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Abstract

By using the fixed-point index theory in a cone and defining a linear operator, we
obtain the existence of at least one positive solution for the third-order boundary
value problem with integral boundary conditions⎧⎪⎨

⎪⎩
u′′′(t) + f (t, u(t), u′′(t)) = 0, t ∈ (0, 1),

u(0) = 0, u′′(0) = 0, u(1) =
∫ 1

0
g(t)u(t)dt,

where f : [0, 1] × R+ × R- ® R+ is a nonnegative function. The associated Green’s
function for the above problem is also used, and a new reproducing cone also used.

Keywords: fixed-point index theory, Green?’?s function, positive solution, boundary
value problem

1 Introduction
By eigenvalue criteria, Webb [1] obtained the existence of multiple positive solutions of

a Hammerstein integral equation of the form

u(t) =

1∫
0

k(t, s)g(s)f (s, u(s))ds,

where k can have discontinuities and g Î L1. Then, some articles have studied differ-

ent BVPs by this way (see [2-5]). Webb [4] introduced an unified method to study

existence of at least one nonzero solution for higher order boundary value problems⎧⎪⎨
⎪⎩

u(n)(t) + g(t)f (t, u(t)) = 0, 0 < t < 1,

u(n)(0) = 0, 0 ≤ k ≤ n − 2, u(1) =
∫ 1

0
u(s)dA(s).

In 2010, Hao [5] considered the existence of positive solutions of the nth-order BVP⎧⎪⎨
⎪⎩

u(n)(t) + λa(t)f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
∫ 1

0
u(s)dA(s).

Guo [6] studied the existence of positive solutions for the there-point boundary pro-

blem with the first-order derivative.
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{
x′′ + f (t, x, x′) = 0, 0 < t < 1,

x(0) = 0, x(1) = αx(η),

where f is a nonnegative continuous function. In 2011, Zhao [7] studied third-order

differential equations:

x′′′ + f (t, x(t)) = θ , t ∈ [0, 1],

subject to integral boundary condition of the form

x(0) = θ , x′′(0) = θ , x(1) =

1∫
0

g(t)x(t)dt,

where f Î C([0, 1] × P, P).

In this article, we study the existence of positive solutions for the following boundary

value problem⎧⎪⎨
⎪⎩
u′′′(t) + f (t, u(t), u′′(t)) = 0, t ∈ (0, 1),

u(0) = 0, u′′(0) = 0, u(1) =
∫ 1

0
g(t)u(t)dt.

(1:1)

The results are proved by applying the fixed point index theory in a cone and spec-

tral radius of a linear operator. Unlike reference [7], the nonlinear part f involves the

second-order derivative and just satisfies Caratheodory conditions.

The following conditions are satisfied throughout this article:

(H1) f : [0, 1] × R+ × R- ® R+ satisfies Caratheodory conditions, that is, f(·,u, v) is

measurable for each fixed u Î R+, v Î R-, and f(t, ·,·) is continuous for a.e. t Î [0, 1].

For any r, r’ > 0, there exists ϕr,r′ (t) ∈ L∞[0, 1], such that 0 ≤ f (t, u, v) ≤ ϕr,r′(t), where

(u, v) Î [0, r] × [-r’, 0], a.e. t Î [0, 1];

(H2) g Î L[0, 1] is nonnegative, b Î [0, 1), where b =
∫ 1
0 sg(s)ds.

2 Preliminaries
Lemma 2.1 [7]. Let y Î L1[0, 1] and y ≥ 0, the problem⎧⎪⎨

⎪⎩
u′′′(t) + y(t) = 0, t ∈ (0, 1),

u(0) = 0, u′′(0) = 0, u(1) =
∫ 1

0
g(t)u(t)dt

(2:1)

has a unique solution

u(t) =

1∫
0

H(t, s)y(t)ds,

where H(t, s) = G(t, s) +
t

1 − b

∫ 1
0 G(τ , s)y(τ )dτ , b =

∫ 1
0 sg(s)ds,

G(t, s) =

⎧⎪⎨
⎪⎩

1
2
t(1 − s)2 − 1

2
(t − s)2, 0 ≤ s ≤ t ≤ 1,

1
2
t(1 − s)2, 0 ≤ t ≤ s ≤ 1.
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Lemma 2.2. Let y Î L1[0, 1] and y ≥ 0, the unique solution of the boundary value

problem (2.1) satisfies the following conditions: u(t) ≥ 0, u“(t) ≤ 0, for t Î [0, 1].

