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Abstract

In this article, we mainly construct multiple blowing-up and concentrating solutions
for a class of Liouville-type equations under mixed boundary conditions:⎧⎨

⎩
−�v = ε2ev − 4π

∑N
i=1 αiδpi , in �,

ε(1 − t)
∂v
∂ν

+ tb(x)v = 0, on ∂�,

for ε small, where t ∈ (0, 1],N ∈ N ∪ {0}, {α1,α2, . . . ,αN} ⊂ (−1, +∞)\(N ∪ {0}), Ω
is a bounded, smooth domain in R2, Γ := {p1, ..., pN} ⊂ Ω is the set of singular
sources, δp denotes the Dirac mass at p, ν denotes unit outward normal vector to ∂Ω

and b(x) > 0 is a smooth function on ∂Ω.
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1 Introduction
In this article, we mainly investigate the mixed boundary value problem:⎧⎨

⎩
−�v = ε2ev − 4π

∑N
i=1 αiδpi , in �,

ε(1 − t)
∂v
∂ν

+ tb(x)v = 0, on ∂�,
(1)

for ε small, where t ∈ (0, 1],N ∈ N ∪ {0}, {α1,α2, . . . ,αN} ⊂ (−1, +∞)\(N ∪ {0}), Ω
is a bounded, smooth domain in R2, Γ:= {p1, ..., pN} ⊂ Ω is the set of singular sources,

δp denotes the Dirac mass at p, ν denotes unit outward normal vector to ∂Ω and b(x)

> 0 is a smooth function on ∂Ω.

Such problems occur in conformal geometry [1], statistical mechanics [2-4], Chern-

Simons vortex theory [5-11] and several other fields of applied mathematics [12-16]. In

all these contexts, an interesting point is how to construct solutions which exactly

“blow-up” and “concentrate” at some given points, whose location carries relevant

information about the potentially geometrical or physical properties of the problem.

However, the authors mainly consider the Dirichlet boundary value problem, and little

is known for the problem with singular sources satisfying ai Î (-1, 0) for some i = 1,

..., N. The main purpose of this article is to study how to construct multiple blowing-
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up and concentrating solutions of the Equation (1) with the mixed boundary condi-

tions and singular sources.

Let Gt,ε denotes the Green’s function of -Δ with mixed boundary conditions on Ω,

namely for any y Î Ω,⎧⎨
⎩

−�xGt,ε(x, y) = 2πδy(x), in �,

ε(1 − t)
∂Gt,ε(x, y)

∂ν
+ tb(x)Gt,ε(x, y) = 0, on ∂�,

(2)

and let Ht,ε(x, y) = Gt,ε(x, y) + log |x - y| be its regular part. Set G1 = G1,ε and H1 =

H1,ε. Since ε exactly disappears in the Equation (2)|t = 1, G1 and H1 don’t depend on ε.

The Equation (1) is equivalent to solving for u = v + 2
∑N

i=1 αiGt,ε(x, pi) , the regular

part of v, the equation⎧⎨
⎩

−�u = ε2
∣∣x − p1

∣∣2α1
. . .
∣∣x − pN

∣∣2αNe−2
∑N

i=1 αiHt,ε(x,pi)eu, in �,

ε(1 − t)
∂u

∂ν
+ tb(x)u = 0, on ∂�.

Thus, we consider the more general model problem:⎧⎨
⎩

−�u = ε2
∣∣x − p1

∣∣2α1
. . .
∣∣x − pN

∣∣2αN f (x)eu, in �,

ε(1 − t)
∂u
∂ν

+ tb(x)u = 0, on ∂�,
(3)

where f : � → R is a smooth function such that f(pi) > 0 for any i = 1, ..., N. Set Ω’

= {x Î Ω: f(x) > 0}, S(x) =
∣∣x − p1

∣∣2α1
. . .
∣∣x − pN

∣∣2αN and Δm = {p = (p1, ..., pm) Î Ω
m:

pi = pj for some i ≠ j}.

It is known that for {α1, . . . ,αN} ⊂ (0, +∞)\N, or ai = 0 for any i = 1, ..., N, if uε is a

family of solutions of the Equation (3)|t = 1 with infΩ f > 0, which is not uniformly

bounded from above for ε small, then uε blows up at different points pk1 , . . . , pkn+m with

n + m ≥ 1, 0 ≤ n ≤ N, p = (pkn+1 , . . . , pkn+m) ∈ (�′\
)m\�m and {pk1 , . . . , pkn} ⊂ 
, and

satisfies the concentration property:

ε2
∣∣x − p1

∣∣2α1
. . .
∣∣x − pN

∣∣2αN f (x)euε ⇀ 8π

n∑
i=1

(1 + αki)δpki + 8π

n+m∑
i=n+1

δpki , (4)

in the sense of measures in �̄. Moreover, p = (pkn+1 , . . . , pkn+m) is a critical point of the

function:

ϕn,m(p) =
n+m∑
i=n+1

[
H1(pki , pki) +

1
2
log f (pki)S(pki)

]
+

n+m∑
i,j=n+1,i�=j

G1(pkj , pki)

+ 2
n∑
i=1

n+m∑
j=n+1

(1 + αki)G1(pkj , pki),

(5)

(see [7,17-23]). An obvious problem for the Equation (3) is the reciprocal, namely the

existence of multiple blowing-up solutions with concentration points near critical

points of �n,m.

The earlier result concerning the existence of multiple blowing-up and concentrating

solutions of the Equation (3) is given by Baraket and Pacard in [24]. When t = 1 and

ai = 0 for any i = 1,2, ..., N, they prove that any non-degenerate critical point
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p = (pkn+1 , . . . , pkn+m) of the function �n,m with n = 0 generates a family of the solutions

uε which blow-up at pkn+1 , . . . , pkn+m, and concentrate in the sense that (4) holds. Espo-

sito [20] performs a similar asymptotic analysis and extends the previous result by

allowing the presence of singular sources in the Equation (3)|t = 1, that is,

{α1, . . . ,αN} ⊂ (0, +∞)\N. However, the asymptotic analysis method depends on the

non-degenerate assumption of critical point of the function �n,m so much that it pays

in return at a price of the very complicated and accurate control on the asymptotics of

the solutions.

In fact, the finite dimensional reduction method, used successfully in higher dimen-

sional nonlinear elliptic equation involving critical Sobolev exponent (see [6,25]), can

avoid the technical difficulty in carrying out the asymptotic analysis method for the

Equation (3). It is necessary to point out that the key step of the finite dimensional

reduction is the analysis of the bounded invertibility of the corresponding linearized

operator L of the Equation (3) at the suitable approximate solution. In [26,27], the

authors construct the approximate solution, carry out the finite dimensional reduction

and use some stability assumptions of critical points of �0,m to get the existence of

multiple blowing-up and concentrating solutions for the Equation (3)|t = 1 with 
 = ∅,
namely ai = 0 for any i = 1,2, ..., N. When {α1, . . . ,αN} ⊂ (0, +∞)\N, a similar result

for the Equation (3)|t = 1 under C
0-stable assumption of critical point of �n,m (see Defi-

nition 4.1) is also established in [28].

Here in the spirit of the finite dimensional reduction, we try to extend the result of

the Equation (1) in [20,28] by allowing the presence of singular sources 4π
∑N

i=1
αiδpi

with some ai Î (-1, 0) and Robin boundary conditions ε(1 − t)
∂v
∂ν

+ tb(x)v = 0 with t

Î (0,1). When we carry out the finite dimensional reduction, we need to get the invert-

ibility of the desired linearized operator L for the Equation (3) under some ai Î (-1, 0).

Obviously, the linearized operator L easily produces the singularities at some singular

sources with ai Î (-1, 0), which makes trouble for the analysis of the bounded invert-

ibility of L. But we can successfully get rid of it by introducing a suitable L∞-weighted

norm (see (30) below) related with a “gap interval” (-1, a0), where a0 = min{0, a1, ...,

aN}. On the other hand, the presence of the term ε(1 − t)
∂u
∂ν

in the Equation (3)|0<t<1

brings some new technical difficulties. A flexible approach exactly helps us overcome

the difficulties by making use of the maximum principle. In addition, a weaker stable

assumption of critical points of the function �n,m also helps us construct multiple

blowing-up and concentrating solutions of the Equation (3). As a consequence, we

have the following result.

