
RESEARCH Open Access

Existence and multiplicity of positive solutions for
a class of p(x)-Kirchhoff type equations
Ruyun Ma, Guowei Dai* and Chenghua Gao

* Correspondence:
daiguowei2009@126.com
Department of Mathematics,
Northwest Normal University,
Lanzhou 730070, P. R. China

Abstract

In this article, we study the existence and multiplicity of positive solutions for the
Neumann boundary value problems involving the p(x)-Kirchhoff of the form⎧⎪⎨⎪⎩

−M
(∫

�

1
p(x)

(|∇u|p(x) + λ|u|p(x))dx
)
(div (|∇u|p(x)−2∇u) − λ|u|p(x)−2u) = f (x, u) in �,

∂u
∂v

= 0 on ∂�.

Using the sub-supersolution method and the variational method, under appropriate
assumptions on f and M, we prove that there exists l* > 0 such that the problem
has at least two positive solutions if l > l*, at least one positive solution if l = l*
and no positive solution if l < l*. To prove these results we establish a special
strong comparison principle for the Neumann problem.
2000 Mathematical Subject Classification: 35D05; 35D10; 35J60.
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1 Introduction
In this article we study the following problem⎧⎨⎩−M(t)(div (|∇u|p(x)−2∇u) − λ|u|p(x)−2u) = f (x, u) in �,

∂u
∂v

= 0 on ∂�,
(Pf

λ)

where Ω is a bounded domain of ℝN with smooth boundary ∂Ω and N ≥ 1,
∂u
∂v

is the

outer unit normal derivative, l Î ℝ is a parameter, p = p(x) ∈ C1(�) with 1 <p-: = infΩ
p(x) ≤ p+ := supΩ p(x) < +∞, f ∈ C(� × R,R), M(t) is a function with∫
�

1
p(x)

(|∇u|p(x) + λ|u|p(x))dx and satisfies the following condition:

(M0) M(t): [0, +∞) ® (m0, +∞) is a continuous and increasing function with m0 > 0.

The operator -div(|∇u|p(x)-2∇u) := -Δp(x)u is said to be the p(x)-Laplacian, and

becomes p-Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more

complicated nonlinearities than the p-Laplacian; for example, it is inhomogeneous. The

study of various mathematical problems with variable exponent growth condition has

been received considerable attention in recent years. These problems are interesting in

applications and raise many difficult mathematical problems. One of the most studied
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models leading to problem of this type is the model of motion of electrorheological

fluids, which are characterized by their ability to drastically change the mechanical

properties under the influence of an exterior electromagnetic field [1-3]. Problems with

variable exponent growth conditions also appear in the mathematical modeling of sta-

tionary thermo-rheological viscous flows of non-Newtonian fluids and in the mathema-

tical description of the processes filtration of an ideal barotropic gas through a porous

medium [4,5]. Another field of application of equations with variable exponent growth

conditions is image processing [6]. The variable nonlinearity is used to outline the bor-

ders of the true image and to eliminate possible noise. We refer the reader to [7-11]

for an overview of and references on this subject, and to [12-16] for the study of the

variable exponent equations and the corresponding variational problems.

The problem
(
Pf

λ1

)
is a generalization of the stationary problem of a model intro-

duced by Kirchhoff [17]. More precisely, Kirchhoff proposed a model given by the

equation

ρ
∂2u
∂t2

−
⎛⎝ρ0

h
+

E
2L

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣2dx

⎞⎠ ∂2u
∂x2

= 0, (1:2)

where r, r0, h, E, L are constants, which extends the classical D’Alembert’s wave

equation, by considering the effect of the changing in the length of the string during

the vibration. A distinguishing feature of Equation (1.2) is that the equation contains a

nonlocal coefficient
ρ0

h
+

E

2L

∫ L
0

∣∣∣∣∂u∂x
∣∣∣∣2dx which depends on the average

1
L

∫ L
0

∣∣∣∣∂u∂x
∣∣∣∣2dx,

and hence the equation is no longer a pointwise identity. The equation{−(a + b
∫
�

|∇u|2dx)�u = f (x, u) in �,
u = 0 on ∂�

(1:3)

is related to the stationary analogue of the Equation (1.2). Equation (1.3) received

much attention only after Lions [18] proposed an abstract framework to the problem.

Some important and interesting results can be found, for example, in [19-22]. More-

over, nonlocal boundary value problems like (1.3) can be used for modeling several

physical and biological systems where u describes a process which depends on the

average of itself, such as the population density [23-26]. The study of Kirchhoff type

equations has already been extended to the case involving the p-Laplacian (for details,

see [27-29]) and p(x)-Laplacian (see [30-33]).

Many authors have studied the Neumann problems involving the p-Laplacian, see e.

g., [34-36] and the references therein. In [34,35] the authors have studied the problem(
Pf

λ1

)
in the cases of p(x) ≡ p = 2, M(t) ≡ 1 and of p(x) ≡ p > 1, M(t) ≡ 1, respectively.

In [36], Fan and Deng studied the Neumann problems with p(x)-Laplacian, with the

nonlinear potential f(x, u) under appropriate assumptions. By using the sub-supersolu-

tion method and variation method, the authors get the multiplicity of positive solutions

of
(
Pf

λ1

)
with M(t) ≡ 1. The aim of the present paper is to generalize the main results

of [34-36] to the p(x)-Kirchhoff case. For simplicity we shall restrict to the 0-Neumann

boundary value problems, but the methods used in this article are also suitable for the

inhomogeneous Neumann boundary value problems.
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In this article we use the following notations:

F(x, t) =

t∫
0

f (x, s) ds,

Λ = {l Î ℝ: there exists at least a positive solution of
(
Pf

λ

)
},

λ∗ = inf�.

