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Abstract

In this article, we give conditions on parameters k, l that the generalized eigenvalue
problem x″″ + kx″ + lx = lh(t)x, 0 < t <1, x(0) = x(1) = x′(0) = x′(1) = 0 possesses an
infinite number of simple positive eigenvalues {λk}∞k=1 and to each eigenvalue there
corresponds an essential unique eigenfunction ψk which has exactly k - 1 simple
zeros in (0,1) and is positive near 0. It follows that we consider the fourth-order two-
point boundary value problem x″″ + kx″ + lx = f(t,x), 0 < t <1, x(0) = x(1) = x′(0) = x′
(1) = 0, where f(t, x) Î C([0,1] × ℝ, ℝ) satisfies f(t, x)x >0 for all x ≠ 0, t Î [0,1] and
lim|x|®0 f(t,x)/x = a(t), lim|x|®+∞ f(t,x)/x = b(t) or limx®-∞ f(t,x)/x = 0 and limx®+∞f(t,x)/x
= c(t) for some a(t), b(t), c(t) Î C([0,1], (0,+∞)) and t Î [0,1]. Furthermore, we obtain
the existence and multiplicity results of nodal solutions for the above problem. The
proofs of our main results are based upon disconjugate operator theory and the
global bifurcation techniques.
MSC (2000): 34B15.
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1 Introduction
The deformations of an elastic beam in equilibrium state with fixed both endpoints can

be described by the fourth-order boundary value problem

x′′′′ + lx = λh(t)f (x), 0 < t < 1,

x(0) = x(1) = x′(0) = x′(1) = 0,
(1:1)

where f: ℝ ® ℝ is continuous, l Î ℝ is a parameter and l is a given constant. Since

the problem (1.1) cannot transform into a system of second-order equation, the treat-

ment method of second-order system does not apply to the problem (1.1). Thus, exist-

ing literature on the problem (1.1) is limited. Recently, when l = 0, the existence and

multiplicity of positive solutions of the problem (1.1) has been studied by several

authors, see Agarwal and Chow [1], Ma and Wu [2], Yao [3,4] and Korman [5]. Espe-

cially, when l ≠ 0, l satisfying (H1) and h(t) satisfying (H2), Xu and Han [6] studied the

existence of nodal solutions of the problem (1.1) by applying bifurcation techniques,

where

(H1) l Î (-π4, π4/64) is given constant.

(H2) h Î C([0,1], [0, ∞)) with h(t) ≢ 0 on any subinterval of [0,1].
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Motivated by [6], we consider the existence of nodal solutions of general fourth-

order boundary value problem

x′′′′ + kx′′ + lx = f (t, x), 0 < t < 1,

x(0) = x(1) = x′(0) = x′(1) = 0,
(1:2)

and under the assumptions:

(A1) One of following conditions holds

(i) k, l satisfying (k, l) ∈ {(k, l)
∣∣∣k ∈ (−∞, 0], l ∈ (0,∞)}\

{(
0, π4

64

)}
∪ {(k, l)

∣∣∣ k ∈ (−∞,π2), l ∈
(−∞, 0]}

are given constants with

π2(k − π2) < l ≤ 1
4

(
k − π2

4

)2
; (1:3)

(ii) k, l satisfying (k, l) ∈
{
(k, l)|k ∈

(
0,

π2

2

)
, l ∈ (0,∞)

}
are given constants with

1
4

(
π2k − π4

4

)
< l ≤ 1

4
k2. (1:4)

(A2) f(t, x) Î C([0,1] × ℝ, ℝ) satisfies f(t, x)x >0 for all x ≠ 0 and t Î [0,1].

(A3) There exists a(t) Î C([0,1], (0, ∞)) such that

lim
|x|→0

f (t, x)
x

= a(t), ∀t ∈ [0, 1] . (1:5)

(A4) There exists b(t) Î C([0,1], (0, ∞)) such that

lim
|x|→∞

f (t, x)
x

= b(t), ∀t ∈ [0, 1] . (1:6)

(A5) There exists c(t) Î C([0,1], (0, ∞)) such that

lim
x→−∞

f (t, x)
x

= 0, lim
x→+∞

f (t, x)
x

= c(t), ∀t ∈ [0, 1]. (1:7)

However, in order to use bifurcation technique to study the nodal solutions of the

problem (1.2), we first prove that the generalized eigenvalue problem

x′′′′ + kx′′ + lx = λh(t)x, 0 < t < 1,

x(0) = x(1) = x′(0) = x′(1) = 0,
(1:8)
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(where h satisfies (H2)) has an infinite number of positive eigenvalues

0 < λ1(h) < λ2(h) < · · · < λk(h) < λk+1(h) < · · · (1:9)

and each eigenvalue corresponding an essential unique eigenfunction ψk which has

exactly k - 1 simple zeros in (0,1) and is positive near 0. Fortunately, Elias [7] devel-

oped a theory on the eigenvalue problem

Ly + λh(t)y = 0,

(Liy)(a) = 0, i ∈ {i1, . . . , ik},
(Ljy)(b) = 0, j ∈ {j1, . . . , jn−k},

(1:10)

where

L0y = ρ0y,

Liy = ρi(Li−1y)′, i = 1, . . . ,n,

Ly = Lny,

(1:11)

and ri Î Cn-i[a, b] with ri >0 (i = 0,1,..., n) on [a, b]. L0y,...., Ln-1y are called the

quasi-derivatives of y(t). To apply Elias’s theory, we have to prove that (1.8) can be

rewritten to the form of (1.10), that is, the linear operator

L[x] := x′′′′ + kx′′ + lx (1:12)

has a factorization of the form

L[x] = l4

(
l3
(
l2
(
l1(l0x)

′)′)′)′
(1:13)

on [0,1], where li Î C4-i[0,1] with li >0 (i = 0, 1, 2, 3, 4) on [0, 1], and x(0) = x(1) = x

′(0) = x′(1) = 0 if and only if

(l0x)(0) = (l0x)(1) = (l1x)(0) = (l1x)(1) = 0. (1:14)

This can be achieved under (A1) by using the disconjugacy theory in [8].

