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Abstract

This article studies the existence and uniqueness of solutions for impulsive semi-
linear evolution equations of fractional order o € (1, 2] with mixed boundary
conditions. Some standard fixed point theorems are applied to prove the main
results. An illustrative example is also presented.
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1 Introduction and preliminaries

Fractional differential equations arise in many engineering and scientific disciplines as
the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, control theory, signal, and image processing, biophysics, electrodynamics
of complex medium, polymer rheology, fitting of experimental data, etc. [1-6]. For
example, one could mention the problem of anomalous diffusion [7-9], the nonlinear
oscillation of earthquake can be modeled with fractional derivative [10], and fluid-
dynamic traffic model with fractional derivatives [11] can eliminate the deficiency aris-
ing from the assumption to continuum traffic flow and many other [12,13] recent
developments in the description of anomalous transport by fractional dynamics. For
some recent development on nonlinear fractional differential equations, see [14-24]
and the references therein.

Impulsive differential equations, which provide a natural description of observed evo-
lution processes, are regarded as important mathematical tools for the better under-
standing of several real world problems in applied sciences. The theory of impulsive
differential equations of integer order has found its extensive applications in realistic
mathematical modelling of a wide variety of practical situations and has emerged as an
important area of investigation. The impulsive differential equations of fractional order
have also attracted a considerable attention and a variety of results can be found in the
articles [25-36].

© 2012 Zhang et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.


mailto:wgt2512@163.com
mailto:wgt2512@163.com
http://creativecommons.org/licenses/by/2.0

Zhang et al. Boundary Value Problems 2012, 2012:17
http://www.boundaryvalueproblems.com/content/2012/1/17

Motivated by Agarwal and Ahmad’s work [33], in this article, we study a mixed
boundary value problem for impulsive evolution equations of fractional order given by

‘Du(t) = A(u(t) + f(t,u(t)), l<a<2, te],
Au(ty) = Le(u(te)), A () = Li(u(t)), k=1,2,...,p, (1.1)
Tu'(0) = —au(0) — bu(T), Tu'(T) =cu(0) +du(T), a,bcdeR,

where “D” is the Caputo fractional derivative, A(f) is a bounded linear operator on J
(the function ¢ — A(¢) is continuous in the uniform operator topology),
fecC(x R R) I, I; € C(R,R),J =[0,T(T > 0),0=tp <t1 <--- <l <--- <
th<tp1 =T.J =N\{t1. 12, ..., 1}, Au(te) =u(t)) —u(t,), u(t)
denote the right and the left limits of u(¢) at t = tx(k = 1, 2, ..., p), respectively and

and u(t,)

Au’(ty) have a similar meaning for u(t).

It is worthwhile pointing out that the boundary conditions in (1.1) interpolate
between Neumann (¢ = b = ¢ = d = 0) and Dirichlet (g, d —  with finite values of b
and ¢) boundary conditions. Note that Zaremba boundary conditions (#(0) = 0, u(7) =
0) can be considered as mixed boundary conditions with a — oo, ¢ = d = 0. For more
details on Zaremba boundary conditions, see ( [37-39]).

Let Jo = [0, t1], 1 = (t1, L2, oy Jp1 = (tpo15 L), Jp = (£, T1, and we introduce the
spaces: PC(J, R) = {u:J —> Rlue C(p), k=0, 1, .., p, and u(ty) existk = 1, 2, .., p,}

with the norm 14l = Stlg) i”(t”, and PC'(J, R) = {u: ] > Rlue C'(), k=0, 1, .., p,

and u(t)), u'(t)) exist,k = 1, 2, ..., p,} with the norm |lulpci = max{|ul, u’||}.
Obviously, PC(J, R) and PC'(J, R) are Banach spaces.

Definition 1.1 A function u € PC'(J, R) with its Caputo derivative of order o existing
on J is a solution of (1.1) if it satisfies (1.1).

