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Abstract

This article deals with the blow-up problems of the positive solutions to a nonlinear
parabolic equation with nonlocal source and nonlocal boundary condition. The
blow-up and global existence conditions are obtained. For some special case, we
also give out the blow-up rate estimate.
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1. Introduction
In this article, we consider the positive solution of the following degenerate parabolic
equation

u = f(u)(Au+a [qu(x t)dx), xeQ, t>0,
u(x, t) = [o8(xY)ul(y, )dy, x€dQ, >0, (1.1)
u(x,0) =up(x), x€,

where @, [ > 0 and Q is a bounded domain in RN (N > 1) with smooth boundary 9Q.
There have been many articles dealing with properties of solutions to degenerate
parabolic equations with homogeneous Dirichlet boundary condition (see [1-4] and
references therein). For example, Deng et al. [5] studied the parabolic equation with

nonlocal source
u = f(u)(Au + a/ udx), (1.2)
Q

which is subjected to homogeneous Dirichlet boundary condition. It was proved that

[o.¢]
there exists no global positive solution if and only if / 1/(sf(s))ds < oo and

/ ¢(x)dx > 1/a, where ¢(x) is the unique positive solution of the linear elliptic pro-
Q

blem

—Ap=1,x€ Q2p(x)=0x€c 3. (1.3)
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However, there are some important phenomena formulated into parabolic equations
which are coupled with nonlocal boundary conditions in mathematical modeling such
as thermoelasticity theory (see [6,7]). Friedman [8] studied the problem of nonlocal
boundary conditions for linear parabolic equations of the type

u; — Au = c(x)u, xeQt>0,
u(x, t) = [o K(x, y)u(y, t)dy, x € 9Q,t > 0, (1.4)
u(x, 0) = up(x), x e,

n n
92 d
with uniformly elliptic operator A = Z aij(x) axdg T Z bi(x) ax: T ¢(x) and c(x)< 0.
ij=1 = !

It was proved that the unique solution of (1.4) tends to 0 monotonically and exponen-
tially as £ —+eo provided that / ](p(x, y)| dy <p<1,xedQ.
Q

Parabolic equations with both nonlocal sources and nonlocal boundary conditions
have been studied as well (see [9-12]). Lin and Liu [13] considered the problem of the

form

U = Au+/g(u)dx, xeQt>0,
Q

u(x, t) = f K(x, p)u(y, t)dy, xed,t>0, (1.5)
Q

u(x, 0) = up(x), x € Q.

They established local existence, global existence, and nonexistence of solutions, and
discussed the blow-up properties of solutions.

Chen and Liu [14] considered the following nonlinear parabolic equation with a loca-
lized reaction source and a weighted nonlocal boundary condition

u; = f(u)(Au + au(xo, t)) , xeQt>0,

u(x, t) = / g(x, y)u(y, t)dy, x€ed, t>0, (1.6)
Q

u(x, 0) = up(x), x e Q.

Under certain conditions, they obtained blow-up criteria. Furthermore, they derived
the uniform blow-up estimate for some special flu).

In recent few years, reaction-diffusion problems coupled with nonlocal nonlinear
boundary conditions have also been studied. Gladkov and Kim [15] considered the fol-

lowing problem for a single semilinear heat equation

Uy = Au+c(x, )uP, xeQt>0,
u(x, t) = [oe v, Dul(y,)dy, xe€dQt>0, (1.7)
u(x, 0) = up(x), x e,

where p, [ > 0. They obtained some criteria for the existence of global solution as
well as for the solution to blow-up in finite time.

For other works on parabolic equations and systems with nonlocal nonlinear bound-
ary conditions, we refer readers to [16-20] and the references therein.

Motivated by those of works above, we will study the problem (1.1) and want to
understand how the function f{uz) and the coefficient a, the weight function g(x, y) and
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the nonlinear term ' (y, t) in the boundary condition play substantial roles in deter-
mining blow-up or not of solutions.

