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Abstract

In the article, a one-dimensional bipolar hydrodynamic model (Euler-Poisson system)
in the quarter plane is considered. This system takes the form of Euler-Poisson with
electric field and frictional damping added to the momentum equations. The global
existence of smooth small solutions for the corresponding initial-boundary value
problem is firstly shown. Next, the asymptotic behavior of the solutions towards the
nonlinear diffusion waves, which are solutions of the corresponding nonlinear
parabolic equation given by the related Darcy’s law, is proven. Finally, the optimal
convergence rates of the solutions towards the nonlinear diffusion waves are
established. The proofs are completed from the energy methods and Fourier analysis.
As far as we know, this is the first result about the optimal convergence rates of the
solutions of the bipolar Euler-Poisson system with boundary effects towards the
nonlinear diffusion waves.
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1 Introduction
In this note, we consider a bipolar hydrodynamic model (Euler-Poisson system) in one

space dimension. Denoting by ni, ji, Pi(ni), i = 1, 2, and E the charge densities, current

densities, pressures and electric field, the scaled equations of the hydrodynamic model

are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1t + j1x = 0,

j1t +
(
j21
n1

+ P1(n1)
)
x
= n1E − j1

τ1
,

n2t + j2x = 0,

j2t +
(
j22
n2

+ P2(n2)
)
x
= −n2E − j2

τ2
,

λ2Ex = n1 − n2.

(1:1)

The positive constants τi(i = 1,2) and l denote the relaxation time and the Debye

length, respectively. The relaxation terms describe in a very rough manner the damp-

ing effect of a possible neutral background charge. The Debye length is related to the

Coulomb screening of the charged particles. The hydrodynamic models are generally
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used in the description of charged particle fluids. These models take an important

place in the fields of applied and computational mathematics. They can be derived

from kinetic models by the moment method. For more details on the semiconductor

applications, see [1,2] and on the applications in plasma physics, see [1,3]. To begin

with, we assume in the present article that the pressure-density functions satisfy

P1(n) = P2(n) = nγ , γ ≥ 1,

and set τ1, τ2 and l to be one for simplicity In particular, we note that g = 1 is an

important case in the applications of engineer. Hence, (1.1) can be simplifies as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1t + j1x = 0,

j1t +
(
j21
n1

+ P(n1)
)
x
= n1E − j1,

n2t + j2x = 0

j2t +
(
j22
n2

+ P(n2)
)
x
= −n2E − j2,

Ex = n1 − n2.

(1:2)

Recently, many efforts were made for the bipolar isentropic hydrodynamic equations

of semiconductors. More precisely, Zhou and Li [4] and Tsuge [5] discussed the

unique existence of the stationary solutions for the one-dimensional bipolar hydrody-

namic model with proper boundary conditions. Natalini [6], and Hsiao and Zhang

[7,8] established the global entropic weak solutions in the framework of compensated

compactness on the whole real line and spatial bounded domain respectively. Zhu and

Hattori [9] proved the stability of steady-state solutions for a recombined bipolar

hydrodynamical model. Ali and Jüngel [10] studied the global smooth solutions of

Cauchy problem for multidimensional hydrodynamic models for two-carrier plasma.

Lattanzio [11] and Li [12] studied the relaxation time limit of the weak solutions and

local smooth solutions for Cauchy problems to the bipolar isentropic hydrodynamic

models, respectively. Gasser and Marcati [13] discussed the relaxation limit, quasineu-

tral limit and the combined limit of weak solutions for the bipolar Euler-Poisson sys-

tem. Gasser et al. [14] investigated the large time behavior of solutions of Cauchy

problem to the bipolar model basing on the fact that the frictional damping will cause

the nonlinear diffusive phenomena of hyperbolic waves, while Huang and Li recently

studied large-time behavior and quasineutral limit of L∞ solution of the Cauchy pro-

blem in [15]. As far as we know, no results about the global existence and large time

behavior to (1.2) with boundary effect can be found. In this article we will consider

global existence and asymptotic behavior of smooth solutions to the initial boundary

value problems for the bipolar Euler-Poisson system on the quarter plane ℝ+ × ℝ+.