For convenience, we give some notations:
(b+d)T + (ad — be)t

AT

(1—d)(T+at) +b(c+1)t _lad| + bl _la+bl

as(t) = g = s = A, = max|A(t
3(1) A T TIAl N 1= max |A(1)

G+ )T+ (a+b)e
- A

M(0) = eI

’

’

where A = (b + 1)(c +d) - (a + b)(d-1) = 0.
Lemma 1.1 [26]For a given y € C[0, T), a function u is a solution of the impulsive

mixed boundary value problem

CDu(t) =y(t), 1<a<2, te],
Au(ty) = Ie(u(te)), A () = Li(u(te)), k=1,2,...,p, (1.2)
Tu'(0) = —au(0) — bu(T), Tu'(T) =cu(0) +du(T), a,bcdeR,
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if and only if u is a solution of the impulsive fractional integral equation

t (t _ s)a—l T (T _ s)ot—l
/0 I (@) y(s)ds+A1(t)/t; r(@) y(s)ds

T (T _ S)ot—Z .
_M(t)/rp Fe—1) y(s)ds+A, te]o;

Lt —s)a — (T—
fn( r(@) ey« M(f)fp r( )
u(t) = )

_Az(t)/ (r( Y(S)ds+z U (lr( : y(s)ds+l,(u(tl)):|
N CED .
' ; (=t [/Ll P(a—1) Y(S)ds I (”(ti))}

k
+Z(t—tk)[ (l_) y(s)ds+l*(u(t,))}+A tel, k=1,2,...,p,
i=1

y(s)ds
(1.3)

oo T(e—1)

where

p 4 el
A=2(t) Z |:/ (¢ 1—-(2) y(s)ds + Ii(u(ti)):|

i=

L oa—2
+x1(t)2(tp—t, [ o )y(s)dm*(u(a))}

(ti—s)*"

 T(a-1) y(s)ds +I*(u(t1))j|

- Z [A3(2) + A1 (1)) |:
i=1

2 Uniqueness and existence results
Define an operator T : PC(J, R) — PC(J, R) as

Tu(t) = f (tr (S))_ (F(s, u(s)) + As)us)) ds
+A1(t)/ (T 1__‘(5))7 (f (s, u(s)) + A(s)u(s))ds
() f (f(s u(s)) + A(s)u(s))ds

i e 1
. Z { / @@ F(;)) (f (s, u(s)) + A(s)u(s))ds + I,-(u(ti))i|
i=1 li-1

k-1 4 @
+ ; (te — 1) |:ft1 (rtf( s) )2 (f (s, u(s)) + A(s)u(s))ds + I*(u(tl))} 2.1)

k
+ Z (t—t) |: I (Fl(; 2 ) (f (s, u(s)) + A(s)u(s))ds +I*(u(t,))}

p i el
+21(t) Z |:/ti—1 (ti F(‘z) (f (s, u(s)) + A(s)u(s))ds + Ii(u(ti)):|

p—1 4 _
+x1(t) Z (ty — 1) |: : (rtf( 2 1 (f(s u(s)) + A(s)u(s))ds + I*(u(tl))i|

p ti a2
_ Z [A3(t) + A1 (t)tp] |: I (lii(as_) 1 (f (s, u(s)) + A(s)u(s))ds +I;k(u(t,-))i| .
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Lemma 2.1 The operator T : PC(], R) — PC(J, R) is completely continuous.

Proof. Observe that T is continuous in view of the continuity of f I; and I};. Let Q €
PC(J, R) be bounded, where Q = {# € PC(J, R): ||u|| < r}. Then, there exist positive
constants L; > 0(i = 1, 2, 3) such that |f(t, u(¢))| < Ly, |k(#)| < L, and |I;(u)| <L; Vu
e Q. Thus, Yu € Q, we have

IT.(0)] </ (t F(‘))f If(s, u(s)) + A(s)u(s)| ds
a—1
+ |)\1(t)|/tp (Tlf(;)) £ (s u(s)) + A(s)u(s)| ds

T _ 2
+ ()] /t (rT(aS,)n If (s, u(s)) + A(s)u(s)| ds

k L el
+ ; |:/r( l (& - ;)) |f(5,u(5)) +A(s)u(s)‘ ds + ‘I,‘(u(ti))|i|

= (tl -
+ ; (e — ;) |:/tH F(a \f(s u(s)) + A(s)u(s)| ds + |I; (u(t1))|]
k ([ -~
+ Z (t—u) |:/t ! \f(s u(s)) + A(s)u(s)| ds + |I*(u(t1))|:|

+ ] (o) Z [ / “ ;(Of) (5, u(s)) + AG)u(s)] ds + |h(u(u))l]

+ (1) Z (tp— ) |:/: i~ |f(s u(s)) + A(s)u(s)| ds + ‘I*(u(tl))‘:|

+ Z[\ka(t)l [21(0)] 2] [/ (= |f(s u(s)) + A(s)u(s)| ds + \1*@@))\] (2.2)
(t— (T —s5)*!

