, S)
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for || < 2.Since |x'| < [&'| + /'t —5 < 2]x'| and |y’| < |y'| + v/t —s < 3|y'| on the support of
K (%,9,t,5), we can append the factors

( | ) and( lyl )"
x| + VE—5s Y| ++/t=s

with arbitrary exponents a and b on the right-hand side of (42). For ¢ > £y + 28 and |t —s| <
|t — to| < 8, we obviously have (¢ — 7)/2 < t — s < 2(t — 7). Consequently,

Y\ € |4/ |B—0-2
<e ) (d(x )) EA4|

-2\ x| ly'|P~

(=) (=) o5s)
¥ +E—T V] +t—1 P 8(t—5s)

fort > ty+28 and |t —£y| < §, where a and b are arbitrary real numbers and ¢ is an arbitrarily

T
/ _I(j,k,a(xryy t1 S) dS
4 08

0

small positive real number. Hence, by Lemmas 2.4 and 2.5, the operator ;4 , is bounded
inL,,(DxR)forl<g<p.
We consider the operator l%,;;w with the kernel

/|ﬂ—2+2k+\a|

)k |y
|x'|#

f<j,k,a (xryr t, t) = I<j,k,a ()’, X, —T, —t) = (—1 358;‘[(/(31, xX,—T, —t).

It follows from the boundedness of the operator K, in L, that I@,;k,o, is bounded in
Ly(D x R), p’' = p/(p - 1). Furthermore, one can check that

- $ (d(y/))—e |x/|¢7—ﬁ

- C(t_.[)lmlz |J//| |y/|o—ﬁ+2

X( ¥ )( 'l )bex <_|x—y|2)
¥ +t—T V] ++t—1 P 8(t—5s)

with arbitrary  and b. Thus, as in the first part of the proof, we conclude that Iﬁjyk,a (and

Ty .
—Ki ko (x, 9, 8,8) d.
/to 9s ko (xJ’ S) S

therefore also the adjoint operator of ;o) is bounded in L,y (D x R) for 1 < ¢’ < p’. This
means that K« is bounded in L, (D x R) for all p,q > 1. The lemma is proved. O

By means of Lemma 2.5, it is also possible to prove the assertion of [1, Theorem 3.7]

under the weaker assumption on 2 of the present paper.

Theorem 2.2 Let f € L, ,3(D x R), where p and B satisfy the condition (28) and q is an
arbitrary real number, 1 < q < co. Then there exists a solution of the problem (1), (2) which
has the form

u= Z u;m’) («', 00 — Ay ) Hj(x,2) + w,
k;<2—ﬂ—m/p

where u](.mj), H; are given by (12) and (35), respectively, and w € W;_’;;ﬁ(D x R). The func-

tions H; are extensions of the functions (36) depending only on |x'|, " and t and satisfy the
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estimate

|ofagalHyll, < Ckay fllL,gpDxR) (43)

p'q;ﬂ+xf+2k+|a\+|y\,2(D><]R) -
Jorallk,a,y such that || > 1 0r 2k + |y|>2~ B~ Al —m/p.

Proof We have to show that the integral operator %% with the kernel

B—2+2k+|c|

ly'|#

x|

K% (x,y,t,7) = NG - x1x2Go) (x5 t—T) @ (a5t~ T)

is bounded in L, ,(D x R) for 2k + || < 2. For p = g this is true by Theorem 2.1. Let ¥,
W,, and W3 be the same functions as in the proof of Lemma 2.3 and let

B-2+2k+|a| |
J

K% (5,3,8,7) = || /|—53;xat’<\1/j(x,y, t,1).

J

Then K®) = k) 4 k& 1 k) We show that the operators Kj(k'“) satisfy the condi-
tion (ii) of Lemma 2.4. Let s be a function in L, (D x R) with support in the layer [t - )| < §
satisfying the condition [, /(x,¢) dt = 0 for all x. Then

t T a
(K h) . 1) = / fD ( K3, 1) ds)h(y,r)dydr.
—00 to

Using Theorem 1.1, we get

|9,K; &0 (x,y,1,5) |

|x/| o—la| | /| A -e
< C(t _ S)—k—l—(n+|a)/2< ) ( y )
= |+ /-5 1 +VE=s

y d(x’) - |x/|ﬁ—2+2k+\o¢| exp _le—y|2
| ly'1f t-s )