Then, we now prescribe the initial-boundary value conditions:(
n1, j1,n2, j2

)
(x, 0) =

(
n10, j10,n20, j20

)
(x) → (

n+, j+,n+, j+
)

as x → +∞, (1:3)

and

j1(0, t) = j2(0, t) = 0 = E(0, t). (1:4)

Moreover, we also investigate the time-asymptotic behavior of the solutions to (1.2)-

(1.4). Our results discussed below show that even for the case with boundary condi-

tion, the solutions of (1.2)-(1.4) can be captured by the corresponding porous equation
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as in initial data case. For the sake of simplicity, we can assume j+ = 0. This assump-

tion can be removed because of the exponential decay of the momentum at x = ±∞

induced by the linear frictional damping.

Finally, set

(ϕi0, zi0) :=

⎛
⎝−

∞∫
x

(
ni0(y) − n̄i

(
y + xi0, 0

))
dy, ji0(x) − j̄i(x, 0)

⎞
⎠ ,

here the nonlinear diffusion waves
(
n̄1, j̄1, n̄2, j̄2

)
will be defined in Section 2, and the

shift xi0 satisfy

∞∫
0

(
ni0(x) − n̄i

(
x + xi0,t = 0

))
dx = 0,

which can be computed from the standard arguments, see [16-19].

Throughout this article C always denotes a harmless positive constant. Lp(ℝ+) is the

space of square integrable real valued function defined on ℝ+ with the norm ‖ · ‖Lp(R+)

and Hk(ℝ+) denotes the usual Sobolev space with the norm ∥·∥k.
Now one of main results in this paper is stated as follows.

Theorem 1.1 Suppose that n10-n+, n20-n+ Î L1(ℝ+) and satisfies (2.4) for some δ0 > 0,

(�10, z10, �20, z20) Î (H3(ℝ+) ∩ L1(ℝ+)) × (H2(ℝ+) ∩ L1(ℝ+)) × (H3(ℝ+) ∩ L1(ℝ+)) × (H2

(ℝ+) ∩ L1(ℝ+)) with x10 = x20 and that

‖n10 − n+‖L1(R+) + ‖n20 − n+‖L1(R+) + ‖(ϕ10,ϕ20)‖H3(R+) + ‖(z10, z20)‖H2(R+)

+ ‖ϕ10,ϕ20‖L1(R+) + ‖(z10, z20)‖L1(R+) + δ0 � 1

hold. Then there exists a unique time-global solution (n1, j1, n2, j2)(x, t) of IBVP (1.2)-

(1.4), such that for i = 1,2,

ni − n̄i ∈ Ck
(
0,∞,H2−k (R+)

)
, k = 0, 1, 2,

ji = j̄i ∈ Ck
(
0,∞,H1−k (R+)

)
, k = 0, 1,

E ∈ Ck
(
0,∞,H3−k (R+)

)
, k = 0, 1, 2, 3,

and

∥∥∥∂kx (n1 − n̄1,n2 − n̄2)
∥∥∥
L2(R+)

≤ C(1 + t)−
k
2 , k = 0, 1, 2, (1:5)

∥∥∥∂kx
(
j1 − j̄1, j2 − j̄2

)∥∥∥
L2(R+)

≤ C(1 + t)−
k+2
2 , k = 0, 1, 2, (1:6)

∥∥∥∂kx E
∥∥∥
L2(R+)

≤ Ce−αt , k = 0, 1, 2, (1:7)

where a > 0 and C is positive constant.

Next, with the help of Fourier analysis, we can obtain the following optimal conver-

gence rate.

Li Boundary Value Problems 2012, 2012:21
http://www.boundaryvalueproblems.com/content/2012/1/21

Page 3 of 13



Theorem 1.2 Under the assumptions of Theorem 1.1, it holds that

∥∥∥∂kx (n1 − n̄1,n2 − n̄2)
∥∥∥
L2(R+)

≤ C(1 + t)−
2k+3
4 , k = 0, 1, (1:8)

‖(n1 − n̄1,n2 − n̄2)‖Lp(R+) ≤ C(1 + t)
−2p−1

2p , 2 ≤ p ≤ +∞, (1:9)

∥∥(
j1 − j̄1, j2 − j̄2

)∥∥
L2(R+)

≤ C(1 + t)−
5
4 . (1:10)

Remark 1.3 The condition (2.4) implies

∞∫
0

(
n10(x) − n20(x)

)
dx = 0,

and it is a technique one. As to more general case, we will discuss it in the forthcom-

ing future. Theorems 1.1 and 1.2 show that the nonlinear diffusive phenomena is main-

tained in the bipolar Euler-Poisson system with the interaction of two particles and the

additional electric field, which indeed implies that this diffusion effect is essentially due

to the friction of momentum relaxation.

