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Abstract
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1 Introduction
This article is concerned with the existence of solutions to the following nonlinear per-

turbed p-Laplacian system⎧⎪⎪⎨
⎪⎪⎩

−εp�pu + V(x)|u|p−2u = K(x)|u|p∗−2u +Hu(u, v), x ∈ R
N ,

−εp�pv + V(x)|v|p−2v = K(x)|v|p∗−2v +Hv(u, v), x ∈ R
N,

u(x), v(x) > 0,
u(x), v(x) → 0 as |x| → ∞,

(1:1)

where Δpu = div(|∇u|p-2∇u) is the p-Laplacian operator, 1 < p < N and p* = Np/(N −

p) is the critical exponent.

Throughout the article, we will assume that:

(V0) V Î C(ℝN), V (0) = inf V (x) = 0 and there exists b >0 such that the set νb :=

{x Î ℝN : V (x) < b} has finite Lebesgue measure;

(K0) K(x) Î C(ℝN), 0 <inf K ≤ sup K <∞;

(H1) H Î C1(ℝ2) and Hs, Ht = o(|s|p-1 + |t|p-1) as |s| + |t| ® 0;

(H2) there exist c >0 and p < q < p* such that

|Hs(s, t)|, |Ht(s, t)| ≤ c(1 + |s|q−1 + |t|q−1);

(H3) There are a0 >0, θ Î (p, p*) and a, b > p such that H(s, t) ≥ a0(|s|
a + |t|b) and

0 < θH(s, t) ≤ sHs + tHt.

Under the above mentioned conditions, we will get the following result.

Theorem 1. If (V0), (K0) and (H1)-(H3) hold, then for any s >0, there is εs >0 such

that if ε < εs, the problem (1.1) has at least one positive solution (uε, vε) which satisfy
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θ − p
pθ

∫
RN

(εp|∇uε|p + εp|∇vε|p + V(x)|uε|p + V(x)|vε|p) ≤ σεN.

The scalar form of the problem (1.1) is as follows

−εp�pu + V(x)|u|p−2u = K(x)|u|p∗−2u + h(x, u), x ∈ R
N. (1:2)

The Equation (1.2) has been studied in many articles. The case p = 2 was investi-

gated extensively under various hypotheses on the potential and the nonlinearity by

many authors including Brézis and Nirenberg [1], Ambrosetti [2] and Guedda and

Veron [3] (see also their references) in bounded domains. As far as unbounded

domains are concerned, we recall the work by Benci and Cerami [4], Floer and Weis-

tein [5], Oh [6], Clapp [7], Del Pino and Felmer [8], Cingolani and Lazzo [9], Ding and

Lin [10]. Especially, in [10], the authors studied the Equation (1.2) in the case p = 2. In

that article, they made the following assumptions:

(A1) V Î C(ℝN), min V = 0 and there is b >0 such that the set νb := {x Î ℝN : V (x)

<b} has finite Lebesgue measure;

(A2) K(x) Î C(ℝN), 0 <inf K ≤ sup K <∞

(B1) h Î C(ℝN × ℝ) and h(x, u) = o(|u|) uniformly in x as |u| ® 0;

(B2) there are c0 >0, q <2* such that |h(x, u)| ≤ c0(1 + |u|q-1) for all (x, u);

(B3) there are a0 >0, p >2 and µ >2 such that H(x, u) = a0|u|
p and µH(x, u) ≤ h(x,

u)u for all (x, u), where H(x, u) =
∫ u
0 h(x, s)ds.

That article obtained the existence of at least one positive solution uε of least energy

if the assumptions (A1)-(A2) and (B1)- (B3) hold.

For the Equation (1.2) in the case p ≠ 2, we recall some works. Garcia Azorero and

Peral Alonso [11] considered (1.2) with ε ≤ 1, V (x) = µ, K(x) = 1, h(x, u) = 0 and

proved that (1.2) has a solution if p2 ≤ N and µ Î (0, l1), where l1 is the first eigenva-

lue of the p-Laplacian. In [12], Alves and Ding studied the same problem of [11] and

obtained the multiplicity of positive solutions in bounded domain Ω ⊂ ℝN. Moreover,

Liu and Zheng [13] investigated (1.2) in ℝN with ε = 1 and K(x) = 0. Under the sign-

changing potential and subcritical p-superlinear nonlinearity, the authors got the exis-

tence result.