Proof. By Lemma 2.1, u(t) ≥ 0. By differential equations u’”(t) + y(t) = 0, t Î (0, 1),

we get

u′′(t) − u′′(0) = −
1∫

0

y(s)ds,

u′′(t) = −
1∫

0

y(s)ds ≤ 0.

Let X = C2[0, 1] with ‖u‖ = max
0≤t≤1

∣∣u(t)∣∣ + max
0≤t≤1

∣∣u′′(t)
∣∣. Obviously, (X, ||·||) is a Banach

space. Define the cone P ⊂ X by

P =
{
u ∈ X

∣∣u(t) ≥ 0, u′′(t) ≤ 0
∣∣} , Pr = {u ∈ P |‖u‖ < r, r > 0} .

Obviously P is a cone in X, and Pris a bounded open subset in P.

Definition 2.1 [1]. Let P be a cone in a Banach space X. If for any x Î X and x+, x-

Î P, writing x = x+ + x- shows that P is a reproducing cone.

Lemma 2.3. P is a reproducing cone in X.

Proof. Suppose u Î X, so u“ Î C[0, 1] and

u′′ = u− − u+, (2:2)

where u- = min{u“(t), 0}, u+ = min{-u“(t), 0}. Obviously u+,u- Î C[0, 1] and u+ ≤ 0,u-

≤ 0. For (2.2), we get

u′(t) =

t∫
0

u−(s)ds−
t∫

0

u+(s)ds+u′(0),

u(t) =

t∫
0

ds

s∫
0

u−(τ )dτ−
t∫

0

ds

s∫
0

u+(τ )dτ + u′(0)t + u(0).

If u(0) ≥ 0, u’(0)t ≥ 0, let

u1 = −
t∫

0

ds

s∫
0

u+(τ )dτ+u′(0)t + u(0), u2 = −
t∫

0

ds

s∫
0

u−(τ )dτ .

So u1 ≥ 0, u2 ≥ 0, then u1, u2 Î P and u = u1 - u2.

If u(0) ≤ 0, u’(0)t ≤ 0, let

u1 = −
t∫

0

ds

s∫
0

u+(τ )dτ , u2 = −
t∫

0

ds

s∫
0

u−(τ )dτ − u′(0)t − u(0).

So u1 ≥ 0, u2 ≥ 0, then u1, u2 Î P and u = u1 - u2.

If u(0) ≥ 0, u’(0)t ≤ 0, let

u1 = −
t∫

0

ds

s∫
0

u+(τ )dτ + u(0), u2 = −
t∫

0

ds

s∫
0

u−(τ )dτ−u′(0)t.
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So u1 ≥ 0, u2 ≥ 0, then u1, u2 Î P and u = u1 - u2.

If u(0) ≤ 0, u’(0)t ≥ 0, let

u1 = −
t∫

0

ds

s∫
0

u+(τ )dτ + u′(0)t, u2 = −
t∫

0

ds

s∫
0

u−(τ )dτ−u(0).

So u1 ≥ 0, u2 ≥ 0, then u1, u2 Î P and u = u1 - u2.

Then P is a reproducing cone in X.

Lemma 2.4 (Krein-Rutman) [8]. Let K be a reproducing cone in a real Banach space

X and let L : K ® K be a compact linear operator with L(K) ⊂ K. r(L) is the spectral

radius of L. If r(L) > 0, then there is �1 Î K\{0} such that L�1 = r(L)�1.

Lemma 2.5 [9]. Let X be a Banach space, P be a cone in X and Ω(P) be a bounded

open subset in P. Suppose that A : �(P) → P is a completely continuous operator.