Using the energy estimates, we can establish a priori estimate, which together with local

existence, leads to global existence of the smooth solutions for IBVP (1.2)-(1.4) by stan-

dard continuity arguments. In order to obtain the asymptotic behavior and optimal decay

rate, noting that E = �1 - �2 satisfies the damping “Klein-Gordon” equation (see [14,15]),

we first obtain the exponential decay rate of the electric field E by energy methods. Then,

we can establish the algebraical decay rate of the perturbed densities �1 and �2. Finally,

from the estimates of the wave equation with damping in [20] and using the idea of [16],

we show the optimal algebraical decay rates of the total perturbed density �1 + �2, which

together with the exponential decay rate of the difference of two perturbed densities, yields

the optimal decay rate. In these procedure, we have overcome the difficulty from the cou-

pling and cancelation interaction between n1 and n2. Finally, it is worth mentioning that

similar results about the Euler equations with damping have been extensively studied by

many authors, i.e., the authors of [16-19,21,22], etc.

The rest of this article is arranged as follows. We first construct the optimal nonlinear

diffusion waves and recall some inequalities in Section 2. In Section 3, we reformulate the

original problem, and show the main Theorem. Section 4 is to prove an important decay

estimate, which has been used to show the main theorem in Section 3.

2 The nonlinear diffusion waves
In this section, we first construct the optimal nonlinear diffusion waves of (1.2) in the

quarter plane. To begin with, we define our diffusion waves as

n̄i = n+ + δ0φ(x, t + 1), j̄1 = −P(n̄i)x, i = 1, 2.

Here the function j(x, t + 1) (here using t + 1 instead of t is to avoid the singularity

of solution decay at the point t = 0) solves

δ0φt − P(n+ + δ0φ)xx = 0, (x, t) ∈ R+ × R+,
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namely,

φt − P′(n+)φxx =
1
δ0

(
P
(
n+ + δ0φ − P(n+) − P′(n+)φ

)
xx, (x, t) ∈ R+ × R+, (2:1)

with the initial boundary values

φx|x=0 = 0, φ|x=+∞ = 0, φ|t=0 = φ(x, 1) =: φ0(x). (2:2)

Where j0(x) is a given smooth function such that

φ0(x) ∈ L1(R+) and

∞∫
0

φ0(x)dx 
= 0, (2:3)

and δ0 is a constant satisfying

∞∫
0

(
ni0(x) − n+

)
dx − δ0

∞∫
0

φ0(x)dx = 0. (2:4)

Note that from the assumptions in Theorem 1.1 and (2.3), there exists δ0 satisfies

(2.4).

The existence of j(x, t) has been shown in [16], and the following estimates of j(x, t)
hold: ∥∥∥∂

j
t∂

k
xφ

∥∥∥
L2(R+)

≤ Cδ0(1 + t)−(4j+2k+1)/4, (2:5)

‖φxt‖L1(R+) ≤ Cδ0(1 + t)−3/2 (2:6)

with the help of the Green function method and energy estimates.

Then (n1, j1, n2, j2) (x, t) is the required nonlinear diffusion wave, and satisfies

n̄it + j̄ix = 0, j̄i = −P(n̄i)x, (2:7)

with the boundary restrictions

n̄ix|x=0 = 0, ni|x=+∞ = n+. (2:8)

From (2.5) and (2.6), we have

Lemma 2.1 If
(
n̄i, j̄i

)
(x, t) is defined as above, then

∥∥∥∂ lt∂
k
x (n̄i − n+)

∥∥∥
L2(R+)

≤ Cδ0(1 + t)−(4l+2k+1)/4, (2:9)

‖n̄ixt‖L1(R+) ≤ Cδ0(1 + t)−3/2. (2:10)

Next, we introduce some inequalities of Sobolev type.