Theorem 1.1 Let 0 ≤ n ≤ N and m ∈ N ∪ {0}such that n + m ≥ 1. Assume that

p∗ = (p∗
n+1, . . . , p

∗
n+m)and p∗ = (p∗

n+1, . . . , p
∗
n+m)is a C0-stable critical point for �n,m in (Ω’

\ Γ)m \ Δm with m ≥ 1 (see Definition 4.1). Then there exists a family of solutions uε for

the Equation (3) with the concentration property (4), which blow up at n-different

points (pk1 , . . . , pkn) in Γ, and m-points p = (pkn+1 , . . . , pkn+m)in (Ω’ \ Γ)m \ Δm with �n,m

(p*) = �n,m(p). Moreover, uε remains uniformly bounded on �\ ∪n+m
i=1 Bλ(pki), and

supBλ(pki )
uε → +∞for any l > 0.
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Let us point out that from the proof of Theorem 1.1 Robin boundary condition can

be considered as a perturbation of Dirichlet boundary condition for the problem (3) in

using perturbation techniques to construct multiple blowing-up and concentrating

solutions. Based on this point, we also consider the Dirichlet-Robin boundary value

problem:⎧⎨
⎩

−�u = ε2
∣∣x − p1

∣∣2α1
. . .
∣∣x − pN

∣∣2αN f (x)eu, in �,

ε
∂u
∂ν

+ b(x)u = 0, on T, u = 0, on ∂�\T, (6)

where T ⊆ ∂Ω is a relatively closed subset and ∂�\T �= ∅. This together with other

similar mixed boundary value problems can be founded in [29,30]. For the problem

(6), we obtain the following result.

Theorem 1.2 Under the assumption of Theorem 1.1, then there exists a family of

solutions uε for the Equation (6) with the concentration property (4), which blow up at

n-different points (pk1 , . . . , pkn) in Γ, and m-points p = (pkn+1 , . . . , pkn+m)in (Ω’ \ Γ)m \ Δm

with �n,m(p*) = �n,m(p). Moreover, uε remains uniformly bounded on �\ ∪n+m
i=1 Bλ(pki),

and supBλ(pki )
uε → +∞for any l > 0.

Finally, it is very interesting to mention that to prove the above results we need to

choose the classification solutions of the following Liouville-type equation to construct

concentrating solutions of the Equation (1) or (3):{−�u = |z|2γ eu, in R2,∫
R2

|z|2γ eu < +∞, γ > −1, (7)

given by

u(z) = log
8(1 + γ )2μ2

(μ2 +
∣∣zγ+1 − c

∣∣2)2 , (8)

with μ > 0, c ∈ C if γ ∈ N ∪ {0}, c = 0 if γ ∈ (−1, +∞)\(N ∪ {0}) (see [5,11,31,32]).

Using these classification solutions scaled up and projected to satisfy the mixed bound-

ary conditions up to a right order, the initial approximate solutions can be built up.

Then through the finite dimensional reduction procedure and the notions of stability

of critical points of the asymptotic reductional functional �n,m, multiple blowing-up

and concentrating solutions can be constructed as a small additive perturbation of the

initial approximations.

This article is organized as follows. In Section 2, we will construct the approximate

solution and rewrite the Equation (3) in terms of a linearized operator L. In Section 3,

we give the invertibility of the linearized operator L, carry out the finite dimensional

reduction and get the asymptotical expansion of the functional of the Equation (3)

with respect to the suitable approximate solution. In Section 4, we give the proofs of

Theorems 1.1 and 1.2.

2 Construction of the approximate solution
In this section, we will construct the approximate solution for the Equation (3). Let μi,

i = 1, ..., N + m, be positive numbers and set

αi = 0, ∀ i = N + 1, . . . ,N +m,
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and

Qi(x) =
S(x)∣∣x − pi
∣∣2αi

.

Obviously, Qi(x) = S(x) for any i = N + 1, ..., N + m. Then the function

ui(x) = log
8μ2

i (1 + αi)
2

(μ2
i ε

2 +
∣∣x − pi

∣∣2(1+αi))
2
f (pi)Qi(pi)

, (9)

satisfies

−�ui = ε2
∣∣x − pi

∣∣2αi f (pi)Qi(pi)eui , in R
2. (10)

Set {k1, ..., kn} ⊂ {1, ..., N} and kn+i = N + i for any i = 1, ..., m.

We hope to take
∑n+m

i=1
uki as an initial approximate solution of the problem (3). So

we modify it to be

U(x) :=
n+m∑
i=1

Uki =
n+m∑
i=1

(uki +Ht
ki), (11)

where Ht
ki
(x)(x) is the solution of⎧⎨

⎩
�Ht

ki
= 0 in �,

ε(1 − t)
∂

∂ν
Ht

ki
+ tb(x)Ht

ki
= −

[
ε(1 − t)

∂uki
∂ν

+ tb(x)uki

]
, on ∂�.

(12)

Then Uki := uki +Ht
ki satisfies⎧⎨

⎩
−�Uki = ε2

∣∣x − pki
∣∣2αki f (pki)Qki(pki)e

uki , in �,

ε(1 − t)
∂

∂ν
Uki + tb(x)Uki = 0, on ∂�.

(13)

Lemma 2.1 For t Î (0, 1] and pki ∈ �′,

Ht
ki(x) = 4(1 + αki)Ht,ε(x, pki) − log

8μ2
ki
(1 + αki)

2

f (pki)Qki(pki)
+O(ε2), (14)

uniformly in C(�̄) and in C2
loc(�)for ε small.

Proof. Set zt(x) = Ht
ki(x) − 4(1 + αki)Ht,ε(x, pki) + log

8μ2
ki
(1 + αki)

2

f (pki)Qki(pki)
. Then zt(x) satis-

fies ⎧⎨
⎩

�zt(x) = 0, in �,

ε(1 − t)
∂zt(x)

∂ν
+ tb(x)zt(x) = Ft(x), on ∂�,

where

Ft(x) = 4ε(1 − t)(1 + αki)

⎡
⎣∣∣x − pki

∣∣2αki
ν(x) · (x − pki)

μ2
ki
ε2 +

∣∣x − pki
∣∣2(1+αki )

− ν(x) · (x − pki)∣∣x − pki
∣∣2

⎤
⎦

+tb(x)
[
2 log

(
μ2
kiε

2 +
∣∣x − pki

∣∣2(1+αki )
)

− 4(1 + αki) log
∣∣x − pki

∣∣] .
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For any t Î (0, 1], it is easy to check ‖Ft (x)‖L∞(∂�) = O
(
ε2
)
. If t = 1, from the maxi-

mum principle and smooth function b(x) > 0, it follows

max
�̄

∣∣z1(x)∣∣ = max
∂�

∣∣z1(x)∣∣ ≤ C(b)
∥∥F1(x)∥∥L∞(∂�) = O(ε2).

If 0 <t < 1, from the maximum principle with the Robin boundary condition (see

[[33], Lemma 2.6]), it also follows

max
�̄

∣∣zt(x)∣∣ ≤ 1
t
C(b)

∥∥Ft(x)∥∥L∞(∂�) = O(ε2).

Thus using the interior estimate of derivative of harmonic function (see [[34], Theo-

rem 2.10]), there holds

max
K

∣∣Dαzt(x)
∣∣ ≤ ( 2 |α|

dist(K, ∂�)

)|α|
max

�̄

∣∣zt(x)∣∣ = O(ε2),

for any compact subset K of Ω, any t Î (0, 1] and any multi-index a with |a| ≤ 2,

which derives (14) uniformly in C(�̄) and in C2
loc(�) for ε small. □

From this lemma we can construct the approximate solution U(x) =
∑n+m

i=1 (uki +Ht
ki
),

which satisfies the mixed boundary conditions. On the other hand, we hope that the

error U(x) − uki is smaller near every pki. In fact, we can realize this point by further

choosing positive number μki such that

log
8μ2

ki
(1 + αki)

2

f (pki)Qki(pki)
= 4(1 + αki)Ht,ε(pki , pki) + 4

j=n+m∑
j=1,j�=i

(1 + αkj)Gt,ε(pki , pkj). (15)

Consider the scaling of the solution of the Equation (3)

v(y) = u(εy) + 4 log ε,

then v(y) satisfies{−�v = S(εy)f (εy)ev, in �ε,

(1 − t)
∂v

∂ν
+ tb(εy)v = 4tb(εy) log ε, on ∂�ε,

(16)

where �ε =
1
ε
�.. We also set p′

ki
=
1
ε
pki and define the new approximation in

expanded variables as V(y) = U(εy) + 4 log ε. Furthermore, set

ρki = ε

1
1 + αki ,

(17)

and

W(y) = S(εy)f (εy)eV(y). (18)

Obviously, ρkn+i = ε for all i = 1, ..., m.