Then the following results hold

(1) If there exists u0 Î P\{0} such that u ≠ Au + lu0, for any u Î ∂Ω(P), l ≥ 0,

then the fixed-point index i(A, Ω(P), P) = 0.

(2) If 0 Î Ω(P), Au ≠ lu, for any u Î ∂Ω(P), l ≥ 1, then the fixed-point index i(A,

Ω(P), P) = 1.

Define the operator A: X ® X, L: X ® X, by

Au(t) =

1∫
0

H(t, s)f (s, u(s), u′′(s))ds,

Lu(t) =

1∫
0

H(t, s)(u(s) − u′′(s))ds,

So A : P ® P is completely continuous operator; L : P ® P is a compact linear

operator.

Lemma 2.6 [7]. Assume that (H2) holds, then choose δ ∈
(
0,

1
2

)
, for all t Î [δ, 1 -

δ],v, s Î [0, 1], we have

G(t, s) ≥ ρG(v, s),

H(t, s) ≥ ρH(v, s),

where r = 4δ2(1 - δ).

Note: r(L) is the spectral radius of L. h = min
t∈[δ,1−δ]

1−δ∫
δ

H(t, s)ds, where δ ∈
(
0,

1
2

)
. By

Lemma 2.6, obviously h > 0.

Lemma 2.7. Suppose conditions (H1), (H2) hold, then r(L) > 0.
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Proof. Take u(t) ≡ 1, then u“(t) = 0, for any t Î [δ, 1 - δ] we get

Lu(t) ≥
1−δ∫
δ

H(t, s)ds ≥ h > (0).

L2u(t) ≥
1−δ∫
δ

H(t, s)Lu(s)ds ≥ h

1−δ∫
δ

H(t, s)ds ≥ h2 > 0.

Repeating the process gives

Lku(t) ≥ hk.

So, we get
∥∥∥Lk∥∥∥ ≥ hk, r(L) = lim

k→∞

∥∥∥Lk∥∥∥
1
k ≥ h > 0. The proof is completed.

By Lemma 2.4, then there is �1 Î P\{0} such that L�1 = r(L)�1.

3 Main results
In the following, we use the notation:

f̄ (u, v) = sup
t∈[0,1]\E

f (t, u, v), f (u, v) = inf
t∈[0,1]\E

f (t, u, v),

f∞ = max

{
lim
u→∞ sup

{
sup
v∈R−

f̄ (u, v)
u − v

}
, lim

v→−∞ sup

{
sup
u∈R+

f̄ (u, v)
u − v

}}
,

f d0 = max
{
lim
u→0+

inf
{

inf
v∈[−d,0]

f (u, v)
u − v

}
, lim

v→0−
inf
{

inf
u∈[0,d]

f (u, v)
u − v

}}
,

where E is a fixed subset of [0, 1] of measure zero, d > 0.

Lemma 3.1. Suppose

0 ≤ f∞ < μ, (3:1)

where μ = 1/r(L), then there exists R0 > 0 such that i(A, Pr, P) = 1 for each r >R0.

Proof. Let ε > 0 satisfy f∞ ≤ μ - ε, then there exist r1 > 0 such that

f (t, u, v) ≤ (μ − ε)(u − v),

for all u >r1 or v < -r1 and a.e. t Î [0, 1].

By (H1), there exists ϕr1 ∈ L∞[0, 1] such that

0 ≤ f (t, u, v) ≤ ϕr1 (t),

for all (u, v) Î [0, r1] × [-r1, 0] and a.e. t Î [0, 1]. Hence, we have

f (t, u, v) ≤ (μ − ε)(u − v) + ϕr1 (t), (3:2)

for all u Î R+, v Î R- and a.e. t Î [0, 1].