< (Ly +Aqr) /’ r( ) d5+ [ ()] (L +A1r)/t; r(@) ds

_ )2 4 AN |
+ 22 ()] (L1 + Arr) \ (I]:(ozi)l) d5+§|:(L1+A1r)/[M (t’r(;)) ds+L{|

p—1

t 2 P 2
+ZT|:(L1+A17 (IE( s_) )d5+L3]+ZT|:(L1+AIT) 3 (lit( 5)* )ds+L3]

ot i1

|A1(t)|z [(L1 +A1T)/ (& _a ds+L2]
+|x1(t)|;T[(L1+A1r)f' (15(;5_)1) ds+L31|

tiy

P t; a2
+ Z[|)‘3(t)| +T|)»1(t)|] T|:(L1 +7Aq7) /;H (It‘l(as—) 3 ds+L3]
[(2p —1)A+ T @) +p[a@)] + AT (L1 + Arr)
I'(a)
L ()1 [ (O] T (L + Avr)
IMa+1)

+(1+ })q (t)|)pL2

+[2p =D +T 1)) +p[A3()]1L5.

Since t € [0, T, therefore there exists a positive constant L, such that | Tu|| < L,
which implies that the operator 7" is uniformly bounded.
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On the other hand, for any t € J;, 0 < k < p, we have

(1) (1)) < \f(s u(s)) + A(s)u(s)| ds

ey
a0 )7 /(5 ) + A
s | (F(a If (s, u(s)) + A(s)u(s)| ds
- i [ [T s A s \P‘(u(n))i]

Y Z [/ F(a))f (5, u(s)) + A(s)u(s)| ds + |I,-(u(ti))|:|
+ Ay Z (tp — ) |:/L (6= |f(s u(s)) + A(s)u(s)| ds + |IF (u( ti))|:|

- F((x
p
+2

i=1

(a+b)T + (bc — ad)(T —tp)
TA

X [ ! [ (lii(; ) |f (s, u(s)) + A(s)u(s)| ds + | I (u( t,))|:|

(7Sa1

r@ *

IA

(Ll +A1T)[ d5+)\,4 L] +A11’)/
3

tp

. )\.S(Ll +A17’)/ F S)“ zdS + Z |:(L1 +A11')/ (lff(— ?ﬂl—)zds +L3]
P ti L — _ Ct
+)L4Z|:(L1+A1r)[ (txr d5+L{|+)\4Z|:(Ll+A]r)/l (i )st+L3:|
Dt 2
Z (A5 +Thq) |:(L1 +A1r)/: T ds + L3}

i=1

< (P A [ (1) + (1T

+praly +[p+ (1 +pT)Aa + (1 +p)As|Ls :=L.

T ! (Ll + AIT)
I'(«)

Hence, for t, t5 € Ji, t1 <tr, 0 < k < p, we have
153
()(e) - (m)(e)] = [ (1) (9] s = 26tz — 1),
L

which implies that T is equicontinuous on all J, kK = 0, 1, 2, ..., p. Thus, by the
Arzela-Ascoli Theorem, the operator T : PC(J, R) — PC(J, R) is completely continuous.

We need the following known results to prove the existence of solutions for (1.1).

Theorem 2.1 [40]Let E be a Banach space. Assume that ) is an open bounded sub-
set of E with € Q and let T . § —> E be a completely continuous operator such that

I Tull < llull, Vu € os2.

Then T has a fixed point in ¢ .
*
Theorem 2.2 Let lim ftu) =0, lim L(u) = 0and lim I (u) =0, then the problem
u—0 u u—0 U u—0 u
(1.1) has at least one solution.
*
Proof. In view of lim L w) =0, lim l(w) =0 and lim i (u)
u—0 u u—0 U u—0 U
a constant r > 0 such that |[fit, u)| < 6,|ul, |I(u)| < 5»|u| and |I}(u)| < 85 |ul for 0 < |

=0, then there exists

u| <r,
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where 9; > 0(i = 1, 2, 3) satisfy the inequality

sup
161

(1+p)(L + [M(D))T*(8 +A1) [(2p — 1)1+ T|A1()]) +p|A3(0)] + [A2()ITZ71 (81 + A)
[(a+1) I'(a) (2.3)
+(1+ [ (O))ps2 +[(2p — D)L+ T |11 (1)]) +p |23()[183) < 1.