The rest of the article is arranged as follows: In Section 2, we state some disconju-

gacy theory which can be used in this article, and then show that (A1) implies the

equation

L[x] = 0 (1:15)

is disconjugate on [0, 1], and establish some preliminary properties on the eigenva-

lues and eigenfunctions of the generalized eigenvalue problem (1.8). Finally in Section

3, we state and prove our main results (Theorems 3.1 and 3.2 ).

Remark 1.1. If we let k = 0, then the condition (A1) reduces to (H1) in [6].

Remark 1.2. Since the function f(t, x) is more general than the function h(t)f(x) in [6],

then the problem considered in this article is more general than the problem in [6].

Remark 1.3. If we let k = 0 and f(t, x) = lh(t)f(x), then Theorem 3.2 reduces to [[6],

Theorem 3.1].

Remark 14. For other results on the existence and multiplicity of positive solutions

and nodal solutions for the boundary value problems of fourth-order ordinary differen-

tial equations based on bifurcation techniques, see [9-14]s and their references.
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2 Preliminary results
Let

L
[
y
]
= y(n) + p1(t)y(n−1) + · · · + pn(t)y = 0 (2:1)

be nth-order linear differential equation whose coefficients pk(⋅) (k = 1,..., n) are con-

tinuous on an interval I.

Definition 2.1 [[8], Definition 0.2, p. 2]. Equation (2.1) is said to be disconjugate on

an interval I if no nontrivial solution has n zeros on I, multiple zeros being counted

according to their multiplicity.

Lemma 2.2 [[8], Theorem 0.7, p. 3]. Equation (2.1) is disconjugate on a compact

interval I if and only if there exists a basis of solutions y0, ...,yn-1 such that

wk := wk(y0, . . . , yk−1) =

∣∣∣∣∣∣∣
y0 · · · yk−1
...

...

y(k−1)
0 · · · y(k−1)

k−1

∣∣∣∣∣∣∣ > 0(k = 1, . . . ,n) (2:2)

on I. A disconjugate operator L[y] = y(n) + p1(t)y
(n-1)+ ... + pn(t)y can be written as

L
[
y
]
= ρnD(ρn−1(· · ·D(ρ1D(ρ0y)) · · · )),D =

d
dt
, (2:3)

where rk Î Cn-k(I) (k = 0,1,..., n) and

ρ0 =
1
w1

,ρ1 =
w2
1

w2
,ρk =

w2
k

wk−1wk+1
, k = 2, . . . ,n − 1, (2:4)

and r0r1 ... rn ≡ 1.

Lemma 2.3 [[8], Theorem 0.13, p. 9]. Green’s function G(t,s) of the disconjugate

equation (2.3) and the two-point boundary value conditions

y(i)(a) = 0, i = 0, . . . , k − 1,

y(j)(b) = 0, j = 0, . . . ,n − k − 1
(2:5)

satisfies

(−1)n−kG(t, s) > 0, ∀(t, s) ∈ (a, b) × (a, b). (2:6)

Now using Lemmas 2.2 and 2.3, we will prove some preliminary results.

Theorem 2.4. Let (A1) hold. Then

(i) L[x] = 0 is disconjugate on [0,1], and L[x] has a factorization

L [x] = ρ4

(
ρ3

(
ρ2
(
ρ1(ρ0x)

′)′)′)′
, (2:7)

where rk Î C4-k[0,1] with rk >0 (k = 0, 1, 2, 3, 4).

(ii) x(0) = x(1) = x′(0) = x′(1) = 0 if and only if

(L0x)(0) = (L1x)(0) = (L0x)(1) = (L1x)(1) = 0, (2:8)
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where

L0x = ρ0x,

Lix = ρi(Li−1x)′, i = 1, 2, 3, 4.
(2:9)

Proof of Theorem 2.4. We divide the proof into nine cases.

Case 1. (k, l) ∈
{
(k, l)|k ∈ (−∞, 0], l ∈

(
1
4
k2,

1
4

(
k − π2

4

)2)}
\
{(

0,
π4

64

)}
.

In the case, we have corresponding L[x] = x″″ + kx″ + lx = 0 that the equation l4 +

kl2 + lx = 0 has 4 roots l1 = m1 + m2i, l2 = m1- m2i, l3 = -m1 + m2i, and l4 = -m1-

m2i, where

m1 =

√
−k +

√
4l

2
, m2 =

√
k +

√
4l

2
, m2 ≤ m1. (2:10)

Combining
1
4
k2 < l ≤ 1

4

(
k − π2

4

)2
with (2.10), we have 0 < m2 ≤ π

4
. Thus, we get

that either the following (1) or (2) holds:

(1) 0 ≤ m2t <
π

4
⇒ tanm2t < 1 ≤ m1

m2
, for m2 ∈

(
0,

π

4

)
, t ∈ [0, 1];

(2) 0 ≤ m2t ≤ π

4
⇒ tanm2t ≤ 1 <

m1

m2
, for m2 =

π

4
, t ∈ [0, 1].