Here, we want to see how well -ΔV(y) match with W(y) through V(y). A simple com-

putation shows
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−�V(y) = −ε2�xU(x)

= −ε2
n+m∑
i=1

�x
[
uki(x) +Ht

ki
(x)
]

=
n+m∑
i=1

(
ε

ρki

)2 8μ2
ki
(1 + αki)

2
∣∣∣∣εy − pki

ρki

∣∣∣∣
2αki

[
μ2
ki
+

∣∣∣∣εy − pki
ρki

∣∣∣∣
2(1+αki )

]2 .

Then given a small number δ > 0, if

∣∣∣∣εy − pki
ρki

∣∣∣∣ > δ

ρki
for all i = 1, ..., n + m,

−�V(y) = O(ε4), (19)

and if

∣∣∣∣εy − pki
ρki

∣∣∣∣ ≤ δ

ρki
for some i,

−�V(y) =
(

ε

ρki

)2 8μ2
ki
(1 + αki)

2
∣∣∣∣εy − pki

ρki

∣∣∣∣
2αki

[
μ2
ki
+

∣∣∣∣εy − pki
ρki

∣∣∣∣
2(1+αki )

]2 +O(ε4). (20)

On the other hand, if

∣∣∣∣εy − pki
ρki

∣∣∣∣ > δ

ρki
for all i = 1, ..., n + m, obviously,

W(y) = O(ε4), (21)

and if

∣∣∣∣εy − pki
ρki

∣∣∣∣ ≤ δ

ρki
for some i,

W(y) =
∣∣εy − pki

∣∣2αki Qki(εy)f (εy)e
V(y)

= ε4
8μ2

ki
(1 + αki)

2∣∣εy − pki
∣∣2αki[

ε2μ2
ki
+
∣∣εy − pki

∣∣2(1+αki )
]2 · f (εy)Qki(εy)

f (pki)Qki(pki)

× exp

⎧⎪⎨
⎪⎩Ht

ki(εy) +
n+m∑
j=1,j�=i

⎡
⎢⎣log 8μ2

kj
(1 + αkj)

2

(
ε2μ2

kj
+
∣∣εy − pkj

∣∣2(1+αkj )
)2
f (pkj)Qkj(pkj)

+Ht
kj(εy)

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

Now from (14), (15) and (17), we have

W(y) =
(

ε

ρki

)2 8μ2
ki
(1 + αki)

2
∣∣∣∣εy − pki

ρki

∣∣∣∣
2αki

[
μ2
ki
+

∣∣∣∣εy − pki
ρki

∣∣∣∣
2(1+αki )

]2
[
1 +O

(
ρki

∣∣∣∣εy − pki
ρki

∣∣∣∣
)
+O(ε2)

]
. (22)

In summary, we set

R(y) = �V(y) +W(y), (23)

Chang and Yang Boundary Value Problems 2012, 2012:33
http://www.boundaryvalueproblems.com/content/2012/1/33

Page 7 of 25



and if

∣∣∣∣εy − pki
ρki

∣∣∣∣ > δ

ρki
for all i = 1, ..., n + m,

R(y) = O(ε4), (24)

while

∣∣∣∣εy − pki
ρki

∣∣∣∣ ≤ δ

ρki
for some i,

R(y) =
(

ε

ρki

)2 8μ2
ki
(1 + αki)

2
∣∣∣∣εy − pki

ρki

∣∣∣∣
2αki

[
μ2
ki
+

∣∣∣∣εy − pki
ρki

∣∣∣∣
2(1+αki )

]2
[
O
(

ρki

∣∣∣∣εy − pki
ρki

∣∣∣∣
)
+O(ε2)

]
. (25)

In the rest of this article, we try to find a solution v of the form v = V + j of the

Equation (16). In terms of j, the problem (3) becomes{
Lφ = �φ +Wφ = −[R +N(φ)], in �ε,

(1 − t)
∂φ

∂ν
+ tb(εy)φ = 0, on ∂�ε,

(26)

where

N(φ) = W[eφ − 1 − φ]. (27)

3 The finite dimensional reduction
In this section, we will carry out the finite dimensional reduction to solve the Equation

(26). First of all, we need to get the desired invertibility of linearized operation L. Set

zi0(z) =
|z|2(1+αki )−μ2

ki

|z|2(1+αki )+μ2
ki

, for i = 1, 2, . . . ,n +m,

zij(z) =
4zj

|z|2 + μ2
ki

, for i = n + 1, . . . ,n +m, j = 1, 2,

Liφ = �φ +
8μ2

ki
(1 + αki)

2|z|2αki[
μ2
ki
+ |z|2(1+αki )

]2 φ, for i = 1, . . . ,n +m.

A basic fact to get the needed invertibility is that the linearized operator L formally

approaches to the operator Li under suitable dilations and translations, which have

some well-known properties that any bounded solution of Ltj = 0 is

- a linear combination of zi0 and zij for i = n + 1, ..., n + m, j = 1, 2 (see [24,35]);

- proportional to zi0 for 0 < αki /∈ N and i = 1, 2, ..., n (see [20,28,36]).

Remark 3.1 These properties of the operator Li have been discussed in the above

papers only if 0 < αki /∈ N for i = 1, ..., n, or αki = 0 for i = n + 1, ..., n + m. In fact, if
−1 < αki < 0 for some i = 1, ..., n, the operator Li has also the corresponding

properties.

Lemma 3.2 For −1 < α /∈ N ∪ {0}, any bounded solution j of

�φ +
8μ2(1 + α)2|z|2α(
μ2 + |z|2(1+α)

)2 φ = 0, ∀z ∈ C\{0}, (28)
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is proportional to
|z|2(1+α) − μ2

|z|2(1+α) + μ2
.

Proof. If we express the bounded solution j of the Equation (28) in Fourier expan-

sion form as follow

φ(z) =
+∞∑

n=−∞
un(r)e−inθ , z = reiθ ,

un(r) is a bounded nontrivial solution of the equation

u′′(r) +
1
r
u′(r) − n2

r2
u +

8μ2(1 + α)2r2α

(μ2 + r2(1+α))2
u = 0. (29)

Since any solution of -Δu = eu in C is given by the Liouville formula

ln
8
∣∣F′(z)

∣∣2(
1 +
∣∣F(z)∣∣2)2 ,

for any meromorphic function F defined on {z ∈ C : F′(z) �= 0}, the function

ln
8μ2(1 + α)2

∣∣∣∣1 +
n + α + 1

α + 1
azn
∣∣∣∣
2

(μ2 + |z|2(1+α)|1 + azn|2)2
,

with any n ∈ Z and |a| <
α + 1

|n| + α + 1
, is the solution of -Δu = |z|2aeu in C\{0}. More-

over, its derivative with respect to a at a = 0

φn(z) =
1

α + 1
(n + α + 1)μ2 + (n − α − 1)|z|2(1+α)

μ2 + |z|2(1+α)
zn, n ∈ Z,

is a solution of the Equation (29) with r = |z|.

For |n| ≥ 1, since {jn(r), j-n(r)} is a set of linearly independent solutions of the sec-

ond order linear homogeneous ODE (29), any bounded solution is a linear combina-

tion of jn(r) and j-n(r). However, j|n|(r) ( resp. j-n(r) ) tends to 0 ( resp. ∞ ) as r ↦ 0

and j|n|(r) ( resp. j-|n|(r) ) tends to ∞ ( resp. 0 ) as r ↦ + ∞, which implies that the

Equation (29) ||n|≥1 has no bounded nontrivial solution.

For n = 0, φ0(z) = −|z|2(1+α) − μ2

|z|2(1+α) + μ2
is a bounded solution of the Equation (29)|n = 0,

that is, of the Equation (28). We claim that there does not exist the second linearly

independent bounded solution of the Equation (29)|n = 0. Otherwise, let ω be another

linearly independent bounded solution of (29)|n = 0. Writing ω(r) = c(r)j0(r), we get

that

c′′(r)φ0 + c′(r)
(
2φ′

0 +
1
r
φ0

)
= 0.
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Then there exists a constant C > 0 such that

c′(r) =
C

rφ2
0(r)

=
C(r2(1+α) + μ2)

2

r(r2(1+α) − μ2)2
∼ C

r
for r small,

c(r) ∼ C log r for r small.