Motivated by some results found in [10,11,13], a natural question arises whether

existence of nontrivial solutions continues to hold for the p-Laplacian system with the

critical nonlinearity in ℝN.

The main difficulty in the case above mentioned is the lack of compactness of the

energy functional associated to the system (1.1) because of unbounded domain ℝN and

critical nonlinearity. To overcome this difficulty, we make careful estimates and prove

that there is a Palais-Smale sequence that has a strongly convergent sequence. The

method or idea here is similar to the one of [10]. We can prove that the functional

associated to (1.1) possesses (PS)c condition at some energy level c. Furthermore, we

prove the existence result by using the mountain pass theorem due to Rabinowitz [14].

The main result in the present article concentrates on the existence of positive solu-

tions to the system (1.1) and can be seen as a complement of the results developed in

[10,11,13].
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This article is organized as follows. In Section 2, we give the necessary notations and

preliminaries. Section 3 is devoted to the behavior of (PS)c sequence and the mountain

geometry structure. Finally, in Section 4, we prove the existence of nontrivial solution.

2 Notations and preliminaries
Let C∞

0 (RN) denote the collection of smooth functions with compact support and D1,p

(ℝN) be the completion of C∞
0 (RN) under

||u||p = ∫
RN

|∇u|pdx.

We introduce the space

E(RN, V) = {u ∈ W1,p(RN) :
∫
RN

V(x)|u|p < ∞}

equipped with the norm

||u||E =

( ∫
RN

(|∇u|p + V(x)|u|p)
) 1

p

and the space

Eλ(RN, V) =

{
u ∈ W1,p(RN) :

∫
RN

λV(x)|u|p < ∞, λ > 0

}

under

||u||λ =

⎛
⎝∫
RN

|∇u|p + λV(x)|u|p)
⎞
⎠

1
p

.

Observe that ‖ · ‖E is equivalent to the one ‖ · ‖l for each l >0. It follows from (V0)

that E(ℝN, V) continuously embeds in W1,p(ℝN).

Set B = El × El and ||(u, v)||λ = ||u||pλ + ||v||pλ for any (u, v) Î B. Let l = ε-p in the

system (1.1), then (1.1) is changed into⎧⎪⎪⎨
⎪⎪⎩

−�pu + λV(x)|u|p−2u = λK(x)|u|p∗−2u + λHu(u, v), ∈ R
N ,

−�pv + λV(x)|v|p−2v = λK(x)|v|p∗−2v + λHv(u, v), x ∈ R
N ,

u(x), v(x) > 0,
u(x), v(x) → 0, as |x| → ∞.

(2:1)

In order to prove Theorem 1, we only need to prove the following result.

Theorem 2. Let (V0), (K0) and (H1)-(H3) be satisfied. Then for any s >0, there exists

Λs >0 such that if l ≥ Λs , the system (2.1) has at least one least energy solution (ul,

vl) satisfying

θ − p
pθ

∫
RN

(|∇uλ|p + |∇vλ|p + λV(x)(|uλ|p + |vλ|p)) ≤ σλ
1−N

p . (2:2)
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The energy functional associated with (2.1) is defined by

Iλ(u, v) =
1
p

∫
RN

(|∇u|p + λV(x)|u|p + |∇v|p + λV(x)|v|p)

− λ

p∗

∫
RN

K(x)(|u|p∗
+ |v|p∗

) − λ

∫
RN

H(u, v)

=
1
p
||(u, v)||pλ − λ

∫
RN

G(u, v),

where G(u, v) = 1
p∗ K(x)(|u|p∗ + |v|p∗) +H(u, v).

From the assumptions of Theorem 2, standard arguments [14] show that Il Î C1(B,

ℝ) and its critical points are the weak solutions of (2.1).

3 Technical lemmas
In this section, we will recall and prove some lemmas which are crucial in the proof of

the main result.

Lemma 3.1. Let the assumptions of Theorem 2 be satisfied. If the sequence {(un, vn)}

⊂ B is a (PS)c sequence for Il, then we get that c ≥ 0 and {(un, vn)} is bounded in the

space B.