Furthermore, it is easy to check that

cosm2t > 0, m1 cosm2t − m2 sinm2t > 0, ∀t ∈ [0, 1] . (2:11)

Take

x0(t) = e−m1t cosm2t, x1(t) = e−m1t sinm2t,

x2(t) = em1t cosm2t, x3(t) = em1t sinm2t.
(2:12)

It is easy to check that x0(t), x1(t), x2(t), and x3(t) form a basis of solutions of L[x] =

0. By simple computation, we have

w1 =
cosm2t
em1t

,w2 =
m2

e2m1t
,

w3 =
4m1m2(m1 cosm2t − m2 sinm2t)

em1t
, w4 = 16m2

1m
2
2(m

2
1 +m2

2).
(2:13)

This together with (2.11) implies that wi > 0(i=1, 2, 3, 4) on [0,1].

By Lemma 2.2, L[x] = 0 is disconjugate on [0,1], and L[x] has a factorization

x′′′′ + kx′′ − lx =
4m1m2(m2

1 +m2
2)e

m1t

m1 cosm2t − m2 sinm2t

(
(m1 cosm2t − m2 sinm2t)

2

m2(m2
1 +m2

2)

×
(

m2

4m1 cosm2t(m1 cosm2t − m2 sinm2t)e2m1t

(
cos2m1t

m2

(
em1t

cosm2t
x
)′)′)′)′ (2:14)
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and accordingly

L0x = ρ0x =
em1t

cosm2t
x,

L1x =
cos2m2t

m2

(
em1t

cosm2t
x
)′

=
em1t

m2
(m1 cosm2t +m2 sinm2t)x +

em1t cosm2t
m2

x′.
(2:15)

Using (2.15), we conclude that x(0) = x(1) = x′(0) = x′(1) = 0 is equivalent to (2.8).

Case 2. k Î (-∞, 0) and l =
1
4
k2.

In the case, applying the similar method used in Case 1, we take

x0(t) = e−mt , x1(t) = te−mt , x2(t) = emt, x3(t) = temt , (2:16)

where m =

√
− k

2
.

It is easy to check that x0(t), x1(t), x2(t), and x3(t) form a basis of solutions of L[x] =

0.

By simple computation, we have

w1 = e−mt , w2 = e−2mt , w3 = 4m2e−mt , w4 = 16m4. (2:17)

Clearly, wi > 0 (i = 1, 2, 3, 4) on [0,1].

By Lemma 2.2, L[x] = 0 is disconjugate on [0,1], and L[x] has a factorization

x′′′′ + kx′′ − lx =
4m2emt

1

(
1
1

(
1

4m2e2mt

(
1
1

(
emt

1
x
)′)′)′)′

(2:18)

and accordingly

L0x = ρ0x = emtx, L1x = ρ1(L0x)′ = emt(mx + x′). (2:19)

Using (2.19), we conclude that x(0) = x(1) = x′(0) = x′(1) = 0 is equivalent to (2.8).

Case 3.k Î (-∞, 0) and 0 < l <
1
4
k2.

In the case, we take

x0(t) = e−m2t, x1(t) = em2t, x2(t) = e−m1t, x3(t) = em1t, (2:20)

where m1 =

√
−k +

√
k2 − 4l
2

> 0, m2 =

√
−k − √

k2 − 4l
2

> 0, m1 > m2
,

It is easy to check that x0(t), x1(t), x2(t), and x3(t) form a basis of solutions of L[x] =

0.

By simple computation, we have

w1 = e−m2t, w2 = 2m2,

w3 = 2m2(m2
1 − m2

2)e
−m1t, w4 = 4m1m2(m2

1 − m2
2)

2.
(2:21)

Clearly, wi >0 (i = 1, 2, 3, 4) on [0, 1].
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By Lemma 2.2, L[x] = 0 is disconjugate on [0, 1], and L[x] has a factorization

x′′′′ + kx′′ + lx

= 2m1(m2
1 − m2

2)e
m1t

(
1

2m1e2m1t

(
2m2e(m1+m2)t

m2
1 − m2

2

(
1

2m2e2m2t
(em2tx)′

)′)′)′
(2:22)

and accordingly

L0x = ρ0x = em2tx, L1x = ρ1(L0x) =
1

2m2em2t
(m2x + x′). (2:23)

Using (2.23), we conclude that x(0) = x(1) = x′(0) = x′(1) = 0 is equivalent to (2.8).

Case 4. k Î (-∞,0), l = 0.

In the case, we take

x0(t) = 1, x1(t) = 1 + t, x2(t) = e−mt , x3(t) = emt, (2:24)

where m =
√−k > 0.

It is easy to check that x0(t), x1(t), x2(t), and x3(t) form a basis of solutions of L[x] =

0.

By simple computation, we have

w1 = 1, w2 = 1, w3 = m2e−mt , w4 = 2m5. (2:25)

Clearly, wi >0 (i = 1, 2, 3, 4) on [0, 1].

By Lemma 2.2, L[x] = 0 is disconjugate on [0,1], and L[x] has a factorization

x′′′′ + kx′′ + lx = 2m3emt

(
1

2me2mt

(
emt

m2

(
1
1

(
1
1
x
)′)′)′)′

(2:26)

and accordingly

L0x = ρ0x = x, L1x = x′. (2:27)

Using (2.27), we conclude that x(0) = x(1) = x′(0) = x′(1) = 0 is equivalent to (2.8).