Lemma 2.2 The following inequalities hold∥∥f∥∥Lp(R+)
≤ C

∥∥f∥∥1, p ∈ [2,∞] (2:11)

for some constant C > 0.

Finally, for later use, we also need
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Lemma 2.3 [20]Assume that Ki(x, t)(i = 0,1) are the fundamental solutions of

Kitt + Kit − Kixx = 0, i = 0, 1

with

K0(x, 0) = δ(x), K1(x, 0) = 0,
d
dt
K0(x, 0) = 0,

d
dt
K1(x, 0) = δ(x),

where δ(x) is the Delta function.

If f Î L1(ℝ+) ∩ Hj+k-1(ℝ+), then∥∥∥∥∥∥∂
j
t∂

k
x

∞∫
0

(
K1(x − y, t) − K1(x + y, t)

)
f (y)dy

∥∥∥∥∥∥
L2(R+)

≤ C(1 + t)−j− 2k+1
4

(∥∥f∥∥L1(R+)
+

∥∥f∥∥j+k−1

)
.

(2:12)

If f Î L1(ℝ+) ∩ Hj+k(ℝ+), then∥∥∥∥∥∥∂
j
t∂

k
x

∞∫
0

(
K0(x − y, t) − K0(x + y, t)

)
f (y)dy

∥∥∥∥∥∥
L2(R+)

≤ C(1 + t)−j− 2k+1
4

(∥∥f∥∥L1(R+)
+

∥∥f∥∥j+k

)
.

(2:13)

3 Global existence and algebraical decay rate
In this section we are going to reformulate the original problem and establish the glo-

bal existence and algebraical decay rate. To begin with, from (1.2) and (2.7), we notice

that

∞∫
0

(ni − n̄i)(x, t) =

∞∫
0

(ni0 − n+)dx − δ0

∞∫
0

φ0(x)dx = 0, i = 1, 2.

Thus, it is reasonable to introduce the following perturbations as our new variables

ϕi = −
∞∫
x

(ni − n̄i)(y, t)dy, zi = ji − j̄i,

which yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1t + z1 = 0,

z1t +

(
(z1 + j̄1)

2

n̄1 + ϕ1x
+ P(n̄1 + ϕ1x) − P(n̄1)

)
x

+ z1 = (n̄1 + ϕ1x)E + P(n̄1)xt,

ϕ2t + z2 = 0,

z2t +

(
(z2 + j̄2)

2

n̄2 + ϕ2x
+ P(n̄2 + ϕ2x) − P(n̄2)

)
x

+ z2 = −(n̄2 + ϕ2x)E + P(n̄2)xt

ϕ2t + z2 = 0,
E = ϕ1 − ϕ2,
(ϕ1, z1,ϕ2, z2)t=0 = (ϕ10, z10,ϕ10, z10)(x),
(ϕ1,ϕ2)|x=0 = 0.

(3:1)
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Further, we have

ϕ1tt − (
P (n̄1 + ϕ1x) − P(n̄1)

)
x + ϕ1t + (n̄1 + ϕ1x)E = P(n̄1)xt + f1x, (3:2)

ϕ2tt − (
P(n̄2 + ϕ2x) − P(n̄2)

)
x + ϕ2t − (n̄2 + ϕ2x) E = P(n̄2)xt + f1x, (3:3)

and

Ett + Et + (n̄1 + n̄2)E = f3, (3:4)

here

fi =
(ϕit + P(n̄1)x)

2

n̄i + ϕix
, i = 1, 2,

f3 = −P(n̄1)xt + P(n̄2)xt +
(
P(n̄1 + ϕ1x) − P(n̄1)

)
x

− (
P (n̄2 + ϕ2x) − P(n̄2)

)
x − (ϕ1x + ϕ2x)E +

(
f1 − f2

)
x.

Next, by the standard continuous arguments, we can obtain the global existence of

smooth solutions. That is, we combine the local existence and a priori estimate. For

the local existence of the solution to (3.2)-(3.3), we see, e.g., [20] and references

therein. In the following we devote ourselves to the a priori estimates of the solution

(�1, �2, E)(0 <t <T) to (3.2)-(3.3) under the a priori assumption

N(T) := sup
0<t<T

(
(1 + t)k

∥∥∥∂kx (ϕ1,ϕ2)
∥∥∥2

L2(R+)
+ (1 + t)k+2

∥∥∥∂kx (ϕ1t ,ϕ2t)
∥∥∥2
L2(R+)

)
� 1.