Hence, ω(r) ~ C log r for r small, which implies ω(r) is unbounded on (0, + ∞). It

contradicts the assumption that ω is bounded. □
Let us denote

Zi0(y) = zi0

(
εy − pki

ρki

)
, for i = 1, 2, . . . ,n +m,

Zij(y) = zij

(
εy − pki

ρki

)
, for i = n + 1, . . . ,n +m, j = 1, 2,

χι(y) = χ

(∣∣∣∣εy − pki
ρki

∣∣∣∣
)
, for i = 1, 2, . . . ,n +m,

where c(r) is a smooth, non-increasing cut-off function such that for a large but

fixed number R0 > 0, c(r) = 1 if r ≤ R0, and c(r) = 0 if r ≥ R0 + 1. Additionally, set a0

= min{0, a1, ..., aN}. For any a Î (-1, a0), we introduce the Banach space

Cn,m := {ψ ∈ L∞(�ε) : ‖ψ‖n,m < +∞},

with the norm

‖ψ‖n,m = sup
y∈�ε

∣∣ψ(y)
∣∣

ε2 +
n∑

i=1,αi<0

(
ε

ρi

)2∣∣∣∣εy − pi
ρi

∣∣∣∣
2αi

(
1 +

∣∣∣∣εy − pi
ρi

∣∣∣∣
)4+2α+2αi

+
n+m∑

i=1,αi≥0

(
ε

ρi

)2

(
1 +

∣∣∣∣εy − pi
ρi

∣∣∣∣
)4+2α

.

(30)

Now to get the invertibility of the linearized operator L, we only need to solve the

following linear problems: given h of class Cn,m ∩ C0,β (�ε) with b Î (0,1), for m ≥ 1

and 0 ≤ n ≤ N, we find a function j and scalars cij, i = n + 1, ..., n + m, j = 1, 2, such

that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lφ = �φ +Wφ = h +
2∑
j=1

n+m∑
i=n+1

cijχiZij, in �ε,

(1 − t)
∂

∂ν
φ + tb(εy)φ = 0, on ∂�ε,∫

�ε

χiZijφdy = 0, ∀ i = n + 1, . . . ,n +m, j = 1, 2,

(31)

and for m = 0 and 1 ≤ n ≤ N, we find a function j such that{
Lφ = �φ +Wφ = h, in �ε,

(1 − t)
∂

∂ν
φ + tb(εy)φ = 0, on ∂�ε .

(32)

Proposition 3.1 (i) If m ≥ 1 and 0 ≤ n ≤ N, given a fixed number δ > 0, there exist

positive numbers ε0 and C such that for any points pkl, l = n + 1, ..., n + m, in Ω’, with
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dist(pkl , ∂�) ≥ δ,
∣∣pkl − pki

∣∣ ≥ δ, for l �= i and i = 1, . . . ,n +m, (33)

there is a unique solution φ ∈ L∞(�ε), cn+1, . . . , cn+m ∈ R, of the Equation (31), which

satisfies

‖φ‖∞ ≤ C
(
log

1
ε

)
‖h‖n,m, (34)

for all ε <ε0 and t Î (0, 1]. Moreover, the map p’ ↦ j is C1 and

∥∥Dp′φ
∥∥

∞ ≤ C
(
log

1
ε

)2

‖h‖n,m, (35)

where p′ :=
(
1
ε
pkn+1 , . . . ,

1
ε
pkn+1

)
.

(ii) If m = 0 and 1 ≤ n ≤ N, there exist positive numbers ε0 and C such that there is a

unique solution j Î L∞(Ωε) of the Equation (32), which satisfies

‖φ‖∞ ≤ C
(
log

1
ε

)
‖h‖n,0, (36)

for all ε <ε0 and t Î (0, 1].

These results can be established through some technical lemmas. First for the linear

Equation (32) under the additional orthogonality conditions with respect to Zi0, i = 1,

..., n + m, and Zij, i = n + 1, ..., n + m, j = 1, 2, we prove the following priori estimates.

Lemma 3.3 (i) If m ≥ 1 and 0 ≤ n ≤ N, given a fixed number δ > 0, there exist posi-

tive numbers ε0 and C such that for any points pkl, l = n + 1, ..., n + m, in Ω’, which

satisfy the relation (33), and any solution j of the Equation (32) with t Î (0, 1] under

the orthogonality conditions⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
�ε

χiZi0φdy = 0, ∀ i = 1, . . . ,n +m,

∫
�ε

χiZijφdy = 0, ∀ i = n + 1, . . . ,n +m, j = 1, 2,
(37)

one has

‖φ‖∞ ≤ C‖h‖n,m, (38)

for all ε <ε0.

(ii) If m = 0 and 1 ≤ n ≤ N, there exist positive numbers ε0 and C such that for any

solution j of the Equation (32) with t Î (0, 1] under the orthogonality conditions∫
�ε

χiZi0φdy = 0, ∀ i = 1, . . . ,n, (39)

one has

‖φ‖∞ ≤ C‖h‖n,0, (40)

for all ε <ε0.
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Remark 3.4 The idea behind these estimates partly comes from observing the linear

Equation (32) with h = 0 on bounded set Bi,R :=
{
y ∈ �ε :

∣∣∣∣εy − pki
ρki

∣∣∣∣ < R
}
for ε small.

After a translation and a rotation so that Ωε converges to the whole plan R2, the Equa-

tion (32) approaches Lij = 0 in R2. As a result, the solution of the Equation (32) under

the additional orthogonality conditions (37) should be zero.

Proof. Case (i): First consider the “inner norm” ‖φ‖l = sup∪n+m
i=1 Bi,R

|φ| and the “bound-

ary norm” ‖φ‖o = sup∂�ε
|φ|, we claim that there is a constant C > 0 such that if Lj =

h in Ωε, then

‖φ‖∞ ≤ C
(‖φ‖l + ‖φ‖o + ‖h‖n,m

)
. (41)

We will establish it with the help of suitable barrier.

Consider that the function g(z) =
|z|2(1+α) − 1

|z|2(1+α) + 1
is a radial solution in R2 of

�g(z) +
8(1 + α)2|z|2α(
1 + |z|2(1+α)

)2 g(z) = 0,

we define a bounded comparison function

Z(y) =
n+m∑
i=1

g
(
a

∣∣∣∣εy − pki
ρki

∣∣∣∣
)
, y ∈ �ε,

with a > 0. Set
Ra =

1
a
3

1
2(1 + α). While

∣∣∣∣εy − pki
ρki

∣∣∣∣ ≥ Ra for all i = 1, ..., n + m,

−�Z(y) =
n+m∑
i=1

(
ε

ρki

)2

a2
8(1 + α)2

∣∣∣∣aεy − pki
ρki

∣∣∣∣
2α

(
1 +

∣∣∣∣aεy − pki
ρki

∣∣∣∣
2(1+α)

)2 g
(
a

∣∣∣∣εy − pki
ρki

∣∣∣∣
)

≥
n+m∑
i=1

(
ε

ρki

)2

a2
4(1 + α)2

∣∣∣∣aεy − pki
ρki

∣∣∣∣
2α

(
1 +

∣∣∣∣aεy − pki
ρki

∣∣∣∣
2(1+α)

)2

>

n+m∑
i=1

(
ε

ρki

)2

a−2(1+α) (1 + α)2∣∣∣∣εy − pki
ρki

∣∣∣∣
2α+4 .

(42)

Moreover, according to (21) and (22), on the same region,

W(y)Z(y) ≤ C
n+m∑
i=1

(
ε

ρki

)2 1∣∣∣∣εy − pki
ρki

∣∣∣∣
2αki+4

.
(43)

So if a is small enough to satisfy (1 + a)2a-2(1+a) >C + 1, Ra is sufficiently large. As a

result, by (42) and (43), for any R ≥ Ra, we have Z(y) > 0 and L(Z) < 0 in

�c
R,ε := �ε\ ∪n+m

i=1 Bi,R.
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Let M be a large number such that for all i = 1, ..., n + m, � ⊂ B(pki ,M). Consider

now the solution of the problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�ψi =
(

ε

ρki

)2 4∣∣∣∣εy − pki
ρki

∣∣∣∣
2α+4 + 4ε2, R <

∣∣∣∣εy − pki
ρki

∣∣∣∣ < M
ρki

,

ψi(y) = 0, for

∣∣∣∣εy − pki
ρki

∣∣∣∣ = R and

∣∣∣∣εy − pki
ρki

∣∣∣∣ = M
ρki

.