Case 5. k = 0, l = 0. The case is obvious.

Case 6. k Î (0,π2), l = 0.

In the case, we take

x0(t) = 1, x1(t) = 1 + t, x2(t) = − sinm(t + σ ), x3(t) = cosm(t + σ ), (2:28)

where m =
√
k > 0, s is a positive constant. Clearly, m Î (0,π) and then

sinm(t + σ ) > 0, ∀t ∈ [0, 1] . (2:29)

It is easy to check that x0(t), x1(t), x2(t), and x3(t) form a basis of solutions of L[x] =

0.

By simple computation, we have

w1 = 1, w2 = 1, w3 = m2 sinm(t + σ ), w4 = m5. (2:30)

Clearly, wi >0 (i = 1, 2, 3, 4) on [0, 1].
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By Lemma 2.2, L[x] = 0 is disconjugate on [0,1], and L[x] has a factorization

x′′′′ + kx′′ + lx =
m3

sinm(t + σ )

(
sin2m(t + σ )

m

(
1

m2 sinm(t + σ )

(
1
1

(
1
1
x
)′)′)′)′

(2:31)

and accordingly

L0x = ρ0x = x, L1x = x′. (2:32)

Using (2.32), we conclude that x(0) = x(1) = x′(0) = x′(1) = 0 is equivalent to (2.8).

Case 7. π2 (k - π2) < l <0.

In the case, we take

x0(t) = e−m1t, x1(t) = em1t, x2(t) = − sinm2(t + σ ), x3(t) = cosm2(t + σ ), (2:33)

where m1 =

√
−k +

√
k2 − 4l
2

> 0, m2 =

√
k +

√
k2 − 4l
2

> 0, s is a positive constant.

Clearly, m2 Î (0,π) and then

sinm2(t + σ ) > 0, ∀t ∈ [0, 1] . (2:34)

It is easy to check that x0(t), x1(t), x2(t), and x3(t) form a basis of solutions of L[x] =

0. By simple computation, we have

w1 = e−m1t, w2 = 2m1,

w3 = 2m1(m2
1 +m2

2) sinm2(t + σ ), w4 = 2m1m2(m2
1 +m2

2)
2.

(2:35)

Clearly, wi >0 (i = 1, 2, 3, 4) on [0, 1].

By Lemma 2.2, L[x] = 0 is disconjugate on [0,1], and L[x] has a factorization

x′′′′ + kx′′ + lx

=
m2(m2

1 +m2
2)

sinm2(t + σ )

(
sin2m2(t + σ )

m2

(
2m1em1t

(m2
1 +m2

2) sinm2(t + σ )

(
1

2m1e2m1t
(em1tx)′

)′)′)′
(2:36)

and accordingly

L0x = ρ0x = em1tx, L1x = ρ1(L0x) =
1

2m1em1t
(m1x + x′). (2:37)

Using (2.37), we conclude that x(0) = x(1) = x′(0) = x′(1) = 0 is equivalent to (2.8).

Case 8. k ∈
(
0,

π2

2

)
and l =

1
4
k2

In the case, we take

x0(t) = cosm(t + σ ), x1(t) = sinm(t + σ ),

x2(t) = −t cosm(t + σ ), x3(t) = −t sinm(t + σ ),
(2:38)

where m =

√
k

2
, s is a positive constant. Clearly, m ∈

(
0,

π

2

)
and then

cosm(t + σ ) > 0, sinm(t + σ ) > 0, ∀t ∈ [0, 1] . (2:39)

It is easy to check that x0(t), x1(t), x2(t), and x3(t) form a basis of solutions of L[x] =

0. By simple computation, we have
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w1 = cosm(t + σ ), w2 = m, w3 = 2m2 sinm(t + σ ), w4 = 4m4. (2:40)

Clearly, wi >0 (i = 1, 2, 3, 4) on [0, 1].

By Lemma 2.2, L[x] = 0 is disconjugate on [0,1], and L[x] has a factorization

x′′′′ + kx′′ + lx

=
2m2

sinm(t + σ )

(
sin2m(t + σ )

m

(
1

sin 2m(t + σ )

(
cos2m(t + σ )

m

(
1

cosm(t + σ )
x
)′)′)′)′

(2:41)

and accordingly

L0x = ρ0x =
1

cosm(t + σ )
x,

L1x = ρ1(L0x)′ =
1
m
(m sinm(t + σ ) · x + cosm(t + σ ) · x′).

(2:42)

Using (2.42), we conclude that x(0) = x(1) = x′(0) = x′(1) = 0 is equivalent to (2.8).

Case 9. k ∈
(
0,

π2

2

)
, l ∈ (0,∞),

1
4

(
π2k − π4

4

)
< l <

1
4
k2

In the case, we take

x0(t) = cosm1t, x1(t) = sinm1t, x2(t) = − cosm2t, x3(t) = − sinm2t, (2:43)

where m1 =

√
k − √

k2 − 4l
2

, m2 =

√
k +

√
k2 − 4l
2

Clearly, m1 ∈
(
0,

π

2

)
, m2 ∈

(
0,

π

2

)
,

m1 <m2 and then

cosm1t > 0, cosm2t > 0, ∀t ∈ [0, 1]. (2:44)

It is easy to check that x0(t), x1(t), x2(t), and x3(t) form a basis of solutions of L[x] =

0.

By simple computation, we have

w1 = cosm1t, w2 = m1, w3 = m1
(
m2

2 − m2
1

)
cosm2t, w4 = m1m2

(
m2

2 − m2
1

)2
.(2:45)

Clearly, wi >0 (i = 1, 2, 3, 4) on [0, 1].