Noting

ϕi(0, t) = ϕit(0, t) = ϕixx(0, t) = ϕitxx(0, t) = 0, i = 1, 2,

we can obtain the following estimates by using a similar argument of [14]. Since the

proof is tedious but similar as in the previous works, we only list the results and omit

its details.

Lemma 3.1 For T > 0, let (�1, �2, E)(x, t) be the solution to (3.2)-(3.3). Then, it holds

for N(T) + δ0 that

∥∥(ϕ1,ϕ2)
∥∥2
3 +

∥∥(ϕ1t ,ϕ2t ,E)
∥∥2
3 +

T∫
0

∥∥(ϕ1x,ϕ2x,ϕ1t ,ϕ2t ,E)
∥∥2
2 dt

≤ C
(
‖ϕ10,ϕ20‖23 +

∥∥(z10, z20)∥∥22 + δ0

)
.

(3:5)

Lemma 3.2 For T > 0, let (�1, �2, E)(x, t) be the solution to (3.2)-(3.3). Then, it holds

for N(T) + δ0 that

‖(E,Ex,Et ,Exx,Ext,Ett)‖2 ≤ C
(
‖ϕ10,ϕ20‖23 +

∥∥(z10, z20)∥∥22 + δ0

)
e−βt, (3:6)

for some positive constant b.
Lemma 3.3 For T > 0, let (�1, �2, E)(x, t) be the solution to (3.2)-(3.3). Then there

exist positive constants C such that

∥∥∥∂kx (ϕ1,ϕ2)
∥∥∥
L2(R+)

≤ C(1 + t)−
k
2 , k = 0, 1, 2, 3, (3:7)
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∥∥∥∂kx (z1, z2)
∥∥∥
L2(R+)

≤ C(1 + t)−
k+2
2 , k = 0, 1, 2, (3:8)

and

(1 + t)2‖z1t, z2t‖L2(R+)

+ (1 + t)−
5
2

(‖(z1xt, z2xt)‖L2(R+) + ‖(z1tt, z2tt)‖L2(R+)
) ≤ C.

(3:9)

In conclusion, we have

Theorem 3.4 Under the assumptions in Theorem 1.1, there exists a unique time glo-

bal solution (�1, z1, �2, z2) of the IBVP (3.1) such that

ϕ1,ϕ2,E ∈ Ck(0,∞,H3−k(R+)), k = 0, 1, 2, 3, (3:10)

z1, z2 ∈ Ck(0,∞,H2−k(R+)), k = 0, 1, 2, (3:11)

and there exist positive constants C, a such that

∥∥∥∂kx (ϕ1,ϕ2)
∥∥∥
L2(R+)

≤ C(1 + t)−
k
2 , k = 0, 1, 2, 3, (3:12)

∥∥∥∂kx (z1, z2)
∥∥∥
L2(R+)

≤ C(1 + t)−
k+2
2 , k = 0, 1, 2, (3:13)

‖(E,Ex,Et ,Ext,Exx)‖L2(R+) ≤ Ce−αt , (3:14)

and

(1 + t)2‖z1t, z2t‖L2(R+)

+ (1 + t)−
5
2

(‖(z1xt, z2xt)‖L2(R+) + ‖(z1tt, z2tt)‖L2(R+)
) ≤ C.

(3:15)

4 The optimal convergence rate
In this section we are going to show the optimal decay rate. First of all, we improve

the decay rates in Theorem 3.4 to be optimal as follows.

Proposition 4.1 Under the assumptions in Theorem 1.1, the solution (�1, z1, �2, z2)

decay time asymptotically as

∥∥∥∂kx (ϕ1,ϕ2)
∥∥∥
L2(R+)

≤ C(1 + t)−
2k+1
4 , k = 0, 1, 2, (4:1)

‖(z1, z2)‖L2(R+) ≤ C(1 + t)−
5
4 . (4:2)

Based on the above Proposition, we can immediately prove Theorem 1.2.