In this article, we give the following hypotheses:

(H1) up(x) € C***() N C() for ae (0,1),up(x) > 0 in Q, up(x) = [, &(x, Y)ub (y)dy
on 0Q.

(H2) g(x, »)¥O0 is a nonnegative and continuous function defined for x € 92, y € Q.

(H3) f& C([0,50))NC'(0,%0), f> 0, f > 0 in (0,00).

The main results of this article are stated as follows.
Theorem 1.1. Assume that 0 </ < 1 and / g(x,y)dy < 1 for all xe 0Q.
Q

(1) If a is sufficiently small, then the solution of (1.1) exists globally;
(2) If a is sufficiently large, then the solution of (1.1) also exists globally provided

that / 1/(sf(s))ds = +00 for some o > 0.
s

Theorem 1.2. Assume that / > 1 and f g(x,y)dy < 1 for all xe 3Q. Then the solu-
Q

tion of (1.1) exists globally provided that a and ug(x) are sufficiently small. While the
solution blows up in finite time if a,uo(x) are sufficiently large and

+00
/ 1/(sf(s))ds < +oo for some 6 > 0.
s
Theorem 1.3. Assume that / > 1 and /g(x,y)dyzl for all xeoQ. If
Q

+00
/ 1/(sf(s))ds < +oo for some & > 0, then the solution of (1.1) blows up in finite
B

time provided that uy(x) is large enough.
-1

Theorem 1.4. If f 1/(sf(s))ds < +0o for some 0 > 0 and g > </ (p(x)dx> )
8 Q

where ¢(x) is the solution of (1.3), then there exists no global positive solution of (1.1).
To describe conditions for blow-up of solutions, we need an additional assumption
on the initial data .

(H4) There exists a constant ¢ >&; > 0 such that Aug + a/ uo(x)dx > gup, where ¢;
Q

will be given later.

Theorem 1.5. Assume uy(x) satisfies (H1), (H2), and (H4), Auy < 0 in Q holds, and
let flu) = u¥,0 <p < 1, [ = 1, then the following limits converge uniformly on any com-
pact subset of Q:

(1) If 0 <p < 1, lim u(x, O)(T" - )P = (ap|Q|)~.

(2) 1f p = 1, lim [In(T* — 0| nu(x 1) = 1.
t—T*

This article is organized as follows. In Section 2, we establish the comparison princi-
ple and the local existence. Some criteria regarding to global existence and finite time
blow-up for problem (1.1) are given in Section 3. In Section 4, the global blow-up
result and the blow-up rate estimate of blow-up solutions for the special case of f (1) =
u’, 0 <p <1and [ =1 are obtained.
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2. Comparison principle and local existence

First, we start with the definition of subsolution and supersolution of (1.1) and com-

parison principle. Let Q7 = Q x (0, T), S7 = 0Q x (0, T), and Qr = Q x [0, T).
Definition 2.1. A function u(x, t) is called a subsolution of (1.1) on Qg if

u e C*(Qr) N C(Qy) satisfies

u, < f(u)(Au+a [, udx) , xeQ,t>0,
u(x, £) < [o8(y)ul(y. )dy, x€dQ, >0, (2.1)
u(x, 0) < uo(x), x€Q.

Similarly, a supersolution #(x, £) of (1.1) is defined by the opposite inequalities.

A solution of problem (1.1) is a function which is both a subsolution and a superso-
lution of problem (1.1).

The following comparison principle plays a crucial role in our proofs which can be
obtained by similar arguments as [10] and its proof is therefore omitted here.

Lemma 2.2. Suppose that w(x, t) € C*'(Qr) N C(Qy) and satisfies

wy — d(x, ) Aw > c¢q(x, w + c2(x, t)/ cs(x, Hw(x, t)dx, (x,t) € Qr,
Q
(2.2)
w(x, t) > ca(x,t) / cs(x, y)w' (y, t)dy, (x,t) € St,
Q

where d(x, 1), ¢; (%, t)(i = 1,2,3,4) are bounded functions and d(x, £)> 0, ¢; (x, £)> 0 (i
=2,3,4) in Qp ¢5 (%, ¥)= 0 for xe 9Q), ye Q and is not identically zero. Then, w(x, 0) >
0 for xeQ implies w(x, £) > 0 in Q7. Moreover, ¢5 (x, y) = 0 or if

ca(x, t)/ ¢s(x,y)dy <1 on Sz, then w(x, 0) = 0 for x ¢ @ implies w(x, £) > 0 in Qp.
Q

On the basis of the above lemmas, we obtain the following comparison principle of
(1.1).