The main results of this article are the following theorems. Throughout the article

we always suppose that the condition (M0) holds.

Theorem 1.1. Suppose that f satisfies the following conditions:

f (x, t) ≥ 0, f (x, t) �≡ 0 ∀x ∈ �, ∀t ≥ 0 (1:4)

and

for each x ∈ �, f (x, t) is nondecreasing with respect to t ≥ 0. (1:5)

Then � �=� 0, l* ≥ 0 and (l*, +∞) ⊂ Λ. Moreover, for every l > l* problem
(
Pf

λ

)
has a

minimal positive solution ul in [0,w1], where w1 is the unique solution of
(
P0

λ

)
and

uλ1 < uλ2if l* < l2 < l1.
Theorem 1.2. Under the assumptions of Theorem 1.1, also suppose that there exist

positive constants M, c1 and c2 such that

f (x, t) ≤ c1 + c2t
q(x)−1, ∀x ∈ �, ∀t ≥ M, (1:6)

where q ∈ C(�)and 1 ≤ q(x) <p*(x) for x ∈ �, μ Î (0,1) such that

M̂(t) ≥ (1 − μ)M(t)t, (1:7)

where M̂(t) =
∫ t
0 M(τ )dτand M1 > 0, θ >

p+

1 − μ
such that

0 < θF(x, t) ≤ tf (x, t), ∀x ∈ �, ∀t ≥ M1. (1:8)

Then for each l Î (l*, +∞),
(
Pf

λ

)
has at least two positive solutions ul and vl, where

ul is a local minimizer of the energy functional and ul ≤ vl.

Theorem 1.3. (1) Suppose that f satisfies (1.4),

f (x, 0) ≤ f (x, t) for t > 0 and x ∈ � (1:9)

and the following conditions:

f (x, t) ≤ c3 + c4t
r(x)−1, ∀x ∈ �, ∀t ≥ M2, (1:10)

where M2, c3 and c4 are positive constants, r ∈ C(�)and 1 ≤ r(x) <p(x) for x ∈ �.

Then l* = 0.

(2) If f satisfies (1.4)-(1.8), then l* Î Λ.

Example 1.1. Let M(t) = a + bt, where a and b are positive constants. It is clear that

M(t) ≥ a > 0.
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Taking μ =
1
2
, we have

M̂(t) =

t∫
0

M(s) ds = at +
1
2
bt2 ≥ 1

2
(a + bt)t = (1 − μ)M(t)t.

So the conditions (M0) and (1.7) are satisfied.

The underlying idea for proving Theorems 1.1-1.3 is similar to the one of [36]. The

special features of this class of problems considered in the present article are that they

involve the nonlocal coefficient M(t). To prove Theorems 1.1-1.3, we use the results of

[37] on the global C1,a regularity of the weak solutions for the p(x)-Laplacian equa-

tions. The main method used in this article is the sub-supersolution method for the

Neumann problems involving the p(x)-Kirchhoff. A main difficulty for proving Theo-

rem 1.1 is that a special strong comparison principle is required. It is well known that,

when p ≠ 2, the strong comparison principles for the p-Laplacian equations are very

complicated (see e.g. [38-41]). In [13,42,43] the required strong comparison principles

for the Dirichlet problems have be established, however, they cannot be applied to the

Neumann problems. To prove Theorem 1.1, we establish a special strong comparison

principle for the Neumann problem
(
Pf

λ

)
(see Lemma 4.6 in Section 4), which is also

valid for the inhomogeneous Neumann boundary value problems.

In Section 2, we give some preliminary knowledge. In Section 3, we establish a gen-

eral principle of sub-supersolution method for the problem
(
Pf

λ

)
based on the regular-

ity results. In Section 4, we give the proof of Theorems 1.1-1.3.

2 Preliminaries

In order to discuss problem
(
Pf

λ

)
, we need some theories on W1,p(x) (Ω) which we call

variable exponent Sobolev space. Firstly we state some basic properties of spaces W1,p

(x) (Ω) which will be used later (for details, see [17]). Denote by S(Ω) the set of all

measurable real functions defined on Ω. Two functions in S(Ω) are considered as the

same element of S(Ω) when they are equal almost everywhere.

Write

C+(�) = {h : h ∈ C(�), h(x) > 1 for any x ∈ �}

and

Lp(x)(�) =

⎧⎨⎩u ∈ S(�) :
∫
�

∣∣u(x)∣∣p(x)dx < +∞
⎫⎬⎭

with the norm

|u|Lp(x)(�) = |u|p(x) = inf

⎧⎨⎩λ > 0 :
∫
�

∣∣∣∣u(x)λ

∣∣∣∣p(x)dx ≤ 1

⎫⎬⎭ ,

and

W1,p(x)(�) = {u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)}
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with the norm

‖u‖ = ‖u‖W1,p(x)(�) = |u|Lp(x)(�) + |∇u|Lp(x)(�).

Denote by W1,p(x)
0 (�) the closure of C∞

0 (�) in W1,p(x) (Ω). The spaces Lp(x) (Ω), W1,p

(x) (Ω) and W1,p(x)
0 (�) are all separable Banach spaces. When p- > 1 these spaces are

reflexive.