By Lemma 2.2, L[x] = 0 is disconjugate on [0,1], and L[x] has a factorization

x′′′′ + kx′′ + lx

=
m2
(
m2

2 − m2
1

)
cosm2t

(
cos2m2t

m2

(
m1(

m2
2 − m2

1

)
cosm1tcosm2t

(
cos2m1t

m1

(
1

cosm1t
x
)′)′)′)′

(2:46)

and accordingly

L0x = ρ0x =
1

cosm1t
x, L1x = ρ1(L0x) =

1
m1

(cosm1t · x′ +m1 sinm1t · x). (2:47)

Using (2.47), we conclude that x(0) = x(1) = x′(0) = x′(1) = 0 is equivalent to (2.8).

This completes the proof of Theorem 2.4.

Remark 2.5. If condition (A1) does not hold, the results of Theorem 2.4 cannot be

obtained. For example, in the case of L[x] = 0 with k = −π2, l = π4, t = 5
6 ∈ [0, 1], we

have l > 1
4

(
k − π2

4

)2
, k ∈ (−∞, 0). Applying the similar method to prove case 1 in
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Theorem 2.4, we conclude that

x0(t) = e−
√
3π
2 t cos

π

2
t, x1(t) = e−

√
3π
2 t sin

π

2
t, x2(t) = e−

√
3π
2 t cos

π

2
t, x3(t) = e−

√
3π
2 t sin

π

2
t

form a basis of solutions of L[x] = 0. By simple computation, we have

w1 =
cos π

2 t

e
√
3π
2 t

, w2 =
π

2
e−

√
3π t, w3 =

√
3
2

π3
(√

3 cos
π

2
t − sin

π

2
t
)
e−

√
3π
2 t, w4 = 3π6.

From π
2 t =

5
12π, we easily get that tan π

2 t = 2 +
√
3 >

√
3. Furthermore, w3 < 0. Thus,

Theorem 2.4 does not hold in this case.

Remark 2.6. In the following, consider L[x] = 0, for k, l are given constants, by the

similar method in Remark 2.5, we may gain the location of (k,l) in the (k, l)-plane and

the results of w3 or w1 corresponding k, l : k = π2

16 , l =
4π2

162
, t = 2√

5
, l > 1

4

(
k − π2

4

)2
and

w3 < 0; k = π2

16 , l =
9π4

4×162
, t = 1, l = 1

4

(
k − π2

4

)2
and w3 < 0; k = π2

16 , l =
π4

162
, t = 4

3
√
3
, 1

4k
2 < l < 1

4

(
k − π2

4

)2
and w3 = 0; k = π2, l = π4

4 , t = 2
√
2

3 , l = 1
4k

2 and w1 < 0; k = π2, l = π4

8 , t =
√
2 −

√
2, 0 < l < 1

4k
2

and w3 < 0; k = 4π2, l = 0, t = 3
4 and w3 < 0; k = π2

2 , l = −π4

2 , t = 1, l = π2(k − π2) and

w3 = 0; k = −π2, l = −8π4, t =
√
2
2 , l < π2(k − π2) and ω3 < 0. Furthermore, it follows

that the conclusion of Theorem 2.4 cannot be yielded in the cases.

Theorem 2.7. Let (A1) hold and h satisfy (H2). Then

(i) The problem (1.8) has an infinite number of positive eigenvalue

λ1(h) < λ2(h) < · · · < λk(h) < λk+1(h) < · · · .

(ii) lk(h) ® ∞ as k ® ∞.

(iii) To each eigenvalue lk(h) there corresponds an essential unique eigenfunction ψk

which has exactly k - 1 simple zeros in (0,1) and is positive near 0.

(iv) Given an arbitrary subinterval of [0,1], then an eigenfunction which belongs to a

sufficiently large eigenvalue change its sign in that subinterval.

(v) For each k Î N, the geometric multiplicity of lk(h) is 1.

Proof of Theorem 2.7. (i)-(iv) are immediate consequences of Elias [[7], Theorem 1-5]

and Theorem 2.4, we only prove (υ).

Let

L̂x := x′′′′ + kx′′ + lx, x ∈ D
(
L̂
)
, (2:48)

with

D
(
L̂
)
= {x ∈ C4[0, 1]|x(0) = x(1) = x′(0) = x′(1) = 0}.

To show (υ), it is enough to prove

ker
(
L̂ − λk(h)h(·)

)2
= ker
(
L̂ − λk(h)h(·)

)
.
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Clearly

ker
(
L̂ − λk(h)h(·)

)2 ⊇ ker
(
L̂ − λk(h)h(·)

)
. (2:49)

Suppose on the contrary that the geometric multiplicity of lk(h) is greater than 1.

Then there exists x ∈ ker
(
L̂ − λk(h)h(·)

)2
\ker
(
L̂ − λk(h)h(·)

)
and subsequently

L̂x − λk(h)h(t)x = γψk (2:50)

for some g ≠ 0. Multiplying both sides of (2.50) by ψk(t) and integrating from 0 to 1,

we deduce that

0 = γ
∫ 1
0

[
ψk(t)
]2
dt, (2:51)

which is a contradiction !

Theorem 2.8 (Maximum principle). Let (A1) hold. Let e Î C[0,1] with e ≥ 0 on [0,1]

and e ≢ 0 on any compact subinterval in [0,1]. If x Î C4[0,1] satisfies

x′′′′ + kx′′ + lx = e(t), 0 < t < 1,

x(0) = x(1) = x′(0) = x′(1) = 0,
(2:52)

Then x >0 on (0,1).