Lemma 2.3. Let u and v be nonnegative subsolution and supersolution of (1.1),
respectively, with u(x, 0) < v(x, 0) for x € Q. Then, u < vin Qrif u > norv = 1 for
some small positive constant 1 holds.

Local in time existence of positive classical solutions of (1.1) can be obtained by
using fixed point theorem [21], the representation formula and the contraction map-
ping principle as in [13]. By the above comparison principle, we get the uniqueness of
solution to the problem. The proof is more or less standard, so is omitted here.

3. Global existence and blow-up in finite time
In this section, we will use super- and subsolution techniques to derive some condi-
tions on the existence or nonexistence of global solution.

Proof of Theorem 1.1. (1) Let y(x) be the unique positive solution of the linear
elliptic problem

—AY =gy, x e Q,

3.1
¥ (x) =fgg(x,y)dy, x €, (3.1)
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where ¢, is a positive constant such that 0 <y(x) < 1 (since / 8(x, y)dy < 1, there
Q

exists such g). Let K = max, o (x), K = min gy (x).

We define a function w(x, t) as following:
w(x, £) = My (x), (32)

where M > 1 is a constant to be determined later. Then, we have

wlye = M /Q g(x,y)dy = M /Q 8 y)¥! (x)dy = M /Q 8(x, y)w' (y, t)dy

(3.3)
= [ ste w0y
On the other hand, we have forx e Q, ¢ > 0,
w; — f(w)(Aw + a/ w(x, t)dx) > f(My(x))M(go — a|R2| K). (3.4)
Q

We choose M = max{K 'max,_quo(x), 1} and set gy = eo(|2IK) ™", then it is easy to
verify that w(x, t) is a supersolution of (1.1) provided that a < a,. By comparison prin-
ciple, u(x, £) < w(x, t), then u(x, t) exists globally.

(2) Consider the following problem

Z(t) = bif (Kz(t))z(t), t>0,

0) -z (3.5)

where zy > rnax{K’lrnaxeruo(x), 1}, b; is a positive constant to be fixed later. It

follows from hypothesis (H3) and the theory of ordinary differential equation (ODE)
that there exists a unique solution z (£) to problem (3.5) and z (¢) is increasing. If

/ 1/(sf(s))ds = +oo for some positive J, we know that z (¢) exists globally and z (2)
B

> Zp.
Let v(x, t) = z (t) v (x), where w (x) is given by (3.1), then for x € Q, ¢ > 0, we obtain

v —f(v)(Av + a/ v(x, t)dx)
Q

=2 (0¥ (x) — f() ¥ () (2(0) Ay (x) + a/gzz(t)llf(x)dx) (3.6)
> 2 (K — f(Kz(1))z(t) (aK |Q] — £0)
= f(K2(1))2(t) (01K — (aK || — £0)).

Set a; = go(K |Q|)*1, if a is sufficiently large such that a >a;, then we can choose

by = K '(aK || — &0) > 0. Thus,

v —f(v)(Av + a‘/g v(x, t)dx) > 0. (3.7)
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On the other hand, for x € 0Q), £ > 0, we get

oo 1) = 2(1) / 8 )y > 2(1) / S(& )V )y

(3.8)
> [ st 2wy = [ st 0y
Here, we use the conclusions 0 <y (x) < 1 and z(£) > 1.
Also for x € ©, we have
v(x, 0) = z(0)¥ (x) =20 (x) = 20K > up(x). (3.9

And the inequalities (3.5)-(3.9) show that v(x, ¢) is a supersolution of (1.1). Again by
using the comparison principle, we obtain the global existence of u(x, £). The proof is
complete.