Let l > 0. Define for u Î W1,p(x) (Ω),

‖u‖λ = inf

⎧⎨⎩σ > 0 :
∫
�

(∣∣∣∣∇u
σ

∣∣∣∣p(x) + λ

∣∣∣ u
σ

∣∣∣p(x)) dx ≤ 1

⎫⎬⎭ .

Then ||u||l is a norm on W1,p(x) (Ω) equivalent to ‖u‖W1,p(x)(�).

By the definition of ||u||l we have the following

Proposition 2.1. [11,14]Put ρλ(u) =
∫
�

(
|∇u|p(x) + λ|u|p(x)

)
dxfor l > 0 and u Î W1,p(x)

(Ω). We have:

(1) ‖u‖λ ≥ 1 ⇒ ‖u‖p−
λ ≤ ρλ(u) ≤ ‖u‖p+λ ;

(2) ‖u‖λ ≤ 1 ⇒ ‖u‖p+λ ≤ ρλ(u) ≤ ‖u‖p−
λ
;

(3) lim
k→+∞

‖uk‖λ = 0 ⇔ lim
k→+∞

ρλ(uk) = 0 (as k → +∞);

(4) lim
k→+∞

‖uk‖λ = +∞ ⇔ lim
k→+∞

ρλ(uk) = +∞ (as k → +∞).

Proposition 2.2. [14]If u, uk Î W1,p(x) (Ω), k = 1,2,..., then the following statements

are equivalent each other:

(i) lim
k→+∞

‖uk − u‖λ = 0;

(ii) lim
k→+∞

ρλ(uk − u) = 0;

(iii) uk ® u in measure in Ω and lim
k→+∞

ρλ(uk) = ρ(u).

Proposition 2.3. [14]Let p ∈ C(�). If q ∈ C(�)satisfies the condition

1 ≤ q(x) < p∗(x), ∀x ∈ �, (2:1)

then there is a compact embedding W1,p(x) (Ω) ↪ Lq(x) (Ω).

Proposition 2.4. [14]The conjugate space of Lp(x) (Ω) is Lq(x) (Ω), where
1

q(x)
+

1
p(x)

= 1. For any u Î Lp(x) (Ω) and v Î Lq(x) (Ω), we have the following Hölder-

type inequality∣∣∣∣∣∣
∫
�

uv dx

∣∣∣∣∣∣ ≤
(

1
p− +

1
q−

)
|u|p(x)|v|q(x).

Now, we discuss the properties of p(x)-Kirchhoff-Laplace operator

�K(u) := −M

⎛⎝∫
�

1
p(x)

(|∇u|p(x) + λ|u|p(x))dx
⎞⎠ (div|∇u|p(x)−2∇u − λ|u|p(x)−2u),

where l > 0 is a parameter. Denotes

�(u) : M̂

⎛⎝∫
�

1
p(x)

(|∇u|p(x) + λ|u|p(x))dx
⎞⎠ . (2:2)
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For simplicity we write X = W1,p(x) (Ω), denote by un ⇀ u and un ® u the weak con-

vergence and strong convergence of sequence {un} in X, respectively. It is obvious that

the functional F is a Gâteaux differentiable whose Gâteaux derivative at the point u Î
X is the functional F’(u) Î X*, given by

〈
�′(u), v

〉
= M

⎛⎝∫
�

1
p(x)

(
|∇u|p(x) + λ|u|p(x)

)
dx

⎞⎠∫
�

(|∇u|p(x)−2∇u∇v + λ|u|p(x)−2uv)dx, (2:3)

where 〈·, ·〉 is the duality pairing between X and X*. Therefore, the p(x)-Kirchhoff-

Laplace operator is the derivative operator of F in the weak sense. We have the follow-

ing properties about the derivative operator of F.

Proposition 2.5. If (M0) holds, then

(i) F’: X ® X* is a continuous, bounded and strictly monotone operator;

(ii) F’ is a mapping of type (S+), i.e., if un ⇀ u in X and

lim
n→+∞

〈
�′(un) − �′(u), un − u

〉 ≤ 0, then un ® u in X;

(iii) F’(u): X ® X* is a homeomorphism;

(iv) F is weakly lower semicontinuous.

Proof. Applying the similar method to prove [15, Theorem 2.1], with obvious

changes, we can obtain the conclusions of this proposition.

3 Sub-supersolution principle
In this section we give a general principle of sub-supersolution method for the pro-

blem
(
Pf

λ

)
based on the regularity results and the comparison principle.

Definition 3.1. u Î X is called a weak solution of the problem
(
Pf

λ

)
if for all v Î X,

M

⎛⎝∫
�

1
p(x)

(|∇u|p(x) + λ|u|p(x))dx
⎞⎠∫

�

(|∇u|p(x)−2∇u∇v + λ|u|p(x)−2uv)dx =
∫
�

f (x, u)v dx.

In this article, we need the global regularity results for the weak solution of
(
Pf

λ

)
.

Applying Theorems 4.1 and 4.4 of [44] and Theorem 1.3 of [37], we can easily get the

following results involving of the regularity of weak solutions of
(
Pf

λ

)
.

Proposition 3.1. (1) If f satisfies (1.6), then u Î L∞(Ω) for every weak solution u of(
Pf

λ

)
.

(2) Let u Î X ∩ L∞ (Ω) be a solution of
(
Pf

λ

)
. If the function p is log-Hölder continu-

ous on �, i.e., there is a positive constant H such that∣∣p(x) − p(y)
∣∣ ≤ H

− log
∣∣x − y

∣∣ for x, y ∈ � with
∣∣x − y

∣∣ ≤ 1
2
, (3:2)

then u ∈ C0,α(�)for some a Î (0,1).