A direct computation shows

ψi(y) = ϕi(ri) − ϕi

(
M

ρki

) log
ri
R

log
M
Rρki

,

where

ri =

∣∣∣∣εy − pki
ρki

∣∣∣∣ ,
and

ϕi(t) =
1

(1 + α)2

(
1

R2(1+α)
− 1

t2(1+α)

)
+ ρ2

ki(R
2 − t2).

For the sake of the convenience, we choose R larger if necessary. Then it easily see

that these functions ψi, i = 1, ..., n + m, have a uniform bound independent of ε.

Now we can construct the needed barrier:

φ̃(y) = 2(‖φ‖l + ‖φ‖o)Z(y) + ‖h‖n,m
n+m∑
i=1

ψi(y).

It is easy to check that Lφ̃ < h = Lφ in �c
R,ε, and φ̃ ≥ φ on ∂�c

R,ε. Since Z(y) > 0 and

LZ(y) < 0 in �c
R,ε, from the maximum principle (see [[37], Theorem 10, Chap. 2 ]), it

follows that φ̃ ≥ φ in �c
R,ε. Similarly, −φ̃ ≤ φ in �c

R,ε, which derives the estimate (41).

We prove the priori estimate (38) by contradiction. Assume that there exist a

sequence εk ® 0, points pkkl, l = n + 1, ..., n + m, in Ω’ which satisfy relation (33), func-

tions hk with ║hk║n,m ® 0, solutions jk with ║jk║∞ = 1, such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lφk = �φk +Wφk = hk, in �ε,

(1 − t)
∂

∂ν
φk + tb(εy)φk = 0, on ∂�ε,∫

�ε

χiZi0φkdy = 0, ∀ i = 1, . . . ,n +m,

∫
�ε

χiZi0φkdy = 0, ∀ i = n + 1, . . . ,n +m, j = 1, 2.

Then from the estimate (41), ║jk║l ≥ � or ║jk║o ≥ � for some � > 0. Briefly set ε:=

εk, pki : p
k
ki
. If ║jk║l ≥ �, with no loss of generality, we assume that supBi,R

|φk| ≥ k for

some i Then if we set φ̂k(z) = φk

(
ρki

ε
z +

pki
ε

)
and ĥk(z) = hk

(
ρki

ε
z +

pki
ε

)
, φ̂k satisfies
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�φ̂k +
8μ2

ki
(1 + αki)

2|z|2αki

[μ2
ki
+ |z|2(1+αki )]

2 [1 +O(ρki |z|) +O(ε2)]φ̂k =
(ρki

ε

)2
ĥk,

for z Î BR(0). Obviously, for any q ∈
[
1,−1

α

]
we easily get

(ρki

ε

)2
ĥk → 0 in Lq(BR

(0)). Since
8μ2

ki
(1 + αki)

2|z|2αki

[μ2
ki
+ |z|2(1+αki )]

2 is bounded in Lq(BR(0)) and
∥∥∥φ̂k

∥∥∥
∞

= 1, elliptic regularity

theory readily implies that φ̂k converges uniformly over compact subsets near the ori-

gin to a bounded nontrivial solution φ̂ of the equation

Liφ̂ = �φ̂ +
8μ2

ki
(1 + αki)

2|z|2αki

[μ2
ki
+ |z|2(1+αki )]

2 φ̂ = 0, in R
2.

From Lemma 3.2, this equation implies that φ̂ is proportional to zi0 for i = 1, ..., n, or

a linear combination of zi0 and zij for i = n + 1, ..., n + m, j = 1, 2. However, our

assumed orthogonality conditions (37) on jk pass to limit and yield the corresponding

conditions (37) on φ̂, which means φ̂ ≡ 0. Hence, it is absurd because φ̂ is nontrivial.

If ║jk║o ≥ � and ║jk║l ® 0, there exists a point q Î ∂Ω and a number R1 > 0 such

that sup∂�ε∩BR1 (q
′)
∣∣φk(y)

∣∣ ≥ k > 0 with q′ =
1
ε
q. Consider φ̂k(y) = φk(y − q′) and let us

translate and rotate Ωε so that q’ = 0 and Ωε approaches the upper half-plan R2
+. Since∣∣∣∣εq′ − pki

ρki

∣∣∣∣ > δ

ρki
for all i = 1, ..., n + m, φ̂k(z) satisfies

⎧⎨
⎩

�φ̂k(y) +O(ε4)φ̂k(y) = hk(y), in �ε\ ∪n+m
i=1 Bi,δρ−1

ki
,

(1 − t)
∂

∂ν
φ̂k + tb(εy)φ̂k = 0, on ∂�ε,

with (1 − t)
∫
�ε

∣∣∣∇φ̂k

∣∣∣2 + t
∫
∂�ε

b(εy)φ̂2
k < C. Moreover, we easily get hk(y) ® 0 in

�ε\ ∪n+m
i=1 Bi,δρ−1

ki
. While t = 1, it is obvious to see that φ̂k(y) = 0 on ∂Ωε. So it is absurd

because of sup∂�ε∩BR1 (q
′)
∣∣φk(y)

∣∣ ≥ k > 0. On the other hand, for any t Î (0,1), elliptic

regularity theory with the Robin boundary condition (see [30,34,38] and the references

therein) implies that φ̂k converges uniformly on compact subsets near the origin to a

bounded nontrivial solution φ̂ of the equation⎧⎨
⎩

�φ̂ = 0, in R2
+,

(1 − t)
∂

∂ν
φ̂ + tb(0)φ̂ = 0, on ∂R2

+,

with (1 − t)
∫
R2

+

∣∣∣∇φ̂

∣∣∣2 + tb(0)
∫
∂R2

+
φ̂2 < C. It follows that its bounded solution φ̂ is

zero. Hence, it is also absurd because φ̂ is nontrivial, which derives the priori estimate

(38) of the case (i). Since the proof of the case (ii) is similar to that of the case (i), we

omit it.□
We will give next the priori estimate for the solution of the Equation (32) that satis-

fies orthogonality conditions with respect to Zij, i = n + 1, ..., n + m, j = 1, 2, only.
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Lemma 3.5. (i) If m ≥ 1 and 0 ≤ n ≤ N, given a fixed number δ > 0, there exist posi-

tive numbers ε0 and C such that for any points pkl, l = n + 1, ..., n + m, in Ω’, which

satisfy the relation (33), and any solution j of the Equation (32) with t Î (0, 1] under

the orthogonality conditions∫
�ε

χiZijφdy = 0, ∀ i = n + 1, . . . ,n +m, j = 1, 2, (44)

one has

‖φ‖∞ ≤ C
(
log

1
ε

)
‖h‖n,m, (45)

for all ε <ε0.

(ii) If m = 0 and 1 ≤ n ≤ N, there exist positive numbers ε0 and C such that for any

solution j of the Equation (32) with t Î (0, 1], one has

‖φ‖∞ ≤ C
(
log

1
ε

)
‖h‖n,0, (46)

for all ε <ε0.

Proof. Case (i): Let j satisfy the Equation (32) under the orthogonality conditions

(44). We will modify j to satisfy the orthogonality conditions (37). To realize this

point, we consider some related modifications with compact support of the functions

Zi0, i = 1, ..., n + m.

Let R >R0 + 1 be large and fixed, and let ẑi0 be the solution of the equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�ẑi0 +
8μ2

ki
(1 + αki)

2|z|2αki

(μ2
ki
+ |z|2(1+αki ))

2 ẑi0 = 0, for R < |z| <
δ

3ρki
,

ẑi0(z) = zi0(R) on |z| = R, ẑi0(z) = 0 on |z| = δ

3ρki
.

A simple computation shows that this solution is explicitly given by

ẑi0(z) = zi0(r)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
1 −

∫ r
R

ds

sz2i0(s)

∫ δ

3ρki
R

ds

sz2i0(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, r = |z| .