Since
1
μ

is the spectrum radius of L. It follows from

(
1

μ − ε
I − L

)−1

=
∞∑
n=0

(μ − ε)n+1Ln, (I/(μ - ε) - L)-l exists, let

C =

∥∥∥∥∥∥
1∫

0

H(t, s)ϕr1 (s)ds

∥∥∥∥∥∥ , R0 =

∥∥∥∥∥
(

1
μ − ε

I − L
)−1 C

μ − ε

(
3
2

− 1
2
t2
)∥∥∥∥∥ .
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For r >R0, by Lemma 2.5 we will prove

Au 	= λu,

for each u Î ∂Prand l ≥ 1.

In fact, if not, there exist u0 Î ∂Prand l0 ≥ 1 such that Au0 = l0u0.
Together with (3.2) implies

u0(t) ≤ Au0(t) ≤
1∫

0

H(t, s)[(μ − ε)u0(s) + ϕr1 (t)]ds

≤
1∫

0

H(t, s)(μ − ε)[u0(s) − v0(s)) + ϕr1 (s)]ds.

So

u0(t) ≤ (μ − ε)Lu0(t) + C,

u
′′
0(t) ≥ λ0u

′′
0(t) = (Au0(t))′′ ≥ (μ − ε)(Lu0(t))′′ − C.

Then

(
1

μ − ε
I − L

)
u0(t) ≤ C

μ − ε

(
3
2

− 1
2
t2
)
,
((

1
μ − ε

I − L
)
u0(t)

)′′

≥
(

C
μ − ε

(
3
2

− 1
2
t2
))′′

.

So

C
μ − ε

(
3
2

− 1
2
t2
)

−
(

1
μ − ε

I − L
)
u0(t) ∈ P.

Then

u0(t) ≤
(

I
μ − ε

− L
)−1 C

μ − ε

(
3
2

− 1
2
t2
)
, u′′

0(t) ≥
[(

I
μ − ε

− L
)−1 C

μ − ε

(
3
2

− 1
2
t2
)]′′

,

∥∥u0(t)∥∥ ≤ R0 < r.

This is a contradiction. By Lemma 2.5 (2), we get that i(A, Pr, P) = 1 for each r >R0.

The proof is completed.

Lemma 3.2. Suppose there exists d > 0 such that

μ < f d0 ≤ ∞. (3:3)

Then there exists r0 > 0 and d ≥ r0 such that for each rÎ (0, r0], if u ≠ Au for u Î
∂Pr, then i(A, Pr, P) = 0.

Proof. Let ε > 0 satisfy f d0 ≥ μ + ε, there exist d ≥ r0 > 0 such that

f (t, u, v) ≥ (μ + ε)(u − v), (3:4)

for u Î [0, r0],v Î [-r0,0] and a.e. t Î [0, 1].

Let r Î (0,r0], by Lemma 2.5 (1), we prove that: u ≠ Au + l�1 for all u Î ∂Pr, l > 0,

where �1 Î P\{0} is the eigenfunction of L corresponding to the eigenvalue
1
μ
. In fact,

if not, there exist u0 Î ∂Pr, l0 > 0 such that u0 = Au0 + l0�1. This implies

u0 ≥ λ0ϕ1 and u
′′
0 ≤ λ0ϕ

′′
1.
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Let: λ∗ = sup
{
λ|u0 ≥ λϕ1, u

′′
0 ≤ λϕ

′′
1

}
.

So 0 <l0 <l* < ∞ and u0 ≥ λ∗ϕ1, u
′′
0 ≤ λ∗ϕ

′′
1. Then, u0 - l*�1 Î P.

For L(P) ⊂ P, we get

μLu0 ≥ λ∗μLϕ1 = λ∗ϕ1, μ(Lu0)
′′ ≤ λ∗μ(Lϕ1)

′′
= λ∗ϕ

′′
1.

By (3.4), we get

Au0 =

1∫
0

H(t, s)f (s, u0(s), u′′
0(s))ds ≥ (μ + ε)Lu0.

(Au0)′′ ≤ (μ + ε)(Lu0)′′.

So, we know

u0 = Au0 + λ0ϕ1 ≥ (μ + ε)Lu0 + λ0ϕ1 ≥ (λ∗ + λ0)ϕ1.