Thus,

T
a0
/ —Kl(k‘u)(x, ¥, t,8)ds
tp 08

< 8 ( | )'( Y )kf-s
c I L —
= (t_r)(n+2k+|a|+2)/2 x| +\/m |y/| +\/m
(d(x/)>—8 |x/|ﬂ—2+2k+\oz| ( le—y|2>
X - - exp| —————
x| 1P (t-1)

for ¢ >ty + 28 and |t — tp| < 8. Applying Lemma 2.5 with r =2 - 2k — |a|, a = 0 + 2k —2 and

b =X} — ¢, we conclude that

o0
/t NF 0], e = el (44)
0+
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for j =1 and 2k + |a| < 2. Analogously, the estimate (6) yields

To
/ gl(z(k'a) (x,9,t,5)ds

to

/ a / Ay —€

B ( | ) ( | ) 1

= (t _ .C)(n+2k+\oz|+2)/2 |x/| + \/: |y/| + \/;

d(x/) —& Ix/|ﬁ—2+2k+|a\ K|x _y|2
(%) e
| il (t-1)

for t > ty + 28 and |t — £y| < 8, where a is an arbitrary real number. Here, we used the fact
that |x'| < |«| + 4/t — T < 2|«'| on the support of Kz(k'“). Thus, by Lemma 2.5, the inequality

(44) holds for j = 2 and 2k + |a| < 2.
Analogously to the estimation of the kernel Kg(a) in the proof of Lemma 2.3, we obtain

the estimate

8 |x/| o—|a| | /| 2}\1+—(7'
<c J
- (t _ 7:)(n+2+2/’<+|oz\)/2 <\/ﬁ) <\/;)
<d(x/))—8 |x/|ﬁ—2+2k+|a\ < K|x—y|2>
X - - exp| -

|%'| ly'1? t-1
by means of (37). We may assume, without loss of generality, that o < 2A{ + m — 8 —m/p
in addition to (30) and (31). Then we conclude from Lemma 2.5 that (44) is valid for j = 3

and 2k + |a| < 2. Hence, by Lemma 2.4, the operator X*% is bounded in L, ,(D x R) for
l<g<pif2k+|a| <2.

Ta
/ £1<§k’“)(x, y,t,5)ds

to

In order to prove this for g > p, we consider the adjoint operator. Let K& and I@;k'“) be

the integral operators with the kernels
K& (x,y,t,7) = Kk (y,x,-1,-t) and f(j(k’“)(x,y, LT) = I(].(k’a)(y, x,—T,—t),

respectively. From the boundedness of *) in L,(D x R) it follows that K% js bounded
inLy(D x R), p’' = p/(p — 1). We show that

/zmm [ n) 60, iyt < 2 /RHh("f)HLp(D) dt (45)

forall § >0, =1,2,3 and for all functions / with support in the layer |£ — £| < § such that
Jg h(-,t)dt = 0. Let h be such a function. Then

t T
@ newo= [ [ ([ 5K s oy oy
-00 J D to s

By means of 1.1, we obtain

L
/ —Kl(k’a)(x, y,t,5)ds
PH]

Ay — o—
-, 3 | Y !
- (t_-[)(n+2+2k+\a|)/2 |x/| +m |y/| +m

f (AT P
y'] |y’ |-A+2-2k=le t-t )
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Analogously, the estimate (6) implies

Ty .
/ gl(z(k’“)(x,y, t,s)ds

to

5 k4 e 1yl ‘
- (t_f)(n+2+2k+|a\)/2 2’| + /t—1 |y/| + -1
(A9 Kl =
€X - ),
|y/| |y/|—/3+2—2k—\ot| p t—1

where a is an arbitrary real number, since |y'| < |y’| + +/£ — T < 2|y’| on the support of the

function f(ék’a)(x,y, t,7). Applying Lemma 2.5, we obtain (45) for 2k + || <2 and j < 2.
Using the representation for G,, the estimate (37), and the fact that |[x'| < |y/| <2/t-7
on the support of f(g(k’“)(x, 9,¢,7), we obtain

Ty .
/ gl(ék’“)(x,y, t,s)ds

to

< ) ( | )W“< | y
c vt

- (t _ 7:)(n+2+2/<)/2 |x/| + m |y/| + \/;

dw —€ /-8 _ 2
. (2Y) I (<=0,
|y/| |yr|—ﬂ+2—2k t—1

We may assume again that o < 2A{ + m — 8 — m/p in addition to (30) and (31). Then it fol-
lows from Lemma 2.5 that (45) is valid for j = 3 and 2k + |«| < 2. Therefore, by Lemma 2.4,
the operator K*® is bounded in Ly (D xR)for1<q <p'if 2k + |a| < 2. This means

that %% is bounded in L, 4(D x R) for all g if 2k + || < 2. The proof of the theorem is
complete. g