Set

Ẑi0(y) = ẑi0

(
εy − pki

ρki

)
, η1i(y) = η1

(∣∣∣∣εy − pki
ρki

∣∣∣∣
)
, η2i(y) = η2

(
4ρki

∣∣∣∣εy − pki
ρki

∣∣∣∣
)
,

where h1(r) and h2(r) are smooth cut-off functions with the properties: h1(r) = 1 for

r <R, h1(r) = 0 for r > R + 1,
∣∣η′

1(r)
∣∣ ≤ 2; h2(r) = 1 for r < δ, h2(r) = 0 for

r >
4δ

3
,
∣∣η′

2(r)
∣∣ ≤ C

∣∣η′′
2(r)

∣∣ ≤ C. We define a test function

Z̃i0 = η1iZi0 + (1 − η1i)η2iẐi0.
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Obviously, Z̃i0(y) = Zi0(y) if

∣∣∣∣εy − pki
ρki

∣∣∣∣ < R, and Z̃i0(y) = 0 if

∣∣∣∣εy − pki
ρki

∣∣∣∣ > δ

3ρki
, in par-

ticular, Z̃i0(y) = 0 near ∂Ωɛ.

Now we modify j to satisfy the orthogonality conditions with respect to Zi0, i = 1, ...,

n+ m, and set

φ̃ = φ +
m+n∑
i=1

diZ̃i0,

where the numbers di are chosen such that

di

∫
�∈

χi|Zi0|2+
∫
�∈

χiZi0φ = 0, ∀ i = 1, . . . ,m + n.

Thus⎧⎪⎨
⎪⎩
Lφ̃ = h +

m+n∑
i=1

diLZ̃i0, in �ε,

(1 − t)
∂

∂ν
φ̃ + tb(εy)φ̃ = 0, on ∂�ε ,

(47)

and φ̃ satisfies all the orthogonality conditions in (37). From Lemma 3.3 (i), we have

∥∥∥φ̃∥∥∥
∞

≤ C

[
‖h‖n,m +

n+m∑
i=1

|di| ·
∥∥∥LZ̃i0

∥∥∥
n,m

]
. (48)

In order to get the estimate (45) of j, we need to give the sizes of di and
∥∥∥LZ̃i0

∥∥∥
n,m

for any t Î (0, 1]. Multiplying the first equation of (47) by Z̃j0, integrating by parts and

using the mixed boundary conditions of (47), we get〈
LZ̃j0, φ̃

〉
=
〈
Z̃j0, h

〉
+ dj

〈
LZ̃j0, Z̃j0

〉
, (49)

where
〈
f , g
〉
=
∫
�ε

fg. A simple computation shows that
∣∣∣〈Z̃j0, h

〉∣∣∣ ≤ C‖h‖n,m, which in

combination with (48) and (49) yields

∣∣dj∣∣ · ∣∣∣〈LZ̃j0, Z̃j0

〉∣∣∣ ≤ C‖h‖n,m
[
1 +
∥∥∥LZ̃j0

∥∥∥
n,m

]
+ C
∥∥∥LZ̃j0

∥∥∥
n,m

m+n∑
i=1

|di| ·
∥∥∥LZ̃i0

∥∥∥
n,m

. (50)

From some similar computations (see [[26], Lemma 3.2] and [[28], Lemma 3.3]),

there exists a constant C > 0 independent of ε such that∥∥∥LZ̃j0

∥∥∥
n,m

≤ C
1∣∣log ρkj

∣∣ , (51)

and

〈
LZ̃j0, Z̃j0

〉
≤ − C∣∣log ρkj

∣∣
[
1 +O

(
1∣∣logρkj

∣∣
)]

, (52)
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which combined with (50) yields

∣∣dj∣∣ ≤ C

(
log

1
ρkj

)
‖h‖n,m. (53)

Furthermore, from (48), (51), (53), and the definitions of φ̃ and ρkj, we have

‖φ‖∞ ≤ C
(
log

1
ε

)
‖h‖n,m. (54)

Similarly, the proof of the case (ii) can also be done, we omit it. □
Proof of Proposition 3.1. Case (i): From Lemma 3.5 (i), and the Fredholm’s alternative

theory with Robin boundary condition instead of Dirichlet boundary condition if

necessary (see [34,38] and the references therein), the proof can be similarly given

through those in [[26], pp. 61-63].

Case (ii): Since the priori estimate (36) of the solution of the Equation (32) has been

established in Lemma 3.5 (ii), we can use the Fredholm’s alternative and obtain the

unique solution of the Equation (32). □
Let us now introduce the auxiliary nonlinear problems: for m ≥ 1 and 0 ≤ n <N, we

find the function j and scalars cij, i = n + 1, ..., n + m, j = 1, 2, such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lφ = − [R +N(φ)
]
+

2∑
j=1

n+m∑
i=n+1

cijχiZij, in �ε,

(1 − t)
∂

∂ν
φ + tb(εy)φ = 0, on ∂�ε ,∫

�ε

χiZijφdy = 0, ∀ i = n + 1, . . . ,n +m, j = 1, 2,

(55)

and for m = 0 and 1 ≤ n ≤ N, we find the solution j of the nonlinear Equation (26).

The following result can be proved using standard arguments as in [26,28].

Proposition 3.2 (i) If m ≥ 1 and 0 ≤ n ≤ N, given a fixed number δ > 0, there exist

positive numbers ε0 and C such that for any points pkl, l = n + 1, ..., n + m, in Ω’ satis-

fying the relation (33), there is a unique solution for the Equation (55) which satisfies

‖φ‖∞ ≤ Cρ
∣∣log ε

∣∣ , (56)

for all ε <ε0 and t Î (0, 1]. Moreover, the map p’ ® j is C1 and∥∥Dp′φ
∥∥

∞ ≤ Cρ
∣∣log ε

∣∣2, (57)

where ρ := max1≤i≤n+mρkiand p′ :=
(
1
ε
pkn+1 , . . . ,

1
ε
pkn+m

)
.

(ii) If m = 0 and 1≤n≤N, there exist positive numbers ε0 and C such that there is a

unique solution for the Equation (26) which also satisfies the estimate (56) for all ε <ε0
and t Î (0, 1].

Now we only need to find a solution to the Equation (26) with m ≥ 1 and 0 ≤ n ≤ N,

and hence to the Equation (55) if p′ =
(
1
ε
pkn+1 , . . . ,

1
ε
pkn+m

)
is such that

cij(p′) = 0, ∀ i = n + 1, . . . ,n +m, j = 1, 2. (58)
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Let us introduce the energy functional of the Equation (3), namely for t = 1,

Jε,1(u) =
1
2

∫
�

|∇u|2 − ε2
∫
�

S(x)f (x)eu,

and for t Î (0,1),

Jε,t(u) = (1 − t)

⎛
⎝1
2

∫
�

|∇u|
2

− ε2
∫
�

S(x)f (x)eu

⎞
⎠ +

t
2ε

∫
∂�

b(x)u2.

Furthermore, we define

Fε,t(p) = Jε,t(U(p) + φ̃(p)), (59)

where p = (pkn+1,...,pkn+m) ∈ (�′)m and φ̃(p)(x) = φ
( x

ε
, px
)
with the solution j of the

Equation (55).

The finite dimensional variational reduction is meaningful in view of the following

property.

Proposition 3.3 If p = (pkn+1,...,pkn+m) ∈ (�′)m satisfying the relation (33) is a critical

point of Fε,t with t Î (0, 1], then U(p) + φ̃(p)is a critical point of Jε,t, namely a solution

of the Equation (3). Besides, on any compact subsets S of (Ω’ \ Γ)m \ Δm the following

expansion holds

Fε,t(p) = Jε,t(U(p)) + θε,t(p), (60)

where∣∣θε,t(p)
∣∣→ 0, uniformly on S, (61)

for ε small.

Proof. Step 1: Let us define for t = 1,

Iε,1(v) =
1
2

∫
�ε

|∇v|2 −
∫
�ε

S(εy)f (εy)ev,

and for t Î (0,1),

Iε,t(v) = (1 − t)

⎛
⎝1
2

∫
�ε

|∇v|2 −
∫
�ε

S(εy)f (εy)ev

⎞
⎠ +

t
2

∫
∂�ε

b(εy)(v − 4ε log ε)2.