Proof of Theorem 1.2 Thanks to Proposition 4.1, and by noting that

ϕix = ni − n̄i, zi = ji − j̄i , we have
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∥∥∥∂kx (n1 − n̄1,n2 − n̄2) (t)
∥∥∥
L2(R+)

=
∥∥∥∂k+1x (ϕ1,ϕ2)(t)

∥∥∥
L2(R+)

≤
∥∥∥∂k+1x (ϕ1,ϕ2)(t)

∥∥∥
L2(R+)

≤ C(1 + t)−
2(k+1)+1

4 , k = 0, 1,

and ∥∥(
j1 − j̄1, j2 − j̄2

)
(t)

∥∥
L2(R+)

=
∥∥(z1, z2)(t)∥∥L2(R+)

≤ C(1 + t)−
5
4 .

This proved (1.8) and (1.10). Next, using Lemma 2.2, we get

‖n1 − n̄1‖Lp(R+) ≤ ‖n1 − n̄1‖
p−2
p

L∞(R+)
‖n1 − n̄1‖

2
p
L2(R+)

≤
(√

2 ‖n1 − n̄1‖
1
2
L2(R+)

∥∥∂x(n1 − n̄1)
∥∥ 1
2
L2(R+)

)p − 2
p ‖n1 − n̄1‖

2
p
L2(R+)

= 2
p−2
2p ‖n1 − n̄1‖

p−2
2p + 2p

L2(R+)

∥∥∂x(n1 − n̄1)
∥∥ p−2

2p
L2(R+)

≤ C(1 + t)
−3
4×

(
p−2
2p + 2p

)
(1 + t)

−5
4× p−2

2p

≤ C(1 + t)
−

(
1− 1

2p

)
,

and

‖n2 − n̄2‖Lp(R+) ≤ ‖n2 − n̄2‖
p−2
p

L∞(R+)
‖n2 − n̄2‖

2
p
L2(R+)

≤
(√

2 ‖n2 − n̄2‖
1
2
L2(R+)

∥∥∂x(n2 − n̄2)
∥∥ 1
2
L2(R+)

)p − 2
p ‖n2 − n̄2‖

2
p
L2(R+)

= 2
p−2
2p ‖n2 − n̄2‖

p−2
2p + 2p

L2(R+)

∥∥∂x(n2 − n̄2)
∥∥ p−2

2p
L2(R+)

≤ C(1 + t)
−3
4×

(
p−2
2p + 2p

)
(1 + t)

−5
4× p−2

2p

≤ C(1 + t)
−

(
1− 1

2p

)
.

This prove (1.9).

In the following we focus on the proof of Proposition 4.1. To begin with, we notice

that

(ϕ1 + ϕ2)tt − P′(n+)(ϕ1 + ϕ2)xx + (ϕ1 + ϕ2)t = F, (4:3)

with

F =
(
P(n̄1 + ϕ1x) − P(n̄1) − P′(n+)ϕ1x

)
x +

(
P(n̄2 + ϕ2x) − P(n̄2) − P′(n+)ϕ2x

)
x

− P(n̄1)xt − P(n̄2)xt − (ϕ1x + ϕ2x)E + (f1 + f2)x.

Proof of Proposition 4.1. Firstly, we prove the optimal decay rates for∥∥∥∂kx (ϕ1,ϕ2)
∥∥∥
L2
(k = 0, 1, 2) , namely, (4.1). By (4.3) and Lemma 2.3, we obtain
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(ϕ1 + ϕ2)(x, t)

=

∞∫
0

(
K0(x − y, t) − K0(x + y, t)

)
(ϕ10 + ϕ20)(y)dy

+

∞∫
0

(
K1(x − y, t) − K1(x + y, t)

)
(z10 + z20)(y)dy

+

t∫
0

∞∫
0

(
K1(x − y, t − τ ) − K1(x + y, t − τ )

)
F(y, τ )dydτ .

(4:4)

By differentiating (4.4) k-times (k = 0, 1, 2) with respect to x, and by taking its L2(ℝ

+)-norm, we obtain∥∥∥∂kx (ϕ1 + ϕ2)(t)
∥∥∥
L2(R+)

=

∥∥∥∥∥∥∂kx

∞∫
0

(
K0(x − y, t) − K0(x + y, t)

)
(ϕ10 + ϕ20)(y)dy

∥∥∥∥∥∥
L2(R+)

+

∥∥∥∥∥∥
∞∫
0

(
K1(x − y, t) − K1(x + y, t)

)
(z10 + z20)(y)dy

∥∥∥∥∥∥
L2(R+)

+

t∫
0

∥∥∥∥∥∥∂kx

∞∫
0

(
K1(x − y, t − τ ) − K1(x + y, t − τ )

)
F(y, τ )dy

∥∥∥∥∥∥
L2(R+)

dτ .