Proof of Theorem 1.2. The proof of global existence part is similar to the first case
of Theorem 1.1. For any given positive constant M < 1, w (x) = My (x) is a supersolu-

tion of problem (1.1) provided that u (x) < y (x) < 1 and a < (|| K)™', so the

solution of (1.1) exists globally by using the comparison principle.
To prove the bow-up result, we introduce the elliptic problem

—apl) =1 xe 290 = [ slupetdy, x <o,

Under the hypothesis (H2) and / g(x,y)dy < 1, we know that it exists a unique
Q

positive solution ¢(x). Let Ky = min,_q¢(x), K* = max,o¢(x), and z(¢) be the solu-
tion of the following ODE

Z'(t) = f(Kyz(1))z(t), t>0,

z(0) =z; > 1. (3.10

Then, z(¢) is increasing and z (£) > z;. Due to the condition / 1 / (sf(s))ds < +oo for
s

some positive constant J, we know that z (£) of problem (3.10) blows up in finite time.
If @ and u, (x) are so large that g > (K*)""'(K* + 1)|Q| 'K, uo () = 2 (K*)!, then

we set v1(x, 1) = z(£)¢'(x). For x € Q, ¢ > 0, we obtain

v1, — f(v1)(Avy + a/Qvl (x, t)dx)

- 206! (%) — FROG @) - D' 2 ©)IVe P + 0~ (1) Ap(x) +a /Q ) B11
< Z(O(K) — f(K'2(0))2(1) (ak.! 12 — [(K*)"1) < 0.
For x € 9Q, ¢ > 0, by Jensen’s inequality, we get
vi(x, t) = 2(6)¢'(x) = 2(t)( /Q 8(x Y)ey)dy)
< 2(0)( / 3w )dy) / 3(x )6 ()dy) (3.12)

< / 8 A0 (r)dy = / g(x ) (n)dy.
Q Q
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Also for x € @, we have
v1(x, 0) = 2(0)¢'(x) = 219! (x) < 21 (K*)' < up(x). (3.13)

The inequalities (3.10)-(3.13) show that v;(x, t) is a subsolution of problem (1.1).
Since v;(x, t) blows up in finite time, u(x, £) also blows up in finite time by comparison
principle.

Proof of Theorem 1.3. Let z(£) be the solution of the following ODE

Z(t) = baf (2())z(t), t>0,

z(0) = z5. (3.14)

where 0 <by <a |Q]. If uy(x) is large enough, we can set 1 <z, < min,quo(x).
Then, z (¢) is increasing and satisfies z (£) > z, > 1. Moreover, z (£) of problem (3.14)
blows up in finite time.

Set s (%, t) = z (), then we have forx e Q, t > 0,

St —f(s)(As+a/ s(x, t)dx)
=2(t) — af (2(1)) 121 2(1) = (b2 —alQl) f(a(1))z(1) < O.

Forxe 0Q, t >0,

(3.15)

(v 1) = 2(1) < / 8 P)a(t)dy < / 36 ) (0)dy = / swnSdy. (3.16)

5(x,0) =2z(0) = z2 < up(x), xeQ. (3.17)

From (3.14)-(3.17), we see that s (x, t) is a subsolution of (1.1). Hence, u# (x, t) > s (x,
t) by comparison principle, which implies u (x, £) blows up in finite time. This com-
pletes the proof.

Proof of Theorem 1.4. Consider the following equation

vt=f(v)(Av+a/ vdx), xe€Q,t>0,
Q

v(x, t) =0, x€dQ, t>0, (3.18)
v(x, 0) = vo(x), x e,

and let v (x, £) be the solution to problem (3.18). It is obvious that v (x, £) is a subso-
lution of (1.1). By Theorem 1 in [5], we can obtain the result immediately.