Proof. When (A1) holds, the homogeneous problem

x′′′′ + kx′′ + lx = 0, 0 < t < 1,

x(0) = x(1) = x′(0) = x′(1) = 0
(2:53)

has only trivial solution. So the boundary value problem (2.52) has a unique solution

which may be represented in the form

x(t) =
∫ 1

0
G(t, s)e(s) ds, (2:54)

where G(t, s) is Green’s function. By Theorem 2.4 and Lemma 2.3 (take n = 4, k = 2),

we have

(−1)4−2G(t, s) > 0, ∀(t, s) ∈ (0, 1) × (0, 1), (2:55)

that is, G(t, s) >0, for all (t, s) Î (0,1) × (0,1).

Using (2.54), when e ≥ 0 on [0,1] and e ≢ 0 on any compact subinterval in [0,1], then

x > 0 on (0,1).

3 Main results
Theorem 3.1. Let (A1), (A2), (A3) and (A4) hold. Assume that either (i) or (ii) holds for

some k Î N and j Î {0} ∪ N:

(i)λk(b) < · · · < λk+j(b) < 1 < λk(a) < · · · < λk+j(a);

(ii)λk(a) < · · · < λk+j(a) < 1 < λk(b) < · · · < λk+j(b).
(3:1)

Then the problem (1.2) has 2(j + 1) solutions x+k+i, x
−
k+i, i = 0, . . . , j, x+k+ihas exactly k+i-

1 zeros in (0,1) and is positive near t = 0, and x−
k+ihas exactly k + i - 1 zeros in (0,1)

and is negative near t = 0.
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Theorem 3.2 Let (A1), (A2), (A3) and (A5) hold. Assume that for some k Î N,

λk(a) < 1. (3:2)

Then there are at least 2k - 1 nontrivial solutions of the problem (1.2). In fact, there

exist solutions ω1,...,ωk, such that for 1 ≤ j ≤ k, ωj has exactly j - 1 simple zeros on the

open interval (0,1) and ω′′
j (0) < 0and there exist solutions z2,...,zk, such that for 2 ≤ j ≤

k, zj has exactly j - 1 simple zeros on the open interval (0,1) and z′′j (0) > 0 .

Let Y = C[0,1] with the norm

‖x‖∞ = max
t∈[0,1]

|x| . (3:3)

Let E = {x Î C2[0, 1]|x(0) = x(1) = x′(0) = x′(1) = 0} with the norm

‖x‖E = max
{‖x‖∞,

∥∥x′∥∥
∞,
∥∥x′′∥∥

∞
}
. (3:4)

Then L̂−1 : Y → E is completely continuous. Here L̂ is given as in (2.48).

Let ζ(⋅,⋅), ξ1(⋅,⋅), ξ2(⋅,⋅) ÎC([0,1] ×ℝ,ℝ) be such that

f (t, x) = a(t)x + ζ (t, x), f (t, x) = b(t)x + ξ1(t, x),

f (t, x) = c(t)x+ + ξ2(t, x), ∀(t, x) ∈ [0, 1] × R.
(3:5)

Here x+ = max{x,0}.

Clearly,

lim
|x|→0

ζ (t, x)
x

= 0, lim
|x|→∞

ξ1(t, x)
x

= 0, lim
|x|→∞

ξ2(t, x)
x

= 0 (3:6)

uniformly for t Î [0,1].

Let

ξ̄1(x) = max
{∣∣ξ1(t, s)∣∣ : 0 ≤ |s| ≤ x, t ∈ [0, 1]

}
,

ξ̄2(x) = max
{∣∣ξ2(t, s)∣∣ : 0 ≤ |s| ≤ x, t ∈ [0, 1]

}
,

(3:7)

then ξ̄1 and ξ̄2 are nondecreasing and

lim
x→∞

ξ̄1(x)
x

= 0, lim
x→∞

ξ̄2(x)
x

= 0. (3:8)

Let us consider

L̂x = λa(t)x + λζ (t, x) (3:9)

as a bifurcation problem from the trivial solution x ≡ 0.

Equation (3.9) can be converted to the equivalent equation

x(t) = λL̂−1 [a(·)x(·)] (t) + λL̂−1 [ζ (·, x(·))] (t). (3:10)

Clearly, the compactness of L̂−1 together with (3.6) imply that∥∥∥L̂−1 [ζ (·, x(·))]∥∥∥
E
= o(‖x‖)E, as‖x‖E → 0.

Let S+k denotes the set of functions in E which have exactly k - 1 interior nodal (i.e.,

non-degenerate) zeros in (0,1) and are positive near t = 0, set S−
k = −S+k, and

Shen Boundary Value Problems 2012, 2012:31
http://www.boundaryvalueproblems.com/content/2012/1/31

Page 12 of 18



�±
k = R × S±

k . They are disjoint and open sets in E. Finally, let �±
k = R × S±

k and Fk =

ℝ × Sk.

The results of Rabinowitz [15] for (3.9) can be stated as follows: For each integer k ≥

1 and each ν = {+, -}, there exists a continuum Cν
k ⊆ �ν

k of solution of (3.9), joining (lk
(a), 0) to infinity in �ν

k. Moreover, Cν
k\(λk(a), 0) ⊂ �ν

k.

Notice that we have used the fact that if x is a nontrivial solution of (3.9), then all

zeros of x on (0, 1) are simple under (A1), (A2), (A3), and (A4).