Proof. One has

Iλ(un, vn) − 1
θ
I

′
λ(un, vn)(un, vn)

=
1
p
||(un, vn)||pλ − λ

p∗

∫
RN

K(x)(|un|p∗
+ |vn|p∗

) − λ

∫
RN

H(un, vn)

− 1
θ

⎡
⎣||(un, vn)||pλ − λ

∫
RN

K(x)(|un|p∗
+ |vn|p∗

) − λ

∫
RN

(unHs(un, vn) + vnHt(un, vn))

⎤
⎦

=
(
1
p

− 1
θ

)
||(un, vn)||pλ +

(
1
θ

− 1
p∗

)
λ

∫
RN

K(x)(|un|p∗
+ |vn|p∗

)

+ λ

∫
RN

(
1
θ
(unHs(un, vn) + vnHt(un, vn)) − H(un, vn)

)

By the assumptions (K0) and (H3), we have

Iλ(un, vn) − 1
θ
I′λ(un, vn)(un, vn) ≥

(
1
p

− 1
θ

)
||(un, vn)||pλ.

Together with Il(un, vn) ® c and I′λ(un, vn) → 0 as n ® ∞, we easily obtain that the

(PS)c sequence is bounded in B and the energy level c ≥ 0. □
From Lemma 3.1, there exists (u, v) Î B such that (un, vn) ⇀ (u, v) in B. Further-

more, passing to a subsequence, we have un ® u and vn ® v in Ldloc(R
N) for any d Î

[p, p*) and un ® u, vn ® v a.e. in ℝN.

Lemma 3.2. Let d Î [p, p*). There exists a subsequence {(unj , vnj)} such that for any

ε >0, there is rε >0 with

lim
i→∞

sup
∫

Bi\Br

(|uni |d + |vni |d) ≤ ε

for any r ≥ rε , where Br := {x Î ℝN : |x| ≤ r}.
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Proof. The proof of Lemma 3.2 is similar to the one of Lemma 3.2 of [10], so we

omit it. □
Let h Î C∞(ℝ+) be a smooth function satisfying 0 ≤ h(t) ≤ 1, h(t) = 1 if t ≤ 1 and h

(t) = 0 if t ≥ 2. Define ũj(x) = η(2|x|/j)u(x), ṽj(x) = η(2|x|/j)v(x). It is obvious that
||u − ũj||λ → 0 and||v − ṽj||λ → 0 as j → ∞. (3:1)

Lemma 3.3. One has

lim
j→∞

∫
RN

(Hs(unj , vnj) − Hs(unj − ũj, vnj − ṽj) − Hs(ũj, ṽj))ϕ = 0

and

lim
j→∞

∫
RN

(Ht(unj , vnj) − Ht(unj − ũj, vnj − vj) − Ht(ũj, ṽj))ψ = 0

uniformly in (�, ψ) Î B with ‖(�, ψ‖B ≤ 1.

Proof. From the assumptions (H1)-(H2) and Lemma 3.2, we have

lim
j→∞

sup
∫
RN

(Hs(unj , vnj) − Hs(unj − ũj, vnj − ṽj) − Hs(ũj, ṽj))ϕ

= lim
j→∞

sup
∫
Bj

(Hs(unj , vnj) − Hs(unj − ũj, vnj − ṽj) − Hs(ũj, ṽj))ϕ

= lim
j→∞

sup
∫

Bj\Br

(Hs(unj , vnj) − Hs(unj − ũj, vnj − ṽj) − Hs(ũj, ṽj))ϕ

≤ c lim
j→∞

sup
∫

Bj\Br

(|unj |p−1 + |vnj |p−1 + |unj |q−1 + |vnj |q−1 + |ũj|p−1 + |ṽj|p−1

+ |ũj|q−1 + |ṽj|q−1 + |unj − ũj|p−1 + |vnj − ṽj|p−1 + |unj − ũj|q−1 + |vnj − ṽj|q−1)ϕ

≤ c1 lim
j→∞

sup
∫

Bj\Br

(|unj |p−1 + |vnj |p−1 + |ũj|p−1 + |ṽj|p−1)ϕ

+ c2 lim
j→∞

sup
∫

Bj\Br

(|unj |q−1 + |vnj |q−1 + |ũj|q−1 + |ṽj|q−1)ϕ

(3:2)