3 Another representation for the coefficients

As was proved [1, Lemma 4.1], the functions H; in Theorem 2.1 can be replaced by other
extensions 1:1, of the functions /;(x”,t) provided these extensions also satisfy the condi-
tions (40) and (41). Note that the proof of this assertion in [1] is also correct under our
assumptions on the boundary of Q. Moreover, it was proved in [1, Lemma 4.4], for the
particular case p = ¢, that the extension

Hi(x,t) = (EW)(x,8) = / / T(0)R(Z")hi(x" - 2", t — 1) dz" dt
0 Rn*m

satisfies the conditions (40) and (41). Here T'(t) is a smooth function with support in
[0, 00) satisfying the conditions

05T (7)| < ckmt ™ exp(—k7?) forall M >0,
with certain positive constants ¢k 51, € and

fT(r)dt:l, fT(r)rkdrzo fork=1,2,....

Furthermore, R is a smooth function with support on the cube [0, (7 — m)™1/2]" having
the form

R(x//) :R(xmﬂwn:xn) = 1_[ 1p(x]):

j=m+1
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Y(s)ds=1, /Sjl/f(s)ds=0 forj=1,2,...,Np
R

with a sufficiently large integer Np.

(46)

We extend the result of [1, Lemma 4.4] to the case g # p. First, note that £/; = K;f, where

KC; is the integral operator

(Cf) ) = / /D Kxyt - 1)f 0, 7) dydr

with the kernel

t t— "o
Ki(x,y,t) = rm’”’zf / T(—;)R(x ad )c,»(y/,s)@(y”,z”,s) d7" ds.
0 RH—m T r

Our goal is to show that the operator

Lpgip(D x R) 3 f — 33301, Kf € Lpgpuntsaksiatsiyi-2(D x R)

t Ox/ Oy

is bounded if [@| >1or 2k + |y|>2 -8 — A; — m/p. Since the function (x,t) — (K;f)(x, 1)

depends only on the variables r = |x'|, x”, and ¢, it suffices to prove that the operator

t Urx’

Lpgp(D x R) > f — 83,00, Kif € Lypgptsastriyi-2(D X R)

isbounded if/>1or 2k +|y|>2-p -\ —mlp.
We define the operator Kf’l’y as

IC((J:Vh _ rﬁ+)»;+2k+l+‘y|—28kalay ’C(I"_'Bh)

j t roxY

This means that %"

;" is the integral operator with the kernel

K (3,8, 1) = P 2R 2 B okl T K, 9,8 — ),

t Or Oy

where r = |x’| and p = |y/|. As was shown in [1], the operator IC;('I'V isbounded in L,(D x R)

ifl>1or2k+|y|>2-8- A —m/p.In order to prove the boundedness in L, ,(D x R) for

q # p, we verify the condition (ii) of Lemma 2.4. For this, we apply the following lemma.

Lemma 3.1 Suppose that the kernel of the integral operator (39) satisfies the condition

r2+p2+|x//_y//|2)

)
n+M-n—4 _—p
|I((x,y,t,t)| <67(t—r)M/2r 0 exp<—/< o

fort>ty+268, |t —ty| <8, wherer=|x'|,p = |y’|,K>O,M>4+n—mand—%—M+n+4<

,u<m—%.Then

/ U], oy it = el o
£

0+28
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SJorall h e L, (D x R) with support in the layer |t —ty| < 6. Here, the constant c is indepen-
dent of ty and §.

Proof Obviously,
r M r M
(=) =(7=)
Ji-t) T \r+4t-t
for M < 0 and
(=) =em(t () ) ew(z5)
cmin| 1, ex
<) A P20
- ( 2r )M ( Kr? >
| ——— ) exp| ——
T \r+4t-t P 2(t-1)

for M > 0. Consequently, it follows from our assumption on K that

|K(x,y,t,7)|

- B ro \MTE 2 rr+ o2+ x" =y
c —exp| —«
— (t_-[)(n+2)/2 f—1 ,0”’ p t—1

) r M-n-2 ru—Z ;,.2 + pz + |x// _y//|2
=i = o SXP\ K 2t = :
(t-1) r+at-t o (t-7)

Thus, we can apply Lemma 2.5. d

We will show that the operator IC]].('I'V satisfies the condition of the last lemma. This leads

to the following assertion.