(u0)
′′
= (Au0)

′′
+ λ0ϕ

′′
1 ≤ (μ + ε)(Lu0)

′′
+ λ0ϕ

′′
1 ≤ (λ∗ + λ0)ϕ

′′
1.

which contradicts the definition of l*.
Lemma 3.3. Suppose there is r1 > 0 such that

f (t, u, v) ≤ d1ρ1, (3:5)

for u Î [0, r1] and v Î [-r1, 0] a.e. t Î [0, 1], where d1 =
1∥∥∥∫ 1

0 H(t, s)ds
∥∥∥, if Au ≠ u

for u ∈ ∂Pρ1, then i(A,Pρ1 ,P) = 1.

Proof. Suppose u ∈ ∂Pρ1, by Lemma 2.2, we get

‖Au‖ = max
0≤t≤1

Au(t) − min
0≤t≤1

(Au(t))
′′

= max
0≤t≤1

1∫
0

H(t, s)f (t, u(t), u
′′
(t))ds + max

0≤t≤1

⎛
⎝ 1∫

0

H(t, s)f (t, u(t), u
′′
(t))ds

⎞
⎠

′′

≤ d1ρ1

⎡
⎢⎣max

0≤t≤1

1∫
0

H(t, s)ds + max
0≤t≤1

⎛
⎝ 1∫

0

H(t, s)ds

⎞
⎠

′′⎤
⎥⎦ ≤ ρ1.

That is Au ≠ lu for each u ∈ ∂Pρ1, l > 1. If Au ≠ u for u ∈ ∂Pρ1, by Lemma 2.5, then

i(A,Pρ1 ,P) = 1.

Lemma 3.4. Suppose there is r2 > 0 such that

f (t, u, v) ≥ d2ρ2, (3:6)

for u Î [0, r2] and v Î [-r2, 0] a.e. t Î [0, 1], where

d2 =
1

min
t∈[δ,1−δ]

∫ 1
0 H(t, s)ds− max

t∈[δ,1−δ]

(∫ 1
0 H(t, s)ds

)′′ . . If Au ≠ u for u ∈ ∂Pρ2, then

i(A,Pρ2 ,P) = 0.
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Proof. For u ∈ ∂Pρ2, t Î [δ, 1 - δ], by Lemma 2.2, we get

Au + (Au)
′′
=

1∫
0

H(t, s)f (t, u(t), u
′′
(t))ds+

⎛
⎝ 1∫

0

H(t, s)f (t, u(t), u
′′
(t))ds

⎞
⎠

′′

≥ d2ρ2

⎡
⎢⎣

1∫
0

H(t, s)ds+

⎛
⎝ 1∫

0

H(t, s)ds

⎞
⎠

′′⎤
⎥⎦ ≥ ρ2.

This implies that u ≠ Au + l� for each u ∈ ∂Pρ2, l > 0, where � Î P\{0} is the eigen-

function of L corresponding to r(L). Suppose u ≠ Au for u ∈ ∂Pρ2, by Lemma 2.5, then

i(A,Pρ2 ,P) = 0.

Theorem 3.1. The boundary value problem (1.1) has at least one positive solution if

one of the following conditions holds.

(C1) There exists d > 0 such that (3.3) and (3.1) hold.

(C2) There exists d > 0, r1 >0 such that (3.3) and (3.5) hold.

(C3) There exists r2 > 0 such that (3.6) and (3.1) hold.

(C4) There exists r1, r2 > 0 with 0 <r2 <r1d1/d2 such that (3.5) and (3.6) hold.

Proof. When condition (C1) holds, by Lemma 3.1 and 0 ≤ f∞ <μ, we get that there

exists r > 0 such that i(A, Pr, P) = 1. It follows from Lemma 3.2 and μ < f b0 ≤ ∞, then

there exists 0 <r < min{r, d} such that either there exists u Î ∂Prthat i(A, Pr, P) = 0

or u = Au. So BVP (1.1) has at least one positive solution u Î P with r ≤ ||u|| <r.

When one of other conditions holds, the results can be proved similarly.
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