In fact, (3.9) can be rewritten to

L̂x = λâ(t)x, (3:11)

where

â(t) =

⎧⎪⎨
⎪⎩

f (t, x(t))
x(t)

, x(t) �= 0,

a(t), x(t) = 0.

Clearly â(t) satisfies (H2). So Theorem 2.7 (iii) yields that all zeros of x on (0,1) are

simple.

Proof of Theorem 3.1. We first prove the theorem when j = 0.

It is clear that any solution of (3.9) of the form (1, x) yields solutions x of (1.2). We

will show that Cν
k crosses the hyperplane {1} × E in ℝ × E. To do this, it is enough to

show that Cν
k joins (lk(a),0) to (lk(b),∞). Let (μn, xn) ∈ Cν

k satisfy

μn + ‖xn‖E → ∞. (3:12)

We note that µn >0 for all n Î N since (0, 0) is the only solution of (3.9) for l = 0

and Cν
k ∩ ({0} × E =� 0.

Case 1. lk(b) <1 <lk(a).
In this case, we show that

(λk(b),λk(a)) ⊆ {λ ∈ R : ∃(λ, x) ∈ Cν
k}.

We divide the proof into two steps.

Step 1. We show that if there exists a constant number M >0 such that

μn ∈ (0,M], (3:13)

then Cν
k joins (lk(a),0) to (lk(b),∞).

In this case ║xn║E ® ∞. We divide the equation

L̂xn = μnb(t)xn + μnξ1(t, xn), t ∈ (0, 1) (3:14)

by ║xn║E and set yn =
xn

‖xn‖E. Since yn is bounded in C2[0,1], choosing a subsequence

and relabeling if necessary, we have that yn ® y for some y Î E with ║y║E = 1. More-

over, from (3.8) and the fact that ξ̄1 is nondecreasing, we have that

lim
n→∞

∣∣ξ1(t, xn(t))∣∣
‖xn‖E

= 0, ∀t ∈ [0, 1] , (3:15)
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since∣∣ξ1(t, xn(t))∣∣
‖xn‖E

≤ ξ̄1(
∣∣xn(t)∣∣)
‖xn‖E

≤ ξ̄1(
∥∥xn(t)∥∥∞)

‖xn‖E
≤ ξ̄1(
∥∥xn(t)∥∥E)
‖xn‖E

, ∀t ∈ [0, 1] . (3:16)

Thus

y(t) = L̂−1 [μb(·)y(·)] (t), (3:17)

where µ: = limn®∞μn, again choosing a subsequence and relabeling if necessary. Thus

L̂y = μb(t)y. (3:18)

We claim that

y ∈ Sν
k . (3:19)

Suppose, to the contrary, that y �∈ Sν
k. Since y ≠ 0 is a solution of (3.18), all zeros of y

in [0,1] are simple. It follows that y ∈ Slh �= Sν
k for some h Î ℝ and l Î {+, -}. By the

openness of Slh we know that there exists a neighborhood U(y,r0) such that

U(y,ρ0) ⊂ Slh,

which, together with the fact yn ® y, implies that exists n0 Î N such that

yn ∈ Slh, n ≥ n0.

However, this contradicts the fact that yn ∈ Sν
k Therefore, y ∈ Sν

k

Now, by Theorem 2.7, we obtain µ = lk(b).
Thus Cν

k joins (lk(a),0) to (lk(b),∞).
Step 2. We show that there exists a constant number M >0 such that µn Î (0, M],

for all n.

Suppose there is no such M. Choosing a subsequence and relabeling if necessary, it

follows that

lim
n→∞ μn = ∞. (3:20)

Let

0 = τ (0, n) < τ (1,n) < · · · < τ (k,n) = 1

denotes the zeros of xn. Then there exists a subsequence {τ(1, nm)} ⊆ {τ(1, n)} such

that

lim
m→∞ τ (1, nm) := τ (1,∞).

Clearly

lim
m→∞ τ (0, nm) := τ (0,∞) = 0.

We claim that

τ (1,∞) − τ (0,∞) = 0. (3:21)
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Suppose, to the contrary, that

τ (0,∞) < τ (1,∞). (3:22)

Define a function p: [0,1] × [0, ∞) ® ℝ by

p(t, x) =

⎧⎨
⎩

f (t, x)
x

, x �= 0, t ∈ [0, 1] ,

a(t), x = 0, t ∈ [0, 1] .
(3:23)

Then, by (A2), (A3), and (A4), there exist two positive numbers rl and r2, such that

ρ1 ≤ f (t, x)
x

≤ ρ2, for all x ≥ 0, t ∈ [0, 1] . (3:24)

Using (3.22), (3.24), and the fact that limm→∞μnm = ∞, we conclude that there exists

a closed interval I1 ⊂ (τ(0, ∞), τ(1, ∞)) such that

lim
m→∞ μnmp(t, xnm(t)) = ∞

uniformly for t Î I1.

However, since xnm satisfies

L̂xnm(t) = μnmp(t, xnm(t))xnm(t),

the proof of Lemma 4 in [7] (see also the remarks in the final paragraph in [[7], p.

43]), shows that for all n sufficiently large, xnm must change sign on I1. However, this

contradicts the fact that for all m sufficiently large we have I1 ⊂ (τ(0, nm),τ(1,nm)) and

νxnm(t) > 0, t ∈ (τ (0, nm), τ (1, nm)).

Thus, (3.21) holds.

Next, we work with (τ(1, nm), τ(2, nm)). It is easy to see that there is a subsequence

τ (2, nmj) ⊆ τ (2, nm) such that

lim
j→∞

τ (2, nmj) := τ (2,∞).