Lemma 3.2 Suppose that p,q € (1,00), .} <2 — B — m/p and that at least one of the con-
ditions | >1or2k +|y|>2-8— A —mlpis satisfied. Furthermore, we assume that the
number Ny in (46) is greater than 3 — 8 — A —mlp. Then the operator IC;(’Z’V is bounded in
L,,(D xR).

Proof For the case g = p, we refer to [1, Lemma 4.4].

We consider the case 1 < g < p. Let 1 € L,,1(D x R) be an arbitrary function with support
in the layer |t —to| < § such that [ /i(x, t) dt = 0 for all x. Then (ICf’l‘yh)(x, t)=0fort<ty+6,
while

t L
(K" ) (. t) = / / ( / — K (5, £~ 5) ds)h(y, T)dydr (47)

—o0 JD to as
for t > to + 8. We verify the condition of Lemma 3.1 for the kernel of the last integral op-

erator. To this end, we use the same decomposition

k
Bf"l&;’,,l(j(x,y, t—s)=T(xyt—s)+A(xyt—s)+ ZBi(x,y, t—s)
i=0
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for the ¢, x"-derivatives of Kj(x,y,¢ — s) as in the proof of [1, Lemma 4.4], where

/2 . t— g I _ g . d”dé
ren= [ [ 1 ()R (R o et g

t/2 /! /" 1/

E X -z + ’ i dz dg

A(x,y,t)=/ f T(—Z)R( >3f Gy, t-£)aL ()2t -8)
0 Rn-m r r r

and

Bi (x; b2 t)
i men—2—2k+2i (k=) [t ' =zZ"\ Yoaln o "
=2'r TN — R dyci(v,£/2)a}, @ (Y, 2", t12) dz
2r2 RH#-m r z
Here we used the notation T®)(¢) = 8{‘ T(¢) and RV (x") = 8;,R(x”). Applying the estimates
alrm—n—4—2k—|y| T(k+l) t-s-§ R(y) 8 -7
’ r2 r
M
< crm—n—4—2k—l—\y\ }"2 exp| - Krz
- t—s t—s

/! _Z//lz

and

|y - |y//_z//|2 le//_y//|2 Krz

4 T 8 4(t—s)  2(t—ys)

for0 <& < (t-s)/2,|2" —x"| <rand k <1/2, we obtain

2 M 2 /" /2
2r° + &7 —y"|
81",,t < epmn=a2k-l-lyl M (T exp| -2 7 1
| (x,y s)| cr 0 P xp| —« )

(t-5)/2 2p2+|y//_z//|2
LA A d//d
/ /m p( 8¢ ) ek

M- 4-2k—1-|y| r2 M /7'2+,02+ |x//_y//|2
§c7+ — | expl| -«
Ay +m=2 t—s t—s

10 J

with arbitrary positive M and certain positive «’. Furthermore, the estimates

M
al m—n—2— 2k+21T I-s R x' -7 < Crm—n—2—2k—l+2i r2 exp _K_rz
22 r t—s t—s
gic (v t—s / , L=
t / ) 2 Z// y ) 2

2 /! 72
— + -z
< et — ) R exp( "?’7|)
-8

and

_ N 42+2 //_Z//2+x//_ //2_2r2
<c(t—s3) Af—i- (n+\y\)/2p)\/ exp Y ly | | ¥l
4(t —s)
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for |« — 2| < r with certain positive « and arbitrary positive M yield

pm—n—4-2k=I-ly| 2 M+itl+|y|/2 pz A]T—l+m/2
|8£Bi(x»y»t_5)| = 67(—> <—>

A +m=2

Pl t—s t—s
2 2 /" /2
e+ + |x" -
« exp( - P+ 1x" =y
4(t —s)
rm—n—4—2k—l—|y( 72 )M+i+1+y/2 72 +p2 + Ix”—y”lz)
<c———| — expl| —« .
ol t—s 8(t-s)

Finally, (¢f formulas (4.7) and (4.8) in [1]), we get the estimates

2 2 ! 712
—Af—k-1-(n+ly /2 2} (_KV +o°+ & =y )

|A@x,,t = s5)| < c(t—s) P exp ;
-s
- Crm—n—4—2k—\y\ r n-m+4+2k+|y| exp ¢ r2 4 ,02 + | _y//|2
=0 e \(i=s 2t—s)
and
2 2 /" /2
o + re+ o+ & -
814, 5,£ —5)| < c(t — )7 TNV No-12ke by exp("‘ - t - )
—-s
- c;,.m—n—4—2/<—l—\yl r n—-m+No+3 exp( P p2 + |x// _y//|2
T o \Ve-s 2t —s)
if > 1. Thus,
k+lqlqY
|0, 10107, K;j(%, 9, ¢ - 5)|
pim—n=4-2k=l-|y| r M 24+ 02 4+ a =92
=c AF+m=2 < ) €xp (_K P | Al )’ (48)
o t—s t—s
where
n-m+4+2k+|y|, ifl=0,
M=

n—m+ 3+ Ny, ifl>1.