By Hölder inequality and Lemma 3.2, it follows that

lim
j→∞

sup
∫

Bj\Br

|unj |p−1|ϕ| ≤ lim
j→∞

sup

⎛
⎜⎝ ∫
Bj\Br

|unj |p
⎞
⎟⎠

p−1
p

⎛
⎜⎝ ∫
Bj\Br

|ϕ|p
⎞
⎟⎠

1
p

≤ lim
j→∞

sup

⎛
⎜⎝ ∫
Bj\Br

|unj |p
⎞
⎟⎠

p−1
p ⎛

⎝∫
RN

|ϕ|p
⎞
⎠

1
p

≤ lim
j→∞

sup

⎛
⎜⎝ ∫
Bj\Br

|unj |p
⎞
⎟⎠

p−1
p

= 0
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and

lim
j→∞

sup
∫

Bj\Br

|unj |p−1|ϕ| ≤ lim
j→∞

sup

⎛
⎜⎝ ∫
Bj\Br

|unj |p
⎞
⎟⎠

q−1
p

⎛
⎜⎝ ∫
Bj\Br

|ϕ|q
⎞
⎟⎠

1
q

≤ lim
j→∞

sup

⎛
⎜⎝ ∫
Bj\Br

|unj |q
⎞
⎟⎠

q−1
q ⎛

⎝∫
RN

|ϕ|q
⎞
⎠

1
q

≤ lim
j→∞

sup

⎛
⎜⎝ ∫
Bj\Br

|unj |q
⎞
⎟⎠

q−1
q

= 0

Similarly, we get

lim
j→∞

sup
∫

Bj\Br

(|vnj |p−1| + |ũj|p−1 + |ṽj|p−1)ϕ = 0

and

lim
j→∞

sup
∫

Bj\Br

(|vnj |q−1| + |ũj|q−1 + |ṽj|q−1)ϕ = 0.

Thus

lim
j→∞

∫
RN

(Hs(unj , vnj) − Hs(unj − ũj, vnj − ṽj) − Hs(ũj, ṽj))ϕ = 0.

From the similar argument, we also get

lim
j→∞

∫
RN

(Ht(unj , vnj) − Ht(unj − ũj, vnj − ṽj) − Ht(ũj, ṽ′j))ψ = 0.

□
Lemma 3.4. One has along a subsequence

Iλ(un − ũn, vn − ṽn) → c − Iλ(u, v)

and

I′λ(un − ũn, vn − ṽn) → 0 in B−1(the dual space of B).

Proof. From the Lemma 2.1 of [15] and the argument of [16], we have

Iλ(un − ũn, vn − ṽn)

=
1
p

∫
RN

(|∇un − ∇ũn|p + λV(x)|un − ũn|p + |∇vn − ∇ ṽn|p + λV(x)|vn − ṽn|p)

− λ

p∗

∫
RN

K(x)(|un − ũn|p∗
+ |vn − ṽn|p∗

) − λ

∫
RN

H(un − ũn, vn − ṽn)

= Iλ(un, vn) − Iλ(ũn, ṽn)

+
λ

p∗

∫
RN

K(x)((|un|p∗ − |un − ũn|p∗ − |ũn|p∗
) + (|vn|p∗ − |vn − ṽn|p∗ − |ṽn|p∗

))

+ λ

∫
RN

(H(un, vn) − H(un − ũn, vn − ṽn) − H(ũn, ṽn)) + o(1).
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By (3.1) and the similar idea of proving the Brézis-Lieb Lemma [17], it is easy to get

lim
n→∞

∫
RN

K(x)((|un|p∗ − |un − ũn|p∗ − |ũn|p∗
) + (|vn|p∗ − |vn − ṽn|p∗ − |ṽn|p∗

)) = 0

and

lim
n→∞

∫
RN

(H(un, vn) − H(un − ũn, vnṽn) − H(ũn, ṽn)) = 0.

In connection with the fact Il (un, vn) ® c and Iλ(ũn, ṽn) → Iλ(u, v), we obtain

Iλ(un − ũn, vn − ṽn) → c − Iλ(u, v).

In the following, we will verify the fact I′λ(un − ũn, vn − ṽn) → 0.

For any (�, ψ) Î B, it follows that

I
′
λ(un − ũn, vn − ṽn)(ϕ, ψ)

= I
′
λ(un, vn)(ϕ, ψ) − I

′
λ(ũn, ṽn)(ϕ, ψ)

+ λ

∫
RN

K(x)[(|un|p∗−2un − |un − ũn|p∗−2(un − ũn) − |ũn|p∗−2ũn)ϕ

+ (|vn|p∗−2vn − |vn − ṽn|p∗−2(vn − ṽn) − |ṽn|p∗−2ṽn)ψ]

+ λ

∫
RN

[(Hs(un, vn) − Hs(un − ũn, vn − ṽn) − Hs(ũn, ṽn))ϕ

+ (Ht(un, vn) − Ht(un − ũn, vn − ṽn) − Ht(ũn, ṽn))ψ] + o(1).