(3) If in (2), the condition (3.2) is replaced by that p is Hölder continuous on �, then

u ∈ C1,α(�)for some a Î (0,1).

For u, v Î S(Ω), we write u ≤ v if u(x) ≤ v(x) for a.e. x Î Ω. In view of (M0), apply-

ing Theorem 1.1 of [16], we have the following strong maximum principle.
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Proposition 3.2. Suppose that p(x) ∈ C+(�) ∩ C1(�), u Î X, u ≥ 0 and u �≡ 0in Ω. If

−M(t)(div (|∇u|p(x)−2∇u) − d(x)|u|p(x)−2u) ≥ 0,

where t =
∫
�

(
1

p(x)
|∇u|p(x) + 1

p(x)
d(x)|u|p(x)

)
dx, M(t) ≥ m0 > 0, 0 ≤ d(x) Î L∞(Ω),

q(x) ∈ C(�)with p(x) ≤ q(x) ≤ p* (x), then u > 0 in Ω.

Definition 3.2. u Î X is called a subsolution (resp. supersolution) of
(
Pf

λ

)
if for all v

Î X with v ≥ 0, u ≤ 0 (resp. ≥) on ∂Ω and

M
(∫

�

(
1

p(x)
|∇u|p(x) + 1

p(x)
λ|u|p(x)

)
dx

)∫
�

(
|∇u|p(x)−2 ∇u∇v + λ |u|p(x)−2 uv

)
dx ≤ (resp. ≥)

∫
�

f (x, u)v dx.

Theorem 3.1. Let l > 0 and q ∈ C(�)satisfies (2.1). Then for each
h ∈ L

q(x)
q(x) − 1 (�)

,

the problem⎧⎪⎨⎪⎩
−M

(∫
�

(
1

p(x)
|∇u|p(x) + 1

p(x)
λ|u|p(x)

)
dx

)(
div(|∇u|p(x)−2∇u) − λ|u|p(x)−2u

)
= h(x) in �

∂u
∂v

= 0 on ∂�

(3:30)

has a unique solution u Î X.

Proof. According to Propositions 2.3 and 2.4, (f , v) :=
∫
�

f (x)v dx (for any v Î X)

defines a continuous linear functional on X. Since F’ is a homeomorphism,
(
Pf

λ

)
has a

unique solution.

Let q ∈ C(�) satisfy (2.1). For
h ∈ L

q(x)
q(x) − 1 (�)

, we denote by K(h) = Kl(h) = u the

unique solution of (3.3l). K = Kl is called the solution operator for (3.3l). From the

regularity results and the embedding theorems we can obtain the properties of the

solution operator K as follows.

Proposition 3.3. (1) The mapping
K : L

q(x)
q(x) − 1 (�) → X

is continuous and bounded.

Moreover, the mapping
K : L

q(x)
q(x) − 1 (�) ↪→ Lq(x)(�)

is completely continuous since the

embedding X ↪ Lq(x) (Ω) is compact.

(2) If p is log-Hölder continuous on �, then the mapping K : L∞(�) → C0,α(�)is

bounded, and hence the mapping K : L∞(�) → C(�)is completely continuous.

(3) If p is Hölder continuous on �, then the mapping K : L∞(�) → C1,α(�)is

bounded, and hence the mapping K : L∞(�) → C1(�)is completely continuous.

Using the similar proof to [36], we have

Proposition 3.4. If
h ∈ L

q(x)
q(x) − 1 (�)

and h ≥ 0, where q ∈ C(�)satisfies (2.1), then K

(h) ≥ 0. If p Î C1(Ω), h Î L∞(Ω) and h ≥ 0, then K(h) > 0 on �.

Now we give a comparison principle as follows.

Theorem 3.2. Let u, v Î X, ϕ ∈ W1,p(x)
0 (�). If

M
(
I0(u)

) ∫
�

(
|∇u|p(x)−2 ∇u∇ϕ + λ |u|p(x)−2 uϕ

)
dx ≤ M

(
I0(v)

) ∫
�

(
|∇v|p(x)−2 ∇v∇ϕ + λ |v|p(x)−2 vϕ

)
dx (3:4)
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with � ≥ 0 and u ≤ v on ∂Ω, I0(u) :=
∫
�

(
1

p(x)
|∇u|p(x) + 1

p(x)
λ|u|p(x)

)
dx, then u ≤ v

in Ω.

Proof. Taking � = (u - v)+ as a test function in (3.4), we have

〈
�′(u) − �′(v),ϕ

〉
= M

⎛⎝∫
�

(
|∇u|p(x) + λ|u|p(x)

p(x)

)
dx

⎞⎠∫
�

(
|∇u|p(x)−2∇u∇ϕ + λ|u|p(x)−2uϕ

)
dx

− M

⎛⎝∫
�

(
|∇v|p(x) + λ|v|p(x)

p(x)

)
dx

⎞⎠∫
�

(
|∇v|p(x)−2∇v∇ϕ + λ|v|p(x)−2vϕ

)
dx

≤ 0.

Using the similar proof to Theorem 2.1 of [15] with obvious changes, we can show

that

〈
�′(u) − �′(v),ϕ

〉 ≥ m0

⎡⎣∫
�

1
2
(|∇u|p(x)−2 − |∇v|p(x)−2)(|∇u|2 − |∇v|2)dx

⎤⎦
+m0λ

⎡⎣∫
�

1
2
(|u|p(x)−2 − |v|p(x)−2)(|u|2 − |v|2)dx

⎤⎦ ≥ 0.