Ift >ty + 28, |T — tg| < 8, and s lies between ty and 7, we have %(t —-T)<t—-s<2(t-1).

Consequently, it follows from (4.8) that

¥
rﬂ+kj +m—-n—6+M 7’2 + ,02 + |x// _y//|2
exXpl| —«
(¢t - .L-)M/Z pﬂ+k;+m—2 P t—1

"o ki,
— K7 (x,y,t —s)ds| <
/to as / (ey,t=s)ds| < ¢

for t > £y + 28 and |t — £y| < 8. This means that the kernel of the integral operator (47)
satisfies the condition of Lemma 3.1if M > n—m+6 — B — A; —m/p. Hence, by Lemmas 2.4
and 3.1, the operator ICf’l’V isboundedin L, ,(D x R) if [ > 1 or 2k + |y |~> 2-B-1 —mlp.

In order to prove this for g > p, we consider the adjoint operator. Let IC]].('LV be the integral
operator with the kernel

=k, k1, At +2k+1 -2 _
K/’ V(x,y,t,-,;) =Kj V(y’%_l,,_t) =pﬂ+}+ +l+y| 7 ﬁathéB;’,,Kj(y,x,t—t).
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Since Kf’l’y is bounded in L,(D x R) under the assumptions of the lemma, the operator

l@f’l'y is bounded in Ly (D x R), where p’ = p/(p —1). Suppose that 1 € L,y 1(D x R) is a

function with support in the layer |¢ - | < § such that [ A(x, ) dt = 0 for all x. Then

" t T 3 "
(R ), 0) = / / ( f O R (3,9,,5) ds)h(y,r)dydr
—00 JD to as

for t > ty + &, where

a

S K @y ts) = =p" P2, kL 07, K (0, — ).

As was shown above, the derivatives of K; satisfy the estimate

m-n—4-2k—I-|y| M 2 2 /” /12
kilal a7 P o re+pt+ X =y
|8t+ apay,,l(j(y,x,t— r)| <c S (m> exp(—K P

with the same M as before. This implies

2-m—B-1T
1) r b=
<c

o _Kr2+p2+|x//_yu|2
(t—T)M2 pn_m+6_/3—xj+—M P t—1 ’

T

0 ~

/ —Kjk’l’y (x,9,t—s)ds
tp 08

Therefore, it follows from Lemma 3.1 that

oo
=k,
/to+28 I (K" h) () ||Lp,(D) dt < c|lhllL, ,(Dxr)

forall 1 € Ly 1(D x R) with support in the layer [t —ty| <8 if /> 1or2k+|y|>2-8 ‘)‘; -
m/p. Applying Lemma 2.4, we conclude that l@f'l'y isboundedinL, ,(DxR)forl<q <p’
it />1or2k+|y|>2~pB~2 —m/p. Consequently, the operator IC;('I'V is bounded in
Lyy(D xR)forp<g<ocifl>1or2k+|y|>2~-B—A’ —m/p. The proof is complete. []

Using the last lemma, we obtain the following result which generalizes [1, Corollary 4.5].

Theorem 3.1 Let f € L, 43(D x R), where p and B satisfy the condition (28) and q is an
arbitrary real number, 1 < q < co. Then there exists a solution of the problem (1), (2) which

has the form
U= Z u;m’) (x’, o — Axw)gh,» + W, (49)
A}T<2—ﬁ—m/p

where u;mj), h; are given by (12) and (36), respectively, and w € W}i‘;;ﬂ(D x R).

Proof By Lemma 3.2, the functions I:I, = Eh; satisfy the same condition (43) as the func-
tions H; in Theorem 2.2. Thus, it follows from [1, Lemma 4-.1] that

om) (s -
;" (', 0, — Ay)(Hy — Hy) € Wiy (D x R).

This together with Theorem 2.2 implies (49) with a remainder w € W; ’;; 5 (D x R). O
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