Clearly

lim
j→∞

τ (1, nmj) = τ (1,∞). (3:25)

We claim that

τ (2,∞) − τ (1,∞) = 0. (3:26)

Suppose, to the contrary, that τ(1,∞) < τ(2,∞). Then, from (3.23), (3.24), and the fact

that lim
j→∞

μnmj
= ∞, there exists a closed interval I2 ⊂ (τ(1, ∞), τ(2, ∞)) such that

lim
j→∞

μnmj
p
(
t, xnmj

(t)
)
= ∞

uniformly for t Î I2.

This implies the solution xnmj of the equation

L̂xnmj
(t) = μnmj

p
(
t, xnmj

(t)
)
xnmj

(t)
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must change sign on I2. However, this contradicts the fact that for all j sufficiently

large we have I2 ⊂ (τ (1, nmj), τ (2, nmj )) and

νxnmj
(t) > 0, t ∈ (τ (1, nmj), τ (2, nmj)).

Therefore, (3.26) holds.

By a similar argument to obtain (3.21) and (3.26), we can show that for each l Î
{2,...,k-1},

τ (l + 1,∞) − τ (l,∞) = 0. (3:27)

Taking a subsequence and relabeling it as {(µn, xn)}, if necessary, it follows that for

each l Î {0,..., k-1},

lim
n→∞ (τ (l + 1,n) − τ (l,n)) = 0. (3:28)

But this is impossible since

1 = τ (k,n) − τ (0, n) =
k−1∑
l=0

(τ (l + 1,n) − τ (l,n)) (3:29)

for all n. Therefore,

|μn| ≤ M

for some constant number M >0, independent of n Î N.

Case 2. lk(a) <1<lk(b).
In this case, if (μn, xn) ∈ Cν

k is such that

lim
n→∞ (μn + ‖xn‖E) = ∞ (3:30)

and

lim
n→∞ μn = ∞, (3:31)

then

(λk(a)m,λk(b)) ⊆ {λ ∈ (0,∞)|(λ, x) ∈ Cν
k} (3:32)

and, moreover, ({1} × E) ∩ Cν
k �=� 0.

Assume that there exists M >0 such that for all n Î N,

μn ∈ (0,M]. (3:33)

Applying a similar argument to that used in step 1 of Case 1, after taking a subse-

quence and relabeling if necessary, it follows that

(μn, xn) → (λk(b),∞), n → ∞. (3:34)

Again Cν
k joins (lk(a), 0) to (lk(b), ∞) and the result follows.

Finally, let j Î N. By repeating the arguments used in the proof of the case j = 0, we

see that for each ν Î {+, -} and each i Î {k, k + 1,..., k + j},

Cν
i ∩ ({1} × E) �=� 0. (3:35)

The result follows.
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Proof of Theorem 3.2.

We only need to show that

C−
j ∩ ({1} × E) �=� 0, j = 1, 2, . . . , k,

C+
j ∩ ({1} × E) �=� 0, j = 2, . . . , k.

Suppose on the contrary that

Cl
i ∩ ({1} × E) = � 0, for some (i, l) ∈ �, (3:36)

where

� := {(j, ν)|j ∈ {2, . . . , k} as ν = +, j ∈ {1, 2, . . . , k} as ν = −}. (3:37)

Since Cl
i joins (li,(a), 0) to infinity in �l

i and (l, x) = (0, 0) is the unique solution of

(3.9)l = 0 in E, there exists a sequence {(μn, xn)} ⊂ Cl
i such that µn Î (0,1) and ║xn║E

® ∞ as n ® ∞. We may assume that µn®µ Î [0, 1] as n ® ∞. Let yn = xn/║xn║E, n ≥

1. From the fact

L̂xn(t) = μnc(t)(xn)+(t) + μnξ2(t, xn(t)). (3:38)

We have that

yn(t) = μnL̂−1[c(·)(yn)+](t) + μnL̂−1
[

ξ2(·, xn)
‖xn‖E

]
(t). (3:39)

Furthermore, since L̂−1|E : E → E is completely continuous, we may assume that

there exists y Î E with ║y║E = 1 such that ║yn - y║E ® 0 as n ®∞. Since∣∣ξ2(t, xn)∣∣
‖xn‖E

≤ ξ̄2(‖xn‖∞)
‖xn‖E

≤ ξ̄2(‖xn‖E)
‖xn‖E

(3:40)

uniformly for t Î [0,1], we have from (3.39) and (3.8) that

y = μL̂−1[c(t)y+], (3:41)

that is,

y′′′′ + ky′′ + ly = μc(t)y+, 0 < t < 1,

y(0) = y(1) = y′(0) = y′(1) = 0.
(3:42)

By (A1), (A5), and (3.42) and the fact that ║y║E = 1, we conclude that µc(t)y+ ≢ 0 on

any compact subinterval in [0,1], and consequently

μ > 0, y+) �≡ 0, on any compact subinterval in[0, 1]. (3:43)

By Theorem 2.8, we know that y(t) >0 in (0,1). This means µ is the first eigenvalue

of L̂x = λc(t)x and y is the corresponding eigenfunction. Hence y ∈ S+1 and therefore,

since S+1 is open and ║yn - y║E ® 0, we have that yn ∈ S+1 for n large. But this contra-

dicts the assumption that (μn, yn) ∈ Cl
i and (i,l) Î Γ, so (3.36) is wrong, which com-

pletes the proof.
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