Therefore, we get 〈F’(u) - F’(v), �〉 = 0. Proposition 2.5 implies that � ≡ 0 or u ≡ v

in Ω. It follows that u ≤ v in Ω.

It follows from Theorem 3.2 that the solution operator K is increasing under the

condition (M0), that is, K(u) ≤ K(v) if u ≤ v.

In this article we will use the following sub-supersolution principle, the proof of

which is based on the well known fixed point theorem for the increasing operator on

the order interval (see e.g., [45]) and is similar to that given in [12] for Dirichlet pro-

blems involving the p(x)-Laplacian.

Theorem 3.3. (A sub-supersolution principle) Suppose that u0, v
0 Î X ∩ L∞(Ω), u0

and v0 are a subsolution and a supersolution of
(
Pf

λ

)
respectively, and u0 ≤ v0. If f satis-

fies the condition:

f (x, t) is nondecreasingin t ∈ [inf u0(x), sup v0(x)], (3:5)

then
(
Pf

λ

)
has a minimal solution u* and a maximal solution v* in the order interval

[u0,v
0], i.e., u0 ≤ u* ≤ v* ≤ v0 and if u is any solution of

(
Pf

λ

)
such that u0 ≤ u ≤ v0, then

u* ≤ u ≤ v*.

The energy functional corresponding to
(
Pf

λ

)
is

Jλ(u) = �(u) −
∫
�

F(x, u)dx, ∀u ∈ X. (3:6)

The critical points of Jl are just the solutions of
(
Pf

λ

)
. Many authors, for example,

Chang [46], Brezis and Nirenberg [47] and Ambrosetti et al. [48], have combined the

sub-supersolution method with the variational method and studied successfully the

semilinear elliptic problems, where a key lemma is that a local minimizer of the
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associated energy functional in the C1-topology is also a local minimizer in the H1-

topology. Such lemma have been extended to the case of the p-Laplacian equations

(see [43,49]) and also to the case of the p(x)-Laplacian equations (see [12, Theorem

3.1]). In [50], Fan extended the Brezis-Nirenberg type theorem to the case of the p(x)-

Kirchhoff [50, Theorem 1.1]. The Theorem 1.1 of [50] concerns with the Dirichlet pro-

blems, but the method for proving the theorem is also valid for the Neumann pro-

blems. Thus we have the following

Theorem 3.4. Let l > 0 and (1.6) holds. If u ∈ C1(�)is a local minimizer of Jl in the

C1(�)-topology, then u is also a local minimizer of Jl in the X-topology.

4 Proof of theorems
In this section we shall prove Theorems 1.1-1.3. Since only the positive solutions are

considered, without loss of generality, we can assume that

f (x, t) = f (x, 0) for t < 0 and x ∈ �,

otherwise we may replace f(x,t) by f(+)(x,t), where

f (+)(x, t) =
{
f (x, t) if t ≥ 0,
f (x, 0) if t < 0.

The proof of Theorem 1.1 consists of the following several Lemmata 4.1-4.6.

Lemma 4.1. Let (1.4) hold. Then l > 0 if l Î Λ.

Proof. Let l Î Λ and u be a positive solution of
(
Pf

λ

)
. Taking v ≡ 1 as a test function

in Definition 3.1. (1) yields

M

⎛⎝∫
�

λ

p(x)
|u|p(x)dx

⎞⎠λ

∫
�

up(x)−1dx =
∫
�

f (x, u)dx, (4:1)

which implies l > 0 because the value of the right side in (4.1) is positive.

Lemma 4.2. Let (1.4) and (1.5) hold. Then � �=� 0.
Proof. By Theorem 3.1, Propositions 3.4 and 3.3. (3), the problem⎧⎪⎨⎪⎩

−M
(∫

�

1
p(x)

(|∇u|p(x) + |u|p(x))dx
)(

div(|∇u|p(x)−2∇u) − |u|p(x)−2u
)
= 0 in �

∂u
∂ν

= 0 on ∂�

(4:2)

has a unique positive solution w1 ∈ C1(�) and w1(x) ≥ ε > 0 for x ∈ �. We can

assume ε ≤ 1. Put d = sup{f (x,w1(x)) : x ∈ �},M3 =
d

m0εp+−1
and l1 = 1 + M3. Then

− M

⎛⎝∫
�

1
p(x)

(|∇w1|p(x) + λ1|w1|p(x))dx
⎞⎠(

�p(x)w1 − λ1w
p(x)−1
1

)
=

− M

⎛⎝∫
�

1
p(x)

(|∇w1|p(x) + λ1|w1|p(x))dx
⎞⎠(

�p(x)w1 − wp(x)−1
1

)

+M

⎛⎝∫
�

1
p(x)

(|∇w1|p(x) + λ1|w1|p(x))dx
⎞⎠M3w

p(x)−1
1

≥ m0M3ε
p+−1 = d ≥ f (x,w1(x)).
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This shows that w1 is a supersolution of the problem
(
Pf

λ1

)
. Obviously 0 is a subsolu-

tion of
(
Pf

λ1

)
. By Theorem 3.3,

(
Pf

λ1

)
has a solution uλ1 such that 0 ≤ uλ1 ≤ w1. By Pro-

position 3.4, uλ1 > 0 on �. So l1 Î Λ and � �=� 0.
Lemma 4.3. Let (1.4) and (1.5) hold. If l0 Î Λ, then l Î Λ for all l > l0.