4. Blow-up rate estimate
Now, we consider problem (1.1) with f(x) = u¥, 0 <p < 1 and [/ = 1, i,
u = v (Au+ a/ u(x, t)dx), x€Qt>0,
Q

u(x, t) = / g )uly.t)dy , x€9Q,t>0, (4.1)
Q

u(x, 0) = up(x), x e,
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where / g(x,y)dy < 1 for all x € 9Q, and suppose that the solution of (4.1) blows
Q

up in finite time 7%
Set U(1) = Ig?e?g(“(x' t), then U(¢) is Lipschitz continuous.

Lemma 4.1. Suppose that u, satisfies (H1), (H2), and (H4), then there exists a posi-
tive constant ¢, such that

U(t) = co(T* —t)~ . (4.2)
Proof. By the first equation in (4.1), we have (see [22])

U'(t) <alQu™(r), ae te(0,T%), (4.3)
Hence,

—(U() <aplLl. (4.4)
Integrating (4.3) over (t, T%), we can get

u(t) = (ap 1)~V (T* — 1)~/ (4.5)

Setting co = (ap |Q| p)™'*, then we draw the conclusion.
Lemma 4.2. Under the conditions of Lemma 4.1, there exists a constant &;, which

will be given below, such that
u, — 1w’ >0, (x,t) € 2 x (0,T%). (4.6)
Proof. Let J(x, £) = u,-e,u”*" for (x, £) € Q x (0, T%), a series of computations yields
I —uP A] — 2peruP] — av? /Q]dx

=pu” ' + g1 (p + Dpu 1 Vul? + pe 2ut! + aslu"/

uPtdx — asq (p + 1)u2p/ udx  (4.7)
Q

Q

> pe2u?l + aslu”/ uPldx — agi (p + l)uzp/ udx.
Q Q

By virtue of Holder inequality, we have

/ udx < | QP11 / P ) VP

Q Q

Furthermore, by Young’s inequality, for any 0 > 0, the following inequality holds

2 / udx < [QPIO D P / WP ) Mo+

Q Q
< 1QPC DU (p/(p+ 1)(0u?) PP 11/ (p+ 1)o7 D / uP*ldx) (4.8)
Q

= (1/(p+ V)IQPP*D (po P Dpy2+t 4 =+ Dy / W ).
Q

Using (4.8) and taking o _ |Q|P/(P+1)2, & = a|]Q|, then (4.7) becomes

Jo — wP A] — 2peruP] — auP [ Jdx > pei(e1 — a|Q))u?*! = 0, (4.9)
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Fix (x, £) € 0Q x (0, T%), then we have
J(xt) = ue — e = [ g0 Y)uc(y, )dy — e1( [ 8Cx y)uly, )dy )P+

Since u, (3, 1) = J(y, t) + eu?*" (9, £), we have

= /Qg(x, Iy, dy +e </Qg(x, Py, dy — (/Q o~ t)dy>p+1> |

Noticing that p > 0, 0 < F(x) = / gx,y)dy <1 ,x €9, we can apply Jensen’s
Q

inequality to the last integral in the above inequality,

/ 8w P (7, 0)dy — ( / g )uly, Ody Y
Q Q

= £ ( [ stouty, oy / F(x))p” - ([ stryucs )M > 0.

Hence, for (x, £) € 90Q x (0, T%), we have
J(x,0) = [o 8(x )y, t)dy . (4.10)
On the other hand, (H4) implies that
J(x,0) >0, xe Q. (4.11)
Owing to u(x, t) is a positive continuous function for (x,t) € Q x [0, T*), it follows
from (4.9)-(4.11) and Lemma 2.2 that J(x, £) > 0 for (x,t) € Q x [0, T*), i.e., u, = &1

*1, This completes the proof.
Integrating (4.6) from ¢ to 7% we conclude that

u(x, t) < cp(T* — t)~'r, (4.12)

where ¢, = (e1p)"? is a positive constant independent of ¢. Combining (4.2) with
(4.12), we obtain the following result.

