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Abstract

In this article, we derive an asymptotic approximation to the eigenvalues of the
linear differential equation

—Y'(%) + q(x)y(x) = Ay(x), x € (a,b)

with boundary conditions of general form, when g is a measurable function which
has a singularity in (g, b) and which is integrable on subsets of (g, b) which exclude
the singularity.
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1. Introduction

Consider the linear differential equation
—Y'(¥) +q(x)y(x) = Ay(x), x € (ab), (1.1)

where A is a real parameter and g is real-valued function which has a singularity in
(a, b). According to [1], an eigenvalue problem may be associate with (1.1) by imposing
the boundary conditions

y(a)cosa —y'(a)sina =0, «a€]0,7), (1.2)

y(b)cos B —y'(b)sinB =0, Be€[0,x). (1.3)

In [2], Atkinson obtained an asymptotic approximation of eigenvalues where y satis-
fies Dirichlet and Neumann boundary conditions in (1.1). Here, we find asymptotic
approximation of eigenvalues for all boundary condition of the forms (1.2) and (1.3).
To achieve this, we transform (1.1) to a differential equation all of whose coefficients
belong to L;[a, b]. Then we employ a Priifer transformation to obtain an approxima-
tion of the eigenvalues. In this way, many basic properties of singular problems can be
inferred from the corresponding regular ones. In [3], Harris derived an asymptotic
approximation to the eigenvalues of the differential Equation (1.1), defined on the
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interval [a, b], with boundary conditions of general form. But, he demands the condi-
tion, g € L'[a, b]. Atkinson and Harris found asymptotic formulae for the eigenvalues
of spectral problems associated with linear differential equations of the form (1.1),
where g(x) has a singularity of the form oax X with 1 <k < ‘3‘ and 1 <k < g in [2,4]
respectively. Harris and Race [5] generalized those results for the case 1 < k <2. In [6],
Harris and Marzano derived asymptotic estimates for the eigenvalues of (1.1) on [0, ]
with periodic and semi-periodic boundary conditions. The reader can find the related
results in [7-10]. We consider g(x) = Cx™ where 1 < K <2 and an asymptotic approxi-
mation to the eigenvalues of (1.1) with boundary conditions of general form. Our tech-
nique in this article follows closely the technique used in [2-5]. Let U = [a, 0) U (0, b]
and g € L;1,.(U). As Harris did in [[5], p. 90], suppose that there exists some real
function fon [a, 0) U (0, ] in ACr.([a, 0) U (0, b]) which regularizes (1.1) in the fol-
[i]

lowing sense. For f which can be chosen in Section 2, define quasi-derivatives, y™ as

follows:

W=y, M=y +p,

y is a solution of (1.1) with boundary conditions (1.2) and (1.3) if and only if

@:ﬁ) ) (f/ +q :];‘2 — 2 Jlf) (ﬁﬁ) (1.4)

The object of the regularization process is to chose fin such way that
fel'(a,b) and —F:=q—f>+f el'(ab). (1.5)
Having rewritten (1.1) as the system (1.4), we observe that, for any solution y of (1.1)

with A > 0, according to [2,4], we can define a function 6 € AC(a, b) by

1
A2y

tané = ylll .

When y[” = 0, 6 is defined by continuity [[5], p. 91]. It makes sense to mention that
one can find full discussions and nice examples about the choice of fin [2,4,5]. Atkin-
son in [2] noticed that the function 0 satisfies the differential equation

1 1
6’ =12 —fsin(20) + A~ 2 Fsin?(6). (1.6)

Let A > 0 and the n-th eigenvalue A,, of (1.1-1.3), then according to [[1], Theorem 2],
Dirichlet and non-Dirichlet boundary conditions can be described as bellow:

inCasel (@=0,8=0): 06(bAr)—0(ar)=(n+1)x;
inCase2 (¢ =0,8 #0): 9(b,k)—9(a,k)=(n+;)n—)»_;cot/3+0()»_;);

inCase3 (a¢ #0,8=0): 9(b,A)—9(a,A)=(n+;)n+)»_;cota+0<)f3>;
inCase4 (¢ #0,8 #0): 6(b,A) —0(a, 1) =nmw +A_;(cotoz—cot,8)+0<)fg>.

It follows from (1.5-1.6) that large positive eigenvalues of either the Dirichlet or non-
Dirichlet problems over [a, b] satisfy
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1 6(b)—6(a)
2 = (b —a) +0(1). (1.7)

Our aim here is to obtain a formula like (1.7) in which the O(1) term is replaced by
an integral term plus and error term of smaller order. We obtain an error term of

-N
0 (A 2 ) (N > 1). To achieve this we first use the differential Equation (1.6) to obtain

estimates for 6(b) - 6(a) for general A as A —> oo.