Proof. Let l0 Î Λ and l > l0. Let uλ0 be a positive solution of
(
Pf

λ0

)
. Then, we have

−�p(x)uλ0 + λup(x)−1
λ0

≥ −�p(x)uλ0 + λ0u
p(x)−1
λ0

=
f (x, uλ0 )

M
(∫

�

1
p(x)

(
∣∣∇uλ0

∣∣p(x) + λ0
∣∣uλ0

∣∣p(x))dx)
≥ f (x, uλ0)

M
(∫

�

1
p(x)

(
∣∣∇uλ0

∣∣p(x) + λ
∣∣uλ0

∣∣p(x))dx)

thanks to (M0). This shows that uλ0 is a supersolution of
(
Pf

λ

)
. We know that 0 is a

subsolution of
(
Pf

λ

)
By Theorem 3.3,

(
Pf

λ

)
has a solution ul such that 0 ≤ uλ ≤ uλ0. By

Proposition 3.4, ul > 0 on �. Thus l Î Λ.

Lemma 4.4. Let (1.4) and (1.5) hold. Then for every l > l*, there exists a minimal

positive solution ul of
(
Pf

λ

)
such that uλ1 ≤ uλ2if l* < l2 < l1.

Proof. The proof is similar to [36, Lemma 3.4], we omit it here.

Lemma 4.5. Let (1.4) and (1.5) hold. Let l1, l2 Î Λ and l2 < l < l1. Suppose that

uλ2and uλ2are the positive solutions of
(
Pf

λ1

)
and

(
Pf

λ2

)
respectively and uλ1 ≤ uλ2. Then

there exists a positive solution vl of
(
Pf

λ

)
such that uλ1 ≤ vλ ≤ uλ2and vl is a global

minimizer of the restriction of Jl to the order interval
[
uλ1 , uλ2

] ∩ X.

Proof. Define f̃ : � × R → R by

f̃ (x, t) =

⎧⎨⎩
f (x, uλ1(x)), if t < uλ1 (x)
f (x, t), if uλ1(x) ≤ t ≤ uλ2 (x)
f (x, uλ2(x)), if t > uλ2 (x).

Define F̃(x, t) =
∫ t
0 f̃ (x, s)ds and for all u Î X,

J̃λ(u) = M̂

⎛⎝∫
�

|∇u|p(x) + λ|u|p(x)
p(x)

dx

⎞⎠ −
∫
�

F̃(x, u)dx.

It is easy to see that the global minimum of J̃ on X is achieved at some vl Î X. Thus

vl is a solution of the following problem⎧⎪⎪⎨⎪⎪⎩
−M

(∫
�

|∇u|p(x) + λ|u|p(x)
p(x)

dx

)(
div(|∇u|p(x)−2∇u) − λ|u|p(x)−2u

)
= f̃ (x, u) in �

∂u
∂ν

= 0 on ∂�

(4:3)
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and vλ ∈ C1(�). Noting that

f
(
x, uλ1

)
= f̃

(
x, uλ1

) ≤ f̃ (x, vλ) ≤ f (x, uλ2 ) = f (x, uλ2)

and l2 < l < l1, since K is increasing operator, we obtain that uλ1 ≤ vλ ≤ uλ2. So

f̃ (x, vλ) = f (x, vλ), and vl is a positive solution of
(
Pf

λ

)
. It is easy to see that there exists

a constant c such that Jλ(u)̃Jλ(u) + c for u ∈ [
uλ1 , uλ2

] ∩ X. Hence vl is a global mini-

mizer of Jλ|[uλ1 ,uλ2 ]∩X.
A key lemma of this paper is the following strong comparison principle.

Lemma 4.6 (A strong comparison principle). Let (1.4) and (1.5) hold. Let l1, l2 Î Λ

and l2 < l1. Suppose that uλ1and uλ2are the positive solutions of (1.1λ1)and
(1.1λ2)respectively. Then uλ1 < uλ2on �.

Proof. Since uλ1 , uλ2 ∈ C1(�) and uλ1 > 0 on �, in view of Lemma 4.4, there exist

two positive constants b1 ≤ 1 and b2 such that

b1 ≤ uλ1 ≤ uλ2 ≤ b2 on �.

For ε ∈
(
0,

b1
2

)
, setting vε = uλ2 − ε, then

− M

⎛⎝∫
�

|∇vε|p(x) + λ1|vε|p(x)
p(x)

dx

⎞⎠ (div(|∇vε|p(x)−2∇vε) − λ1v
p(x)−1
ε )

= −M

⎛⎝∫
�

∣∣∇uλ2

∣∣p(x) + λ1|vε|p(x)
p(x)

dx

⎞⎠ (div(
∣∣∇uλ2

∣∣p(x)−2∇uλ2) − λ2vp(x)−1
ε + (λ2 − λ1)vp(x)−1

ε )

= −M

⎛⎝∫
�

∣∣∇uλ2

∣∣p(x) + λ1|vε|p(x)
p(x)

dx

⎞⎠ (div(
∣∣∇uλ2

∣∣p(x)−2∇uλ2) − λ2u
p(x)−1
λ2

)

+M

⎛⎝∫
�

∣∣∇uλ2

∣∣p(x) + λ1|vε|p(x)
p(x)

dx

⎞⎠(
(λ1 − λ2)vp(x)−1

ε − λ2

(
up(x)−1

λ2
− vp(x)−1

ε

))

≥ f (x, uλ2)

M

(∫
�

∣∣∇uλ2

∣∣p(x) + λ1|vε|p(x)
p(x)

dx

)

M

(∫
�

∣∣∇uλ2

∣∣p(x) + λ2
∣∣uλ2

∣∣p(x)
p(x)

dx

)

+M

⎛⎝∫
�

∣∣∇uλ2

∣∣p(x) + λ1|vε|p(x)
p(x)

dx

⎞⎠(
(λ1 − λ2)

(
b1
2

)p+−1

− λ2

(
up(x)−1

λ2
− vp(x)−1

ε

))
.