Then Fε,t(p) = Jε,t(U(p) + φ̃(p)) = Iε,t(V(p′) + φ(p′)), where p′ =
1
ε
p. Moreover, for k =

n + 1, ..., n + m, l = 1, 2, it holds

∂pklFε,t(p) = ε−1DIε,t(V + φ)
[
∂p′

kl
V + ∂p′

kl
φ
]
. (62)

Since j(p’) is a solution of the Equation (55), v = V(p’) + j(p’) satisfies⎧⎪⎪⎨
⎪⎪⎩

∇v + S(εy)f (εy)ev =
2∑
j=1

n+m∑
i=n+1

cijχiZij, in �ε,

(1 − t)
∂v

∂ν
+ tb(xy)v = 4tb(εy) log ε, on ∂�ε .

(63)
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By (62), (63), DpFε,t(p) = 0 implies for t Î (0, 1],

2∑
j=1

n+m∑
i=n+1

cij

∫
�ε

χiZij(∂p′
kl
V + ∂p′

kl
φ) = 0.

From the definition of V, it can be directly checked ∂p′
kl
V = −Zkl + o(1), where o(1) is

in the sense of the L∞-norm for ε small. Since∥∥Dp′φ
∥∥

∞ ≤ Cρ
∣∣log ε

∣∣2, ∂p′
kl
V + ∂p′

kl
φ = −Zkl + o(1). Hence it follows

2∑
j=1

n+m∑
i=n+1

cij

∫
�ε

χiZij(Zkl + o(1)) = 0, ∀ k = n + 1, . . . ,n +m, l = 1, 2,

which is a strictly diagonal dominant system. This implies that cij = 0, ∀ i = n + 1, ...,

n + m, j = 1, 2. By (63), U(p) + φ̃(p) is a critical point of Jε,t, that is, a solution of the

Equation (3).

Step 2: Set θ̃ε,t(p′) = Iε,t(V(p′) + φ(p′)) − Iε,t(V(p′)). Using DIε,t(V + j)[j] = 0, a Tay-

lor expansion and an integration by parts, it follows that for t Î (0, 1),

θ̃ε,t(p′) = Iε,t(V + φ) − Iε,t(V)

=

1∫
0

D2Iε,t(V + sφ)[φ]2(1 − s)ds

=

1∫
0

⎛
⎝(1 − t)

∫
�ε

|∇φ|2 − S(εy)f (εy)eV+sφφ2 + t
∫

∂�ε

b(εy)φ2

⎞
⎠(1 − s)ds

= (1 − t)

1∫
0

⎛
⎝∫

�ε

[
N(φ) + R

]
φ +W

[
1 − esφ

]
φ2

⎞
⎠ (1 − s)ds,

(64)

and similarly, for t = 1,

θ̃ε,1(p′) =
1∫

0

⎛
⎝∫

�ε

[
N(φ) + R

]
φ +W

[
1 − esφ

]
φ2

⎞
⎠ (1 − s)ds. (65)

Note that ║j║∞ = O(r|log ε|), ║N (j)║n,m = O(r2| log ε|2), ║R║n,m = O(r), and
║W║n,m = O(1). Then from (64), (65), it is easy to deduce for t Î (0, 1],

θ̃ε,t(p′) = O(ρ2
∣∣log ε

∣∣). (66)

Hence, from (66), the expansion (60) satisfies the property (61).□
Finally, we need to write the precisely asymptotical expansion of Jε,t(U). To realize it,

we first establish the following result:

Lemma 3.6 Assume that points pkn+1 , . . . , pkn+m, satisfy the relation (33), then fort Î
(0,1) and i = 1, ..., n + m, there hold

Gt,ε(x, pki) = G1(x, pki) +O(ε), (67)

and

Ht,ε(x, pki) = H1(x, pki) +O(ε), (68)
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uniformly in C(�̄) and in C2
loc(�) for ε small.

Proof. Set zti(x) = Gt,ε(x, pki) − G1(x, pki). Then zti(x) satisfies⎧⎨
⎩

∇zti(x) = 0, in �,

ε(1 − t)
∂zti(x)

∂ν
+ tb(x)zti(x) = Fti(x), on ∂�,

where Fti(x) = −ε(1 − t)
∂

∂ν
G1(x, pki). Since H1(x, pki) has the gradient estimate on

∂Ω (see [[26], p. 76])

∣∣∇xH1(x, pki)
∣∣ ≤ C1 min

{
1∣∣x − pki

∣∣ , 1
dist(pki , ∂�)

}
+ C2 ≤ C1

1
δ
+ C2,

we can easily get
∥∥Fti(x)∥∥L∞(∂�) = O(ε). Using the same technique with the proof of

Lemma 2.1, we can also get zti(x) = O(ε) uniformly in C(�̄) and in C2
loc(�) for ε small,

which means (67). From the definition of the regular part of Green function, we can

also derive (68). □
Proposition 3.4 The following asymptotical expansions hold for t = 1,

Jε,1(U) = 8πm log 8 + 8π

n∑
i=1

(1 + αki) log
8(1 + αki)

2

f (pki)Qki(pki)

− 16π

n∑
i,j=1,i�=j

(1 + αki)(1 + αkj)G1(pkj , pki) − 16π log ε

n+m∑
i=1

(1 + αki)

− 16π

n∑
i=1

(1 + αki)
2H1(pki , pki) − 16π

n+m∑
i=1

(1 + αki) + ρ�ε(p) − 16πϕn,m(p),

(69)

and for t Î (0,1),

Jε,t(U) = 8π(1 − t)m log 8 − 16π(1 − t)
n+m∑
i=1

(1 + αki) − 16π(1 − t) log ε

n+m∑
i=1

(1 + αki)

+ 8π(1 − t)
n∑
i=1

(1 + αki) log
8(1 + αki)

2

f (pki)Qi(pki)
− 16π(1 − t)

n∑
i=1

(1 + αki)
2H1(pki , pki)

− 16π(1 − t)
n∑

i,j=1,i�=j
(1 + αki)(1 + αkj)G1(pki , pkj) + ρ�ε(p) − 16π(1 − t)ϕn,m(p),

(70)

where �n,m(p) is defined by (5), and for ε small, Θε is a bounded, smooth function of p

= (pkn+1 , . . . , pkn+m), uniformly on points pkn+1 , . . . , pkn+m in Ω’ satisfying the relation (33).

Proof. According to [[26,28], Lemma 6.1], it only remains to discuss the asymptotical

expansion of the energy Jε,t(U) with respect to t Î (0,1). By (11), it follows

∫
�

|∇U|2 =
n+m∑
i,j=1

∫
�

∇Ui∇Uj =
n+m∑
i,j=1

⎛
⎝∫

∂�

Ui
∂Uj

∂ν
−
∫
�

Ui�Uj

⎞
⎠,

and ∫
∂�

b(x)U2 =
n+m∑
i,j=1

∫
∂�

b(x)UiUj,
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which together with the Equation (13) yields

1 − t

2

∫
�

|∇U|2 + t

2ε

∫
∂�

b(x)U2 = −1 − t

2

n+m∑
i,j=1

∫
�

Ui�Uj.

Furthermore

Jε,t(U) = (1 − t)

⎛
⎝1
2

∫
�

|∇U|2 − ε2
∫
�

S(x)f (x)eU

⎞
⎠ +

t
2ε

∫
∂�

b(x)U2

= −(1 − t)

⎛
⎝1
2

n+m∑
i,j=1

∫
�

Ui�Uj + ε2
∫
�

S(x)f (x)eU

⎞
⎠ .

(71)

From (9), (13), and (14), it implies

−
∫
�

Ui�Uj =
∫
�

ε2
∣∣x − pkj

∣∣2αkj f (pkj)Qkj(pkj)(uki +Ht
ki)e

ukj

=
∫
�

8μ2
kj
ε2(1 + αkj)

2∣∣x − pkj
∣∣2αkj

(μ2
kj
ε2 +

∣∣x − pkj
∣∣2(1+αkj ))2

.

⎡
⎣log 1

(μ2
ki
ε2 +

∣∣x − pki
∣∣2(1+αki ))2

+ 4(1 + αki)Ht,ε(x, pki) +O(ε2)

⎤
⎦

=
∫

�ρkj

16μ2
kj
(1 + αkj)

2αkj

(μ2
kj
+
∣∣y∣∣2(1+αkj ))2

log
1

μ2
ki
ε2 +

∣∣ρkj y + pkj − pki
∣∣2(1+αki )

+
∫

�ρkj

32μ2
kj
(1 + αki)(1 + αkj)

2∣∣y∣∣2αkj

(μ2
kj
+
∣∣y∣∣2(1+αkj ))2

Ht,ε(ρkj y + pkj , pki , ) +O(ε2).

Then if i ≠ j for any i and j,

−
∫
�

Ui�Uj = 32π(1 + αki)(1 + αkj)Gt,ε(pki , pkj) +O(ρ), (72)

and if i = j for any i,

−
∫
�

Ui�Ui = 32π(1 + αki)
2Ht,ε(pki , pki)−32π(1+αki) log(μkiε)−16π(1+αki)+O(ρ). (73)

On the other hand, from (21) and (22), it follows

∫
�ε

W =
n+m∑
i=1

∫
B
i,δρ−1

ki

W+
∫

�ε\∪n+m
i=1 B

i,δρ−1
ki

W

=
n+m∑
i=1

∫
B
i,δρ−1

ki

(
ε

ρki

)2 8μ2
ki
(1 + αki)

2
∣∣∣∣εy − pki

pki

∣∣∣∣
2αki

[μ2
ki
+

∣∣∣∣εy − pki
pki

∣∣∣∣
2(1+αki )

]2

[
1 +O

(
ρki

∣∣∣∣εy − pki
pki

∣∣∣∣
)
+O(ε2)

]
+O(ε2)

=
n+m∑
i=1

∫

|z|≤
δ

ρki

8μ2
ki
(1 + αki)

2|z|2αki[
μ2
ki
+ |z|2(1+αki )

]2 [
1 +O(ρki |z|) +O(ε2)

]
dz +O(ε2)

=
n+m∑
i=1

8π(1 + αki) +O(ρ).

Chang and Yang Boundary Value Problems 2012, 2012:33
http://www.boundaryvalueproblems.com/content/2012/1/33

Page 21 of 25



As a result, it derives

ε2
∫
�

S(x)f (x)eU =
∫
�ε

W(y) =
n+m∑
i=1

8π(1 + αki) +O(ρ). (74)

Now using the choice for μki’s by (15), together with (71)-(74), it holds

Jε,t(U) = 8π(1 − t)
n+m∑
i=1

(1 + αki) log
8(1 + αki)

2

f (pki)Qki(pki)

− 16π(1 − t)
n+m∑
i=1

(1 + αki)
2Ht,ε(pki , pki) − 16π(1 − t)

n+m∑
i=1

(1 + αki)

− 16π(1 − t)
n+m∑

i,j=1,i�=j
(1 + αki)(1 + αkj)Gt,ε(pkj , pki) − 16π(1 − t) log ε

n+m∑
i=1

(1 + αki) +O(ρ),

which derives the asymptotical expansion (70) by (5), (67), and (68). □

4 Proofs of theorems
In this section, we carry out the proofs of Theorems 1.1 and 1.2 basing on the finite

dimensional reduction. Now we introduce the definition of C0-stable critical point of

the function �n,m just like in [28,36,39].

Definition 4.1. We say that p is a C0-stable critical point of �n,m in (Ω’ \ Γ)m \ Δm,

which says that if for any sequence of the functions ψj such that ψj ® �n,m uniformly

on the compact subsets of (Ω’ \ Γ)m \ Δm, ψj has a critical point ξj such that ψj(ξj) ®
+ �n,m.

In particular, if p is a strict local maximum or minimum point of �n,m, p is a C0-

stable critical point of �n,m.

Proof of Theorem 1.1. Case (i): m ≥ 1 and 0 ≤ n ≤ N. Let

v
(
y
)
= V

(
p′) (y) + φ

(
p′) (y) , ∀ y ∈ �̄ε,

where j is the unique solution of the problem (55), which is established in Proposi-

tion 3.2. From Proposition 3.3, v(y) is a solution of the Equation (16), namely φ̃
(
p
)
(x)

is a solution of the Equation (3) if pε = (pkn+1,ε, . . . , pkn+m ,ε) satisfying the relation (33) is

a critical point of the function Fε,t(p) with t Î (0, 1]. This implies that we only need to

find a critical point pε of the following function in (Ω’ \ Γ)m \ Δm

F̃ε,t
(
p
)
=
{
Fε,1

(
p
)− β , for t = 1,

Fε,t
(
p
)− (1 − t) β , for t ∈ (0, 1) ,

(75)

where

β = 8πm log 8 + 8π

n∑
i=1

(1 + αki) log
8(1 + αki)

2

f (pki)Qki(pki)
− 16π

n∑
i,j=1,i�=j

(1 + αki)(1 + αkj)G1(pkjpki)

− 16π log ε

n+m∑
i=1

(1 + αki) − 16π

n∑
i=1

(1 + αki)
2H1(pki , pki) − 16π

n+m∑
i=1

(1 + αki).

From Propositions 3.3 and 3.4, it follows that

F̃ε,t(p) =
{

θε,1(p) + ρ�ε(p) − 16πϕn,m(p), for t = 1,
θε,t(p) + ρ�ε(p) − 16π(1 − t)ϕn,m(p), for t ∈ (0, 1),

(76)
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where θε,t(p) = O(r2| log ε|) for any t Î (0, 1], and Θε(p) is uniformly bounded on

any compact subset S of (Ω’ \ Γ)m\ Δm for ε small. Then F̃ε,1(p) → −16πϕn,m(p), and

F̃ε,t(p) → −16π(1 − t)ϕn,m(p) for any t Î (0,1), uniformly on S for ε small. By Defini-

tion 4.1, there exists a critical point pε = (pkn+1,ε, . . . , pkn+m ,ε) of the function F̃ε,t such

that F̃ε,1(pε) → −16πϕn,m(p∗), and F̃ε,t(pε) → −16π(1 − t)ϕn,m(p∗) for any t Î (0,1).

Moreover, up to a subsequence, there exists p = (pkn+1 , . . . , pkn+m) ∈ (�′\
)m\�m such

that pε ® p for ε small, and �n,m(p*) = �n,m(p). Hence, uε = U(pε) + φ̃(pε) is a family of

solutions of the Equation (3). As a consequence, from the related properties of U(pε)

and φ̃(pε), we easily know that for any l > 0, uε is uniformly bounded on

�\⋃n+m
i=1 Bλ(pki), and supBλ(pki )

uε → +∞ for ε small.

Finally, we show that uε satisfies the concentration property:

I = ε2
∫
�

∣∣x − p1
∣∣2α1 · · · ∣∣x − pN

∣∣2αN f (x)euε� → 8π

n+m∑
i=1

(1 + αki)�(pki), ∀� ∈ C(�̄), (77)

for ε small. In fact, using the inequality |es - 1| ≤ e|s||s| for any s ∈ R and the estimate

(56), we obtain

I = ε2
∫
�

∣∣x − p1
∣∣2α1 · · · ∣∣x − pN

∣∣2αN f (x)eU(pε)(x)� + o(1)

=
∫
�ε

W(pε)(y)�(εy) + o(1).

Then from the asymptotical expression (21) and (22) of W(pε)(y), we can easily get∫
�ε

W(pε)(y)�(εy) = 8π

n+m∑
i=1

(1 + αki)�(pki) + o(1),

which implies (77).

Case (ii): m = 0 and 1 ≤ n ≤ N. From Proposition 3.2 (ii), we find that

uε(x) = U(p)(x) + φ( 1
ε
x) is a family of solutions of the Equation (3) with

p = (pk1 , . . . , pkn). Then we can get the needed multiple blowing-up and concentrating

properties of uε through the similar proof of Case (i). □
In order to give the proof of Theorem 1.2, we need a version of the maximum prin-

ciple under Dirichlet-Robin boundary conditions, which is the extension of the corre-

sponding one with respect to Dirichlet or Robin boundary condition only.

Lemma 4.2 Assume that T ⊆ ∂Ω is a relatively closed subset, b > 0 is a smooth func-

tion on T, F : T → Ris a smooth function. If u is a solution of the equation⎧⎪⎨
⎪⎩

�u = 0, in �,
∂u

∂ν
+ λb(x)u = F, on T,

u = 0, on ∂�\T,
where l > 0, there exists a constant C(b) > 0 only depending on b(x) such that

‖u‖L∞(�) +
∥∥dist(x, ∂�)∇u

∥∥
L∞(�) ≤ C(b)

λ
‖F‖L∞(T).

Proof. The proof is similar to that of Lemma 2.6 in [33]. □
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Proof of Theorem 1.2. Using the maximum principle with Dirichlet-Robin boundary

conditions instead of Robin boundary condition if necessary (see Lemma 4.2), the

proof can be similarly given out through that of Theorem 1.1. □
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