2. Statement of result
We define a sequence &(t) for j = 1, .., N+ 1, t € [a, b] by

E1(1) = Mﬂs) [+l E(s) s
A 2.1)
5(0) = / UF©)] + [F©) )51 (s)ds

0
and note that in view of f, F e L(a, b),

§(t) <c§_1(t) for telab], 2<j<N+1 (2.2)
Suppose that for some N > 1,

f'énv1, f2En,  fFEn € Lla,b);

(2.3)
f(t)éns(t) > 0 as t— 0.
We define a sequence of approximating functions a
1
0o(x) :=0(a) + 12 (x — a); (2.4)
6;(0) :=0(0); (2.5)

Ojr1(x) :=6(a) + )Lé (x—a)— /fsin(29j(t))dt + )»_é /‘Fsin2 (6;(2))at. (2.6)

a

forj =0, 1,2, ..and for a < x < b. We measure the closeness of the approximation
in the next result. Thus

1 1
0., = A2 — fsin(26;) + A~ 2 Fsin’(6)) (2.7)

j+1

The following lemma appears in [2,5].
Lemma 2.1. I[f g€ £' then for any jand a < x < b

X

/g(t) sin(26;(t))dt = o(1)

a

as h —> o,
By using Lemmas 5.1 and 5.2 of [5] we conclude the following lemma
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Lemma 2.2. There exists a suitable constant C such that

|aj.1 — 6| < C sup |0 — 6] &1 (x)
a<x<b

Now, we prove an elementary lemma.

Lemma 2.3. If g e £' and 0(x) — 6;(x) = )\fé faxg{sinz(e(t)) _ sinz(ej(t))}dtthe”

6(x) = 651 (9)] = 25U,y [0(x) — 65(x)] [ gl
Proof.
0(x) — i1 (x) = 22 / glsin(6(1)) — sin?(6;(1))}dt

a
X

_ ;ri / glcos(26,(1)) — cos(26(1))}dt

-2 /gsin(é?j(t) — 0(1)) sin(6(1) + 0(1))}dt

a

1 X
<172 sup |9(x)—9j(x)|/gdt
a

a<x<b
—J
Remark 2.4. Lemma 2.2 shows that if [0(x)—6(x)|=0 (A 2 ) then

—(j+1)
0(x) = 61 (x)[ =02 2
Lemma 2.5. There exists a suitable constant C such that
X

f(sin(26;(t)) —sin(26(¢)))dt < C)L_é sup |9(x) —0i(x)|, xe€(ab),

a<x<b

a

Proof.

X

/f(sin(29(t))(l) — sin(26;(t))(1))dt = )fé /f{sin(29)9’ — sin(26;)0;}dt

a2 / f?{sin?(20) — sin(26;) sin(26,_,)}dt

X

-7t f fF{sin(20)sin?(0) — sin(26;)sin?(6;_1)}dt

=: I1 +Iz 713.

But

I =22 [f()(sin? (0(1)) — sin (G ()]; — 22 f £()tsin? (6) — sin? ()}t
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By using Lemma 2.1 we have

1
I; < CyA"2 sup |0(x) — 6;(x)].
b

a=x=

Applying Lemmas 2.1 and 2.2 we have

I:= )L_; /fz(t){sin(ZQ) — sin(26;)} sin(20)dt
1 X
+172 /fz(t){sin(2t9) — sin(26;)} sin(26;)dt

+r§ / f2(0){sin(26;) — sin(26,_1)} sin(26;)dt

< Cz)f; sup |0(x) — 6;(x)]

a<x<b

Finally, using Lemma 2.1, we conclude

I:=217" /fF{sin(20) — sin(26;)}sin?(9)dt

+A71 /fF(sin(G) — sin(6;—1))(sin(6) + sin(6;-1)) sin(26;)dt

1
< Cs3172 sup |0(x) — 6;(x)|
b

as<x<

This ends the proof of Lemma 2.5.
Theorem 2.6. Suppose that (2.3) hold for some positive integer N, then

O(b) — 0(a) — (b—a)r2 = — /h £ sin(26n(x))dx + <A31> /b Fsinz(eN)dxw({zN )

a

as h —> oo,
Proof. We integrate (1.5) over [a, x] and obtain

X

0(x) —6(a) = )\é (x—a)— /fsin(29(t))dt + )L_é stinz(O(t))dt
In particular

b

b
0(b) — 0(a) = 12 (b—a) — /fsin(?.@(t))dt Pa2 /Fsinz(e(t))dt

a
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and so,

b b
0(b)—0(a) — (b— a)k:lz =— /fsin(zeN(x))dx+ (A _21> stinz(GN)dx
b ‘ ’
+ /f{sin(zeN(x) —sin(20(x)))}dx

b
+ <)\ _21) / F{sin?(6) — sin?(6x)}dx.

We need to prove that two last terms are o (A 2 ) as A — oo. Applying Lemmas 2.2

and 2.4 we have

When N = 1, applying Lemma 2.5,

b

b
I:= /f(x){sin(QGN(x) —sin(26(x)))}dx + (k 31) /F(x){sinz(e) — sin?(6x)}dx

a

a<x<b aA<x<

b
< ca2 sup |60(x) — On(x)| +C<A_21)/F supb|9(x) — On(x)] dx

i
0(x) — 61 (x)} =0 (k 2 ) . Now By using Lemma

-N
2.3 and induction we achieve that I = o (k 2 ) as A — oo,

Remark 2.7. By using the discussions of choice of f in [5], the condition (2.3) let us to

consider q as the form q(x) ~ x™ where 1 < K < 2.
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