Standard argument shows that

lim
n→∞

∫
RN

K(x)(|un|p∗−2un − |un − ũn|p∗−2(un − ũn) − |ũn|p∗−2ũn)ϕ = 0

and

lim
n→∞

∫
RN

K(x)(|vn|p∗−2vn − |vn − ṽn|p∗−2(vn − ṽn) − |ṽn|p∗−2ṽn)ψ = 0

uniformly in ‖�, ψ)‖B ≤ 1.

By Lemma 3.3, we have

lim
n→∞

∫
RN

(Hs(un, vn) − Hs(un − ũn, vn − ṽn) − Hs(ũn, ṽn))ϕ = 0

and

lim
n→∞

∫
RN

(Ht(un, vn) − Ht(un − ũn, vn − ṽn) − Ht(ũn, ṽn))ψ = 0

uniformly in ‖(�, ψ)‖B ≤ 1. From the facts above mentioned, we obtain

I′λ(un − ũn, vn − ṽn) → 0 in B−1.

□
Let u1n = un − ũn, v1n = vn − ṽn, then un − u = u1n + (ũn − u), vn − v = v1n + (ṽn − v). From

(3.1), we get (un, vn) ® (u, v) in B if and only if (u1n, v
1
n) → (0, 0) in B.
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Observe that

Iλ(u1n, v
1
n) − 1

p
I

′
λ(u

1
n, v

1
n)(u

1
n, v

1
n)

=
(
1
p

− 1
p∗

)
λ

∫
RN

K(x)(|u1n|p
∗
+ |v1n|p

∗
)

+ λ

∫
RN

(
1
p
(u1nHs(u1n, v

1
n) + v1nHt(u1n, v

1
n)) − H(u1n, v

1
n)

)

≥ λ

N

∫
RN

K(x)(|u1n|p
∗
+ |v1n|p

∗
)

≥ λ

N
Kmin

∫
RN

(|u1n|p
∗
+ |v1n|p

∗
),

where Kmin = infx∈RNK(x) > 0.

Thus by Lemma 3.4, we get

||(u1n, v1n)||p
∗
p∗ ≤ N(c − Iλ(u, v))

λKmin
+ o(1). (3:3)

Now, we consider the energy level of the functional Il below which the (PS)c condi-

tion hold.

Let Vb(x):= max{V (x), b}, where b is the positive constant in the assumption (V0).

Since the set νb has finite measure and u1n, v
1
n → 0 in Lploc(R

N), we get∫
RN

V(x)(|u1n|p + |v1n|p) =
∫
RN

Vb(x)(|u1n|p + |v1n|p) + o(1). (3:4)

From (K0), (H1)-(H3) and Young inequality, there is Cb >0 such that∫
RN

(K(x)(|u|p∗
+ |v|p∗

) + uHs(u, v) + vHt(u, v))

≤b(||u||pp + ||v||pp) + Cb(||u||p
∗
p∗ + ||v||p∗

p∗ ).

(3:5)

Let S be the best Sobolev constant of the immersion

S||u||pp∗ ≤
∫
RN

|∇u|p for all u ∈ W1,p(RN).

Lemma 3.5. Let the assumptions of Theorem 2 be satisfied. There exists a0 >0 inde-

pendent of l such that, for any (PS)c sequence {(un, vn)} ⊂ B for Il with (un, vn) ⇀ (u,

v), either (un, vn) ® (u, v) or c − Iλ(u, v) ≥ α0λ
1−N

p .

Proof. Assume that (un, vn) ↛ (u, v), then

lim inf
n→∞ ||(u1n, v1n)||λ > 0

and

c − Jλ(u, v) > 0.
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By the Sobolev inequality, (3.4) and (3.5), we get

S(||u1n||pp∗ + ||v1n||pp∗)

≤
∫
RN

(|∇u1n|p + |∇v1n|p)

=
∫
RN

(|∇u1n|p + λV(x)|u1n|p + |∇v1n|p + λV(x)|v1n|p) − λ

∫
RN

V(x)(|u1n|p + |v1n|p)

= λ

∫
RN

K(x)(|u1n|p
∗
+ |v1n|p

∗
) + u1nHs(u1n, v

1
n) + v1nHt(u1n, v

1
n)

− λ

∫
RN

V(x)(|u1n|p + |v1n|p) + o(1)

≤ λb(||u1n||pp + ||v1n||pp) + λCb(||u1n||p
∗
p∗ + ||v1n||p

∗
p∗) − λb(||u1n||pp + ||v1n||pp) + o(1)

= λCb(||u1n||p
∗
p∗ + ||v1n||p

∗
p∗) + o(1).