(4:5)

Since �10 + �20 Î L1(ℝ+) ∩ H3(ℝ+) and z10 + z20 Î L1(ℝ+) ∩ H2(ℝ+), we apply

Lemma 2.3 then to have∥∥∥∥∥∥∂kx

∞∫
0

(
K0(x − y, t) − K0(x + y, t)

)
(ϕ10 + ϕ20)(y)dy

∥∥∥∥∥∥
L2(R+)

≤ C
(‖ϕ10,ϕ20‖L2(R+) + ‖ϕ10,ϕ20‖3

)
(1 + t)−(2k+1)/4,

(4:6)

and ∥∥∥∥∥∥
∞∫
0

(
K1(x − y, t) − K1(x + y, t)

)
(z10 + z20)(y)dy

∥∥∥∥∥∥
L2(R+)

≤ C
(‖z10, z20‖L1(R+) + ‖z10, z20‖2

)
(1 + t)−(2k+1)/4,

(4:7)

for k = 0, 1, 2.

Now we are going to estimate the last term in (4.5). By Taylor’s expansion, and by

noticing the definition of F, we have

|F| ∼ O(1)
(|n̄1xn̄1t| + |n̄1xt| +

∣∣((n̄1 − n+)ϕ1x
)
x

∣∣ + ∣∣((n̄1 − n+)ϕ2x)x
∣∣

+
∣∣n̂1x∣∣ + ∣∣(ϕ2

1x

)
x

∣∣ + ∣∣(ϕ2
2x

)
x

∣∣ + |ϕ1xtϕ1x| +
∣∣ϕ2

1t n̄1x
∣∣ + |ϕ2xtϕ2x| +

∣∣ϕ2
2t n̄1x

∣∣
+

∣∣ϕ2
1tϕ1xx

∣∣ + ∣∣ϕ2
2tϕ2xx

∣∣ + ∣∣(ϕ1 + ϕ2)xE
∣∣ ,
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and ∣∣∣∂kx F∣∣∣ ∼ O(1)
(∣∣∣∂kx n̄1xn̄1t∣∣∣ + ∣∣∣∂kx n̄1xt∣∣∣ + ∣∣∣∂kx ((n̄1 − n+)ϕ1x

)
x

∣∣∣ + ∣∣∣∂kx ((n̄1 − n+)ϕ2x)x
∣∣∣

+
∣∣∣∂kx n̂1x∣∣∣ + ∣∣∣∂kx (ϕ2

1x

)
x

∣∣∣ + ∣∣∣∂kx (ϕ2
2x

)
x

∣∣∣ + ∣∣∣∂kxϕ1xtϕ1x

∣∣∣ + ∣∣∣∂kxϕ2
1t n̄1x

∣∣∣ + ∣∣∣∂kxϕ2xtϕ2x

∣∣∣
+

∣∣∣∂kxϕ2
2t n̄1x

∣∣∣ +
∣∣∣∂k

xϕ
2
1tϕ1xx

∣∣∣ + ∣∣∣∂kxϕ2
2tϕ2xx

∣∣∣ + ∣∣∣∂kx ((ϕ1 + ϕ2)xE)
∣∣∣ .

From (2.9), (2.10), and (3.12)-(3.15), and by Holder’s inequality, then the L1-norm for

F can be estimated as follows

‖F‖L1(R+) ≤ C(1 + t)−5/4 + Ce−αt . (4:8)

Similarly, we can also prove

‖F‖k ≤ C(1 + t)−3/2 + Ce−αt . (4:9)

By noting (4.8), (4.9) and 3/2 > 5/4 ≥ (2k + 1)/4 for k = 0, 1, 2, and applying Lemmas

2.2 and 2.3, we obtain optimal rates for the last term of (4.5) as follows

t∫
0

∥∥∥∥∥∥∂kx

∞∫
0

(K1(x − y, t − τ ) − K1(x + y, t − τ ))F(y, τ )dy

∥∥∥∥∥∥
L2(R+)

dτ

≤ C

t∫
0

(1 + t − τ )−(2k+1)/4 (‖F‖L1(R+) + ‖F‖k
)
dτ

≤ C

t∫
0

(1 + t − τ )−(2k+1)/4
(
(1 + t)−5/4 + (1 + t)−3/2 + e−αt

)
dτ

≤ C(1 + t)−(2k+1)/4.