Theorem 4.3. Under the conditions of Lemma 4.1, if u# (x, £) is the solution of (4.1)
and blows up in finite time 7% then there exist positive constants c;, ¢5, such that

e (T* — t)~° < maxu(x, t) < co(T* —t)~/°,
xeQ
Lemma 4.4. Assume that uy(x) satisfies (H1), (H2), and (H4), Auo < 0 in Q. u(x, £) is
the solution of problem (4.1). Then, Au < 0 in any compact subsets of Q x (0, T%).

The proof is similar to that of Lemma 1.1 in [14].
Denote

g(t) =a [yudx, G(t) = [, g(s)ds.
Lemma 4.5. Under the conditions of Lemma 4.4, it holds that

lim g(t) =00, lim G(t) = oo (4.13)
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Proof. From Lemma 4.3, we have
u, < uPg(t), ae.te|0,T*). (4.14)

Integrating (4.14) over (0, t), we obtain

1 1
- pulfp(x, t) < [o8(s)ds + . _puolfﬂ(x), 0<p<1, (4.15)

Inu(x, t) < [; g(s)ds + Inug(x), p=1. (4.16)

In view of lim u(x,t) =00, lim G(t) = 00, Noting that #, > 0 by the assumption of
t—T* t—T*
the initial function, then we see that g(¢) is monotone nondecreasing. Therefore,
lim g(t) = o0,
t—T*

Lemma 4. 6. Under the conditions of Lemma 4.4, then we have

€ NN 171 O%)] [
@ lm e T R Gopen T 0P =b 17
Inu(x,¢) _ . [InuC, 0]
@ fp ey TER e b P I

uniformly on any compact subsets of Q.
Proof. Let A > 0 be the principal eigenvalue of -A in Q with the null Dirichlet
boundary condition, and ¢(x) be the corresponding eigenfunction satisfying ¢(x) > 0,

Jo#(x)dx=1.
In case of (1). Define z,(x, t) = G (t) - u' ?/(1-p), y1(t) = Joz1(y, )o(y)dy. A direct

computation shows

vi(t) = /Q (8(6) — w (. ey, 1)) )y = — /Q Auly, 06 (r)dy
=A /Q d(y)uly, t)dy + /asz u(d¢/on)ds
<2 / (G(1) — 2y, ) 0P s )y
Q

< (VD) + /Q & (.0) " P g0)dy),

where z] = max{—z;,0} and using the equality / (0¢/3dn)dS = —i < 0. From
a9
(4.15), we know that
igle (».t) = -C, (4.19)
which means z; < C'. Then,

Yi(t) < GGV (1) + Cs, (4.20)
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Integrate (4.20) from O to ¢,

y(t) < Ca(1 + [, GYUP)(s)ds), (4.21)
Thus, (4.19) and (4.21) imply

Ja [21 (v, 0 g ()dy = Cs(1+ [ GO (5)ds).
Define K, = {ye Q: dist(y, 0Q)> p}. Since -Az; < 0 in Q x (0, T%). Using Lemma 4.5

in [1], we obtain

C
supz; (x,t) < pNil (1 + [y GMO-P)(5)ds). (4.22)

P

It follows from (4.22) and (4.15) that

ki “1- ul=P(x, 1) - K 1+ fOtGV“‘P)(s)ds’ 4.23)
G(1) (1=p)G() — pN*! G(1)

for any we K, and ¢ € (0,7%), where k; and K; are positive constants.
We know from Theorem 4.3 that

Jy GMO=)(s)ds < C7 fo (T* — 5)"Yrds. (4.24)
In view of (4.15) and Theorem 4.3, it follows that

G(t) = Cgu'™" > Co(T* — t)~(1=P)lp, (4.25)
From (4.23)-(4.25), we get

ky W) _ Cio 1+ 3 (T = s)"Pds (4.26)

J— < 1 —
G(1) — (1=p)G(t) = PN (% — )P
It is obvious that

Lo —1/p
T — d
fim Jo (" =) ds_
=T (T* — t)*(lfp)/P

Thus,

RO N O I
tIE% (1-p)G(t) P (1-p)G(t) !