Taking an ε > 0 sufficiently small such that

λ2

(
up(x)−1

λ2
− vp(x)−1

ε

)
< (λ1 − λ2)

(
b1
2

)p+−1

for x ∈ �

and

λ1

∫
�

1
p(x)

|vε|p(x)dx ≥ λ2

∫
�

1
p(x)

∣∣uλ2

∣∣p(x)dx,
then

−M

⎛⎝∫
�

|∇vε|p(x) + λ1|vε|p(x)
p(x)

dx

⎞⎠ (div(|∇vε|p(x)−2∇vε)−λ1v
p(x)−1
ε ) = g(x) ≥ f (x, uλ2),
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consequently, vε is a solution of the problem⎧⎪⎪⎨⎪⎪⎩
−M

(∫
�

|∇vε|p(x) + λ1|vε|p(x)
p(x)

dx

)(
div(|∇vε|p(x)−2∇vε) - λ1v

p(x)−1
ε

)
= g(x) in �

∂u
∂ν

= 0 on ∂�,

where g(x) ≥ f (x, uλ2). With other words, vε = Kλ1(g), where Kλ1 is the solution

operator of (3.1λ1). Since uλ1 = Kλ1 (h), where h(x) = f (x, uλ1) ≤ f (x, uλ2 ) ≤ g(x), noting

that Kλ1 is increasing, we have vε ≥ uλ1, that is, uλ2 − ε ≥ uλ1 on �.

The proof of Theorem 1.1 is complete. Let us now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. Let (1.4)-(1.8) hold. Let l > l*. Take l1, l2 Î Λ such that l2
< l < l1 and let uλ1 ≤ uλ ≤ uλ2 be as in Lemma 4.5.

We claim that ul is a local minimizer of Jl in the X-topology.

Indeed, Lemma 4.6 implies that uλ1 < uλ < uλ2 on �. It follows that there is a C0-

neighborhood U of ul such that U ⊂ [uλ1 , uλ2 ], consequently ul is a local minimizer of

Jl in the C0-topology, and of course, also in the C1-topology. By Theorem 3.4, ul is

also a local minimizer of Jl in the X-topology.

Define

f̃λ(x, t) =
{
f (x, t), if t > uλ(x),
f (x, uλ(x)), if t ≤ uλ(x),

and F̃λ(x, t) =
∫ t
0 f̃λ(x, s)ds. Consider the problem⎧⎪⎪⎨⎪⎪⎩

−M

(∫
�

|∇u|p(x) + λ|u|p(x)
p(x)

dx

)(
div(|∇u|p(x)−2∇u) − λ|u|p(x)−2u

)
= f̃λ(x, u) in �

∂u
∂ν

= 0 on ∂�

and denote by J̃λ the energy functional corresponding to (4.4l). By the definition of

f̃λ, we have f̃λ(x, u(x)) ≥ f (x, uλ(x)) for every u Î X. Hence, for each solution u of

(4.4l), we have that u ≥ ul, consequently f̃λ(x, u) = f (x, u) and u is also a solution of(
Pf

λ

)
. It is easy to see that uλ1 and uλ2 are a subsolution and a supersolution of (4.4l)

respectively. By Theorems 3.3 and 1.2, there exists u∗
λ ∈ [uλ1 , uλ2 ] ∩ C1(�) such that u∗

λ

is a solution of (4.4l) and is a local minimizer of J̃λ in the C1-topology. As was noted

above, we know that u∗
λ ≥ uλ and u∗

λ is also a solution of
(
Pf

λ

)
. If u∗

λ �= uλ, then the

assertion of Theorem 1.2 already holds, hence we can assume that u∗
λ = uλ. Now ul is

a local minimizer of J̃λ in the C1-topology, and so also in the X-topology. We can

assume that ul is a strictly local minimizer of J̃λ in the X-topology, otherwise we have

obtained the assertion of Theorem 1.2. It is easy to verify that, under the assumptions

of Theorem 1.3, J̃λ ∈ C1(X,R) and J̃λ satisfies the (P.S.) condition (see e.g., [30]). It fol-

lows from the condition (1.7) and (1.8) that {̃Jλ(u) : u ∈ X} = −∞ (see e.g., [30]). Using

the mountain pass lemma (see [51]), we know that (4.4l) has a solution vl such that vl

≠ ul. vl, as a solution of (4.4l), must satisfy vl ≥ ul, and vl is also a solution of
(
Pf

λ

)
.