(4:10)

Applying (4.6), (4.7) and (4.10) to (4.5), we have

∥∥∥∂kx (ϕ1 + ϕ2)
∥∥∥
L2(R+)

≤ C(1 + t)−
2k+1
4 , k = 0, 1, 2. (4:11)

Moreover, recall that∥∥∥∂kx (ϕ1 − ϕ2)
∥∥∥
L2(R+)

≤ Ce−αt , k = 0, 1, 2. (4:12)

Therefore, (4.11), (4.12) and the triangle inequality lead to (4.1).

Now, we are going to prove (4.2). It is well known that

(z1 + z2)(x, t) = (ϕ1 + ϕ2)t(x, t)

= ∂t

∞∫
0

(
K0(x − y, t) − K0(x + y, t)

)
(ϕ10 + ϕ20)(y)dy

+ ∂t

∞∫
0

(
K1(x − y, t) − K1(x + y, t)

)
(z10 + z20)(y)dy

+

t∫
0

∂t

∞∫
0

(
K1(x − y, t − τ ) − K1(x + y, t − τ )

)
F(y, τ )dydτ

+

∞∫
0

(
K1(x − y, 0) − K1(x + y, 0)

)
F(y, t)dy.

(4:13)
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By making use of the fashion as before, then Lemmas 2.2 and 2.3 help us to reach

the goal

‖z1 + z2‖L2(R+) =
∥∥(ϕ1 + ϕ2)t

∥∥
L2(R+)

=

∥∥∥∥∥∥∂t

∞∫
0

(
K0(x − y, t) − K0(x + y, t)

)
(ϕ10 + ϕ20)(y)dy

∥∥∥∥∥∥
L2(R+)

+

∥∥∥∥∥∥∂t

∞∫
0

(
K1(x − y, t) − K1(x + y, t)

)
(z10 + z20)(y)dy

∥∥∥∥∥∥
L2(R+)

+

t∫
0

∥∥∥∥∥∥∂t

∞∫
0

(
K1(x − y, t − τ ) − K1(x + y, t − τ )

)
F(y, τ )dy

∥∥∥∥∥∥
L2(R+)

dτ

+

∥∥∥∥∥∥
∞∫
0

(
K1(x − y, 0) − K1(x + y, 0)

)
F(y, t)dy

∥∥∥∥∥∥
L2(R+)

≤ C
(‖ϕ10 + ϕ20‖L1(R+) + ‖ϕ10 + ϕ20‖3

)
(1 + t)−5/4

+ C
(‖z10 + z20‖L1(R+) + ‖z10 + z20‖2

)
(1 + t)−5/4

+ C

t∫
0

(1 + t − τ )−5/4 (‖F‖L1(R+) + ‖F‖2
)
dτ

+ C
(‖F‖L1(R+) + ‖F‖2

)
≤ C

(‖ϕ10 + ϕ20‖L1(R+) + ‖ϕ10 + ϕ20‖3
)
(1 + t)−5/4

+ C
(‖z10 + z20‖L1(R+) + ‖z̄10 + z20‖2

)
(1 + t)−5/4

+ C

t∫
0

(1 + t − τ )−5/4
(
(1 + t)−5/4 + (1 + t)−3/2 + e−αt

)
dτ

+ C
(
(1 + t)−5/4 + (1 + t)−3/2 + e−αt

)
≤ C(1 + t)−5/4.

(4:14)

On the other hand, (3.14) gives

‖z1 − z2‖L2(R+) = ‖ϕ1 − ϕ2‖L2(R+) = ‖Et‖L2(R+) ≤ CE−αt . (4:15)

Combining (4.14) and (4.15), and using the triangle inequality, we can obtain (4.2).
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