This, together with lim infn→∞(||u1n||p
∗
p∗ + ||v1n||p

∗
p∗) > 0 and (3.3), gives

S ≤ λCb(||u1n||p
∗
p∗ + ||v1n||p

∗
p∗)

p∗−p
p∗ + o(1)

≤ λCb

(
N(c − Iλ(u, v))

λKmin

) p
N
+ o(1)

= λ
1− p

N Cb

(
N

Kmin

) p
N
(c − Iλ(u, v))

p
N + o(1).

Set
α0 = S

N
p C

−N
p

b N−1Kmin
, then

α0λ
1−N

p ≤ c − Iλ(u, v) + o(1).

This proof is completed. □
Since W1,p(RN) ↪→ Lp

∗
(RN) is not compact, Il does not satisfy the (PS)c condition

for all c >0. But Lemma 3.5 shows that Il satisfies the following local (PS)c condition.

Lemma 3.6. From the assumptions of Theorem 2, there exists a constant a0 >0

independent of l such that, if a (PS)c sequence {(un, vn)} ⊂ B for Il satisfies

c ≤ α0λ
1−N

p , the sequence {(un, vn)} has a strongly convergent subsequence in B.

Proof. By the fact c ≤ α0λ
1−N

p , we have

c − Iλ(u, v) ≤ α0λ
1−N

p − Iλ(u, v).

This, together with Il(u, v) ≥ 0 and Lemma 3.5, gives the desired conclusion. □
Next, we consider l = 1. From the following standard argument, we get that Il pos-

sesses the mountain-pass structure.

Lemma 3.7. Under the assumptions of Theorem 2, there exist al, rl >0 such that

Iλ(u, v) > 0 if 0 < ||(u, v)||λ < ρλ and Iλ(u, v) ≥ αλ if||(u, v)||λ = ρλ.
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Proof. By (3.5), we get that for any δ >0, there is Cδ >0 such that∫
RN

G(u, v) ≤ δ(||u||pp + ||v||pp) + Cδ(||u||p
∗
p∗ + ||v||p∗

p∗).

Thus

Iλ(u, v) =
1
p
||(u, v)||pλ − λ

∫
RN

G(u, v)

≥ 1
p
||(u, v)||pλ − λδ(||u||pp + ||v||pp) − λCδ(||u||p

∗
p∗ + ||v||p∗

p∗).

Note that ||u||pp + ||v||pp ≤ C1||(u, v)||pλ. If δ ≤ (2plC1)
-1, then

Iλ(u, v) ≥ 1
2p

||(u, v)||pλ − λCδ(||u||p
∗
p∗ + ||v||p∗

p∗).

The fact p* > p implies the desired conclusion. □
Lemma 3.8. Under the assumptions of Lemma 3.7, for any finite dimensional

subspace

F ⊂ B, we have

Iλ(u, v) → −∞ as (u, v) ∈ F, ||(u, v)||λ → ∞.

Proof. By the assumption (H3), it follows that

Iλ(u, v) ≤ 1
p
||(u, v)||pλ − λa0(|u|αα + |v|ββ) for all (u, v) ∈ B.

Since all norms in a finite-dimensional space are equivalent and a, b > p, we prove

the result of this Lemma. □
By Lemma 3.6, for l larger enough and cl small sufficiently, Il satisfies (PS)cl

condition.

Thus, we will find special finite-dimensional subspaces by which we establish suffi-

ciently small minimax levels.

Define the functional

�λ(u, v) =
1
p

∫
RN

(|∇u|p + λV(x)|u|p + |∇v|p + λV(x)|v|p) − λa0

∫
RN

(|u|α + |v|β).

It is apparent that Fl Î C1(B) and Il(u, v) ≤ Fl (u, v) for all (u, v) Î B.

Observe that

inf

⎧⎨
⎩

∫
RN

|∇φ|p : φ ∈ C∞
0 (RN,R), |φ|Lα(RN) = 1

⎫⎬
⎭ = 0

and

inf

⎧⎨
⎩

∫
RN

|∇ψ |p : ψ ∈ C∞
0 (RN,R), |ψ |Lβ (RN) = 1

⎫⎬
⎭ = 0.
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For any δ>0, there are �δ, ψδ ∈ C∞
0 (RN,R) with |φδ|Lα(RN) = |ψδ|Lβ (RN) = 1 and

supp�δ, suppψδ ⊂ Brδ (0) such that |∇φδ|pp, |∇ψδ |pp < δ.

Let wλ(x) = (φδ(
p
√

λx), ψδ(
p
√

λx)), then suppwλ ⊂ B
λ

−1
p r δ

(0). For t ≥ 0, we get

�λ(twλ) =
tp

p
‖wλ‖pλ − a0λtα

∫
RN

|φδ(
p
√

λx)|α − a0λtβ
∫
RN

|ψδ(
p
√

λx)|β

= λ
1−

N
p Jλ(tφδ, tψδ),

where

Jλ(u, v) =
1
p

∫
RN

(|∇u|p + |∇v|p + V(λ
−
1
p x)(|u|p + |v|p)) − a0

∫
RN

(|u|α + |v|β).

We easily prove that

max
t≥0

Jλ(tφδ, tψδ) ≤ α − p

pα(αa0)
p

α−p

⎧⎨
⎩

∫
RN

(|∇φδ|p + V(λ
− 1

p x)|φδ |p
⎫⎬
⎭

α
α−p

+
β − p

pβ(βa0)
p

β−p

⎧⎨
⎩

∫
RN

(|∇ψδ|p + V(λ
−1
p x)|ψδ|p

⎫⎬
⎭

β

β−p

.

Together with V (0) = 0 and |∇φδ|pp, |∇ψδ|pp < δ, this implies that there is Λδ >0

such that for all l ≥ Λδ, we have

max
t≥0

Iλ(tφδ , tψδ) ≤

⎛
⎜⎜⎜⎝ α − p

pα(αa0)

p
α − p

(2δ)

α

α − p +
β − p

pβ(βa0)

p
β − p

(2δ)

β

β − p

⎞
⎟⎟⎟⎠ λ

1−
N
p . (3:6)

It follows from (3.6) that

Lemma 3.9. Under the assumptions of Lemma 3.7, for any ⊂ > 0, there is Λs >0

such that l ≥ Λs, there exists w̄λ ∈ B with ‖w̄λ‖λ > ρλ, Iλ(w̄λ) ≤ 0 and

max
t≥0

Iλ(tw̄λ) ≤ σλ
1−

N
p ,

where rl is defined in Lemma 3.7.

Proof. This proof is similar to the one of Lemma 4.3 in [10], it can be easily proved.

□

4 Proof of the main result
In the following, we will give the proof of Theorem 2.

Proof. From Lemma 3.9, for any s >0 with 0 < s < a0, there is Λs >0 such that for l
≥ Λs, we obtain
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cλ = inf
γ∈�λ

max
t∈[0,1]

Iλ(γ (t)) ≤ σλ
1−

N
p ,

where �λ = {γ ∈ C([0, 1], B) : γ (0) = 0, γ (1) = w̄λ}.
Furthermore, Lemma 3.6 implies that Il satisfies (PS)cl condition. Hence, by the

mountain-pass theorem, there is (ul, vl) Î B satisfying Il (ul, vl) = cl and

I′λ(uλ, vλ) = 0. This shows (ul, vl) is a weak solution of (2.1). Similar to the argument

in [10], we also get that (ul, vl) is a positive least energy solution.

Finally, we prove (ul, vl) satisfies the estimate (2.2). Observe that

Iλ(uλ, vλ) ≤ σλ
1−

N
p and I′λ(uλ, vλ) = 0. we have

Iλ(uλ, vλ) = Iλ(uλ, vλ) − 1
θ
I

′
λ(uλ, vλ)(uλ, vλ)

=
(
1
p

− 1
θ

)∥∥(uλ, vλ)
∥∥p

λ
+

(
1
θ

− 1
p∗

)
λ

∫
RN

K(x)(|uλ|p∗
+ |vλ|p∗

)

+ λ

∫
RN

(
1
θ
(uλHs(uλ, vλ) + vλHt(uλ, vλ)) − H(uλ, vλ)

)

≥
(
1
p

− 1
θ

)∥∥(uλ, vλ)
∥∥p

λ
.

This shows that (ul, vl) satisfies the estimate (2.2). The proof is complete. □
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