The proof of Theorem 1.2 is complete.
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Proof of Theorem 1.3. (1) Let f satisfy (1.4), (1.9), and (1.10). For given any l > 0,

consider the energy functional Jl defined by (3.3). By (1.10) and noting that r(x) <p(x)

for x ∈ �, there is a positive constant M4 such that∣∣F(x, t)∣∣ ≤ λm0

2p+
|t|p(x), ∀x ∈ �, ∀ |t| ≥ M4. (4:5)

For u Î X with ||u||l ≥ 1, we have that

Jλ(u) ≥ m0

p+

∫
�

(
|∇|p(x) + λ|u|p(x)

)
dx − λm0

2p+

∫
�

|u|p(x)dx − c5

≥ m0

p+

∫
�

|∇u|p(x)dx + λm0

2p+

∫
�

|u|p(x)dx − c5

≥ m0

2p+
‖u‖p−

λ − c5,

where c5 is a positive constant. This shows that Jl(u) ® +∞ as ||u||l ® +∞, that is,

Jl is coercive. In view of Proposition 2.5. (iv), the condition (1.10) also implies that Jl
is weakly sequentially lower semi-continuous. Thus Jl has a global minimizer u0. Put

v0(x) = |u0(x)| for x ∈ �. It is easy to see that Jl(v0) ≤ Jl(u0), consequently, v0 is a glo-

bal minimizer of Jl and is a positive solution of
(
Pf

λ

)
. This shows that l Î Λ for all l

> 0. Hence l* = 0 and the statement (1) is proved.

To prove Theorem 1.3. (2) we give the following lemma.

Lemma 4.7. Let (1.4) and (1.5) hold. Then for each l > l*,
(
Pf

λ

)
has a positive solution

ul such that Jl(ul) ≤ 0.

Proof. Let l > l*. Take l2 Î (l*, l) and let uλ2 be a positive solution of
(
Pf

λ2

)
. then

uλ2 is a supersolution of
(
Pf

λ

)
. We know that 0 is a subsolution of

(
Pf

λ

)
. Analogous to

the proof of Lemma 4.5, we can prove that
(
Pf

λ

)
has a positive solution uλ ∈ [0, uλ2 ]

such that Jλ(uλ) = inf{Jλ(u) : u ∈ [0, uλ2 ]}. So Jl(ul) ≤ Jl(0) = 0.

Proof of Theorem 1.3. (2). Let (1.4)-(1.8) hold. Let ln > l* and ln ® l* as n ® +∞.

By Lemma 4.7, for each n,
(
Pf

λn

)
has a positive solution uλn such that Jλn(uλn) ≤ 0, that is

M̂

⎛⎝∫
�

∣∣∇uλn

∣∣p(x) + λn
∣∣uλn

∣∣p(x)
p(x)

dx

⎞⎠ ≤
∫
�

F(x, uλn)dx.

Since uλn is a solution of
(
Pf

λn

)
, we have that

M

⎛⎝∫
�

∣∣∇uλn

∣∣p(x) + λn
∣∣uλn

∣∣p(x)
p(x)

dx

⎞⎠∫
�

(∣∣∇uλn

∣∣p(x) + λn
∣∣uλn

∣∣p(x))dx = ∫
�

f (x, uλn)uλndx.

It follows from (1.8) that there exists a positive constant c6 such that∫
�

F(x, uλn)dx ≤ c6 +
1
θ

∫
�

f (x, uλn)uλndx.
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Thus, using condition (1.7), we have that

1 − μ

p+
M

⎛⎝∫
�

∣∣∇uλn

∣∣p(x) + λn
∣∣uλn

∣∣p(x)
p(x)

dx

⎞⎠∫
�

(
∣∣∇uλn

∣∣p(x) + λn
∣∣uλn

∣∣p(x))dx
≤ c6 +

1
θ

∫
�

f (x, uλn)uλndx

≤ c6 +
1
θ
M

⎛⎝∫
�

∣∣∇uλn

∣∣p(x) + λn
∣∣uλn

∣∣p(x)
p(x)

dx

⎞⎠∫
�

(
∣∣∇uλn

∣∣p(x) + λn
∣∣uλn

∣∣p(x))dx,
and consequently,

m0

(
1 − μ

p+
− 1

θ

)∥∥uλn

∥∥p−
λn

≤ c7,

where the positive constant c7 is independent of n. This shows that {∥∥uλn

∥∥
λn

} is
bounded. Noting that ln ® l* > 0, we have that {∥∥uλn

∥∥} is bounded. Without loss of

generality, we can assume that uλn ⇀ u∗ in X and uλn(x) → u∗(x) for a.e. x Î Ω. By

(1.6) and the L∞(Ω)-regularity results of [44], the boundedness of {∥∥uλn

∥∥} implies the

boundedness of
{∣∣uλn

∣∣
L∞(�)

}
. By the C1,α(�)-regularity results of [37], the boundedness

of
{∣∣uλn

∣∣
L∞(�)

}
implies the boundedness of

{∥∥uλn

∥∥
C1,α(�)

}
, where a Î (0, 1) is a con-

stant. Thus we have uλn ⇀ u∗ in C1(�). For every v Î X, since uλn is a solution of(
Pf

λn

)
, we have that, for each n,

M

⎛⎝∫
�

∣∣∇uλn

∣∣p(x) + λn
∣∣uλn

∣∣p(x)
p(x)

dx

⎞⎠∫
�

(∣∣∇uλn

∣∣p(x)−2∇uλn∇v + λn
∣∣uλn

∣∣p(x)−2
uλn v

)
dx =

∫
�

f (x, uλn)vdx

Passing the limit of above equality as n ® +∞, yields

M

⎛⎝∫
�

|∇u∗|p(x) + λ∗|u∗|p(x)
p(x)

dx

⎞⎠∫
�

(
|∇u∗|p(x)−2∇u∗∇v + λ∗|u∗|p(x)−2u∗v

)
dx =

∫
�

f (x, u∗)v dx,

which shows that u* is a solution of
(
Pf

λ∗

)
. Obviously u* ≥ 0 and u∗ �≡ 0. Hence u* is

a positive solution of
(
Pf

λ∗

)
and l* Î Λ.
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