In case of (2). We define z, (x, t) = G (¢) - In u(x, 1), y2(t) = [ 22(y, t)p(y)dy. Then,
A0 = [ (60— 0l 0)60)dy =~ [ Auty, ey
=A /Q o (y)u(y, t)dy + /asz u(d¢ /n)ds

<2 f exp(G(t) — 22y, 1)} (1)dy.
Q
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From (4.16), we know that

igfzz(y, t) > -C", (4.27)
Then,

¥2(1) = Cn exp{G(1)}, (4.28)
Integrate (4.28) from 0 to ¢ yields

y2(t) < Cra(1 + [ exp{G(s)}ds), (4.29)
Thus, (4.29) and (4.27) imply

Ja |20 0] #()dy < Cis(1 + 5 explG(s))ds).

Define K = {ye Q: dist(y, 0Q)> (}. Since -Az, < 0 in Q x (0, T%), we obtain

S}(lpZz(x, 1) < ;1:\11:11 (1+ fot exp{G(s)}ds). (4.30)
19

It follows from (4.30) and (4.27) that

k) o Inu(x, t) . K 1+ [y exp{G(s)}ds

_ < < ) (4.31)
G(1) G(1) g+t G(1)
for any xe K-and ¢t e (0,7%).
By Theorem 4.3, we have
t t
G(t) =/ g(s)ds < a/ (/ |U(s) |dx)ds
0 o e (4.32)
<alQ(e)7! / (T* —s) 'ds < In(T* —t)"' +InT".
0
On the other hand, we know form (4.16) and Theorem 4.3 that
G(t) = Cy6 [In(T* — 1)) . (4.33)

From (4.31)-(4.33), we get

ke _ o lnu(i) _ Gy 1+T Jo (T* —s5)"'ds
G(t) — G(t) ~ ¢+ [In(T* — 1)

It is easy to derive

i 1 T [3 (T* —s)""ds )
=T [In(T* —1)|

Thus,

Inu(x,t) . [InuC. 0],

e N = e ()

This completes the proof.
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Proof of Theorem 1.5. Case 1: 0 <p < 1. Form (4.17), we have
u(x, t) ~ ((1 = p)G() YO~ ast — T,
where the notation u# ~ v means tl_lgl u(t) / v(t) =1,
Furthermore,
G'(1) =8(t) = a [ udx ~ alQ| (1 — p)G(1))/( P ast — T*. (4.34)
Integrating (4.34) over (t, T%) yields
G(t) ~ (1 —p)~Y(ap|QI(T* — 1))~ (=PPast — T*. (4.35)

So, we can get our conclusion by using (4.17) and (4.35).
Case 2: p = 1. In this case, for any given 0: 0 <o << 1. By (4.18), there exists 0 <t
<T* such that

(1 -0)G(t) <lnu(xt) < (1+0)G(t), xeQte ]t T).
Therefore,

a|Qlexp{(1-0)G(1)} < G'(1) = a [qudx < a|Q| exp{(1+0)G(t)}, to <t <T*. (4.36)
In view of the right-hand side of the (4.36), we have

exp{—(1+0)G(£)}dG(t) <alQldt, to<t<T*
Integrating the above inequality from ¢ to T* yields that

exp{—(1+0)G(t)} <a(l +0)|Q(T*—1t), to<t<T*
Namely,

G(t) = (-1/(1 +0))In[a(1 +0) IQU(T* — )], to <t =<T* (4.37)
Similar arguments to the left-hand side of (3.36) yield that

G(t) < (-1/(1 —o))Infa(l — o) |QU(T* —1)], to <t =<T* (4.38)
Consequently, (4.37) and (4.38) guarantee that for £, < ¢ < T%

(=1/(1 +0))Infa(1+0) 12| (T*—1)] < G(t) < (-1/(1 — o)) In[a(1—0) || (T*—

4.39
Il (4.39)
Letting 0 — 0, we have

lim G(1)[In(7* — nl™t =1, (4.40)

because of [1_1{% G(t) = 00, Due to In u(x, ) ~ G(£) uniformly on any compact subset

of Q, the proof is complete.
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