Let us set Q = {u € PC(J, R) | |lu|l <r} and take u € PC(J, R) such that |u|| = r, that
is, u € dQ. Then, by the process used to obtain (2.2), we have
(1+p)(1 + [ (D)T(8 +A1) [(2p = 1)1 + T 21 (0)]) + p A3 (0)] + [A2() 1T (81 + Ar)

F(a+1) I'(a) (24')
+(1+ A ())ps2 + [(20 — D)1 + T [a1(0)]) +p [A3(0)|183} llull -

|Tu(t)| < sup {
te]

Thus, it follows that ||Tu|| < ||u|, u € 0Q. Therefore, by Theorem 2.1, the operator T'
has at least one fixed point, which in turn implies that the problem (1.1) has at least
one solution 4 ¢ Q .

Theorem 2.3 Assume that there exist positive constants K,(i = 1, 2, 3) such that
fw) —fv)| <Kilu—vl, |L() —L@)| <K lu—vl, [G@)-L@)|<Kslu—vl,

forte Juve Randk=1,2, .., p.
Then the problem (1.1) has a unique solution if H < 1, where

(L+p)(1+ M (D)])T* (K1 +Ay)

H = ma Fas1) +[2p =D)L+ T ()]) +p[23(0)|1K3
0+ o102~ D TIOD 8 P(0] ¢ POl 1) >
Proof. Denote F(s) = |fls, u(s)) - fis,v(s))| + |[A(s)u(s) - A(s)v(s)].
For u, ve PC(J, R), we have
|(T)(1) = (1) ()]
< [ e ] [ w0 o

(ti =) (ti— )
+Z[[ r@) F(s)ds+|1i(u(z,-))—1,-(u(z,~))|]+Z;(tk—c,-) [/t @ F( )ds

o2
1)

P to(r _ oyl
+ |}»1(t){ Z |:/ (tl F(;)) F(S)ds + |Ii(u(t,~)) — Ii(U(ti))|:|
i=1 LVt

+ |17 (u(6) = I (v(w))[] Z(t—rk)[[ F(’ F(s)ds + |I7 (u(t:)) — If(v(rim]

p—1 _
+|A1(t)|2(tp—ti)|: (Fl( 2 )F(s)ds+|1*(u(t1)) I,’-*(v(ti))|:|
i=1 li-1
P L (ti_s)afz
L@l + ol | [ T ) s ) = 1)

(1 +p)(1+ M1 ()NT (K, +A1) [(2p = 1)(1+ T |21 (0)]) +p |23 (1)] + [A2(O)| 1T (Ky + Ar)
- F(a+1) I'(a)

+(1+ M @)pK2 +[(2p — D)1+ T M (D)]) +p [A3(0)]1Ks } lu — vl .

Thus, we obtain ||Tu — Tv|| < H |lu — v||, where # is given by (2.5). As H < 1,
therefore, T is a contraction. Thus, the conclusion of the theorem follows by the con-
traction mapping principle. This completes the proof.
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3 Examples
Example 3.1 Consider the following fractional order impulsive mixed boundary value
problem

1
CD"‘u(t)=3cost+e“3(‘)—1, 0<t<T, t#t;, O0<t; <T,
Au(t)) =2In(1 +u?(t1)),  Au/(ty) = [1 — cosu(ty)]?, (3.1)

T (0) = —;u(O) - ;u(T), Tl (T) = iu(O) . ;u(T),

where

1 1 1 1 1
T<a<2A0) = costf(iu) =" —1,11(u) = 2In(1+42), If (u) = (1 — cosu)?, a = b= gie=,d= Sandp =1.

Clearly all the assumptions of Theorem 2.2 hold. Thus, the conclusion of Theorem
2.2 applies and the impulsive fractional mixed boundary value problem (3.1) has at
least one solution.
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