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1 Introduction
The purpose of this article is to establish the existence of infinitely many weak solu-

tions for the following Neumann quasilinear elliptic system{−�piui + ai(x)|ui|pi−2u = λFui(x, u1, . . . , un) in �,
∂ui
∂ν

= 0 on ∂�
(1)

for i = 1, ..., n, where Ω ⊂ ℝN (N ≥ 1) is a non-empty bounded open set with a

smooth boundary ∂Ω, pi > N for i = 1, ..., n, �piui = div(|∇ui|pi−2∇ui) is the pi-Lapla-

cian operator, ai Î L∞ (Ω) with ess infΩ ai >0 for i = 1, ..., n, l >0, and F: Ω × ℝn ®
ℝ is a function such that the mapping (t1, t2,..., tn) ® F (x, t1, t2,..., tn) is in C1 in ℝn

for all x ∈ �, Fti is continuous in Ω × ℝn for i = 1,..., n, and F (x, 0,..., 0) = 0 for all x

Î Ω and ν is the outward unit normal to ∂Ω. Here, Fti denotes the partial derivative

of F with respect to ti.

Precisely, under appropriate hypotheses on the behavior of the nonlinear term F at

infinity, the existence of an interval Λ such that, for each l Î Λ, the system (1) admits

a sequence of pairwise distinct weak solutions is proved; (see Theorem 3.1). We use a

variational argument due to Ricceri which provides certain alternatives in order to find

sequences of distinct critical points of parameter-depending functionals. We emphasize

that no symmetry assumption is required on the nonlinear term F (thus, the symmetry

version of the Mountain Pass theorem cannot be applied). Instead of such a symmetry,

we assume a suitable oscillatory behavior at infinity on the function F.

We recall that a weak solution of the system (1) is any

u = (u1, ..., un) ∈ W1,p1 (�) × ... × W1,pn (�) , such that
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∫
�

n∑
i=1

(∣∣∇ui(x)
∣∣pi−2∇ui(x)∇vi(x) + ai(x)

∣∣ui(x)∣∣pi−2
ui(x)vi(x)

)
dx

−λ

∫
�

n∑
i=1

Fui(x, u1(x), ...un(x))vi(x)dx = 0

for all v = (v1, ..., vn) ∈ W1,p1 (�) × ... × W1,pn (�) .

For a discussion about the existence of infinitely many solutions for differential equa-

tions, using Ricceri’s variational principle [1]and its variants [2,3] we refer the reader to

the articles [4-16].

For other basic definitions and notations we refer the reader to the articles [17-22].

Here, our motivation comes from the recent article [8]. We point out that strategy of

the proof of the main result and Example 3.1 are strictly related to the results and

example contained in [8].

2 Preliminaries
Our main tool to ensure the existence of infinitely many classical solutions for Dirich-

let quasilinear two-point boundary value systems is the celebrated Ricceri’s variational

principle [[1], Theorem 2.5] that we now recall as follows:

Theorem 2.1. Let X be a reflexive real Banach space, let F, Ψ: X ® ℝ be two Gâteaux

differentiable functionals such that F is sequentially weakly lower semicontinuous,

strongly continuous, and coercive and Ψ is sequentially weakly upper semicontinuous. For

every r >infX F, let us put

ϕ(r) := inf
u∈�−1(]−∞,r[)

supv∈�−1(]−∞,r[)	(v) − 	(u)

r − �(u)

and

γ := lim inf
r→+∞ ϕ(r), δ := lim inf

r→(infX�)+
ϕ(r).

Then, one has

(a) for every r >infX F and every λ ∈
]
0, 1

ϕ(r)

[
, the restriction of the functional Il =

F - lΨ to F-1(] - ∞, r[) admits a global minimum, which is a critical point (local

minimum) of Il in X.

(b) If g <+∞ then, for each λ ∈
]
0, 1

γ

[
, the following alternative holds:

either

(b1) Il possesses a global minimum,

or

(b2) there is a sequence {un} of critical points (local minima) of Il such that

lim
n→+∞ �(un) = +∞.

(c) If δ <+∞ then, for each λ ∈ ]0, 1
δ

[
, the following alternative holds:

either
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(c1) there is a global minimum of F which is a local minimum of Il,

or

(c2) there is a sequence {un} of pairwise distinct critical points (local minima) of

Il that converges weakly to a global minimum of F.

We let X be the Cartesian product of n Sobolev spaces W1,p1(�) , W1,p2(�) ,... and

W1,pn(�) , i.e., X =
∏n

i=1 W
1,pi(�), equipped with the norm

‖(u1, u2, . . . , un)‖ =
n∑
i=1

‖ui‖pi ,

where

‖ui‖pi =
⎛
⎝∫

�

∣∣∇ui(x)
∣∣pi + ai(x)

∣∣ui(x)∣∣pidx
⎞
⎠

1
pi
, i = 1, . . . ,n.

C = max

{
sup

ui∈W1,pi (�)\{0}

supx∈�

∣∣u(x)∣∣pi
‖ui‖pipi

; i = 1, . . . ,n

}
.

(2)

Since pi >N for 1 ≤ i ≤ n, one has C <+∞. In addition, if Ω is convex, it is known

[23] that

sup
ui∈W1,pi (�)\{0}

supx∈�

∣∣ui(x)∣∣
‖ui‖pi

≤ 2

pi − 1
pi max

⎧⎪⎪⎨
⎪⎪⎩
(

1
‖ai‖1

) 1
pi ;

diam(�)

N

1
pi

(
pi − 1
pi − N

m(�)
)pi − 1

pi ‖ai‖∞
‖ai‖1

⎫⎪⎪⎬
⎪⎪⎭

for 1 ≤ i ≤ n, where ||·||1 = ∫Ω|·(x)| dx, ||·||∞ = supxÎΩ |·(x)| and m(Ω) is the Lebes-

gue measure of the set Ω, and equality occurs when Ω is a ball.

In the sequel, let p = min{pi; 1 ≤ i ≤ n} .
For all g >0 we define

K(γ ) =

{
(t1, . . . , tn) ∈ Rn :

n∑
i=1

|ti| ≤ γ

}
. (3)

3 Main results
We state our main result as follows:

Theorem 3.1. Assume that

(A1)

lim inf
ξ→+∞

∫
�
sup(t1,...,tn)∈K(ξ)F(x, t1, . . . , tn)dx

ξ
p−

<

⎛
⎜⎝ n∑

i=1

(piC)

1
pi

⎞
⎟⎠

p−

lim sup
(t1,...,tn)→∞
(t1,...,tn)∈Rn

+

∫
�
F(x, t1, . . . , tn)dx∑n
i=1

‖ai‖1|ti|pi
pi

where K(ξ) = {(t1, . . . , tn)|
∑n

i=1
|ti| ≤ ξ} (see (3)).
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Then, for each

λ ∈ 
 :=⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

lim sup(t1,...,tn)→∞
(t1,...,tn)∈Rn

+

∫
�
F(x, t1, . . . , tn)dx∑n

i=1
||ai||1|ti|

pi

,

(∑n
i=1 (piC)

1
pi

)p−

lim infξ→+∞

∫
�
sup(t1,...,tn)∈K(ξ)F(x, t1, . . . , tn)dx

ξ
p−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

the system (1) has an unbounded sequence of weak solutions in X.

Proof. Define the functionals F, Ψ: X ® ℝ for each u = (u1, ..., un) Î X, as follows

�(u) =
n∑
i=1

‖ui‖pipi
pi

and

	(u) =
∫
�

F(x, u1(x), . . . , un(x))dx.

It is well known that Ψ is a Gâteaux differentiable functional and sequentially weakly

lower semicontinuous whose Gâteaux derivative at the point u Î X is the functional

Ψ’(u) Î X*, given by

	 ′(u)(v) =
∫
�

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x)dx

for every v = (v1, ..., vn) Î X, and Ψ’: X ® X* is a compact operator. Moreover, F is a

sequentially weakly lower semicontinuous and Gâteaux differentiable functional whose

Gâteaux derivative at the point u Î X is the functional F’ (u) Î X*, given by

�′(u1, . . . , un)(v1, . . . , vn)
∫
�

n∑
i=1

(∣∣∇ui(x)
∣∣pi−2∇ui(x)∇vi(x) + ai(x)

∣∣ui(x)∣∣pi−2
ui(x)vi(x)

)
dx

for every v = (v1, ..., vn) Î X. Furthermore, (F’)-1: X* ® X exists and is continuous.

Put Il: = F - lΨ. Clearly, the weak solutions of the system (1) are exactly the solu-

tions of the equation I′λ(u1, . . . , un) = 0. Now, we want to show that

γ < +∞.

Let {ξm} be a real sequence such that ξm ® +∞ as m ® ∞ and

lim
m→∞

∫
�
sup(t1,...,tn)∈K(ξm)F(x, t1, . . . , tn)dx

ξ
p−
m

= lim inf
ξ→+∞

∫
�
sup(t1,...,tn)∈K(ξ)F(x, t1, . . . , tn)dx

ξ
p−

.

Put

rm = ξ

p−
m⎛

⎜⎜⎜⎜⎝
∑n

i=1 (piC)

1
pi

⎞
⎟⎟⎟⎟⎠

p−

for all m Î N. Since

sup
x∈�

∣∣ui(x)∣∣pi ≤ C ‖ui‖pipi
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for each ui ∈ W1,pi(�) for 1 ≤ i ≤ n, we have

sup
x∈�

n∑
i=1

∣∣ui(x)∣∣pi
pi

≤ C
n∑
i=1

‖ui‖pipi
pi

. (4)

for each u = (u1, u2, ..., un) Î X. This, for each r >0, together with (4), ensures that

�−1 (]−∞, r]) ⊆
{
u ∈ X; sup

n∑
i=1

∣∣ui(x)∣∣pi
pi

≤ Cr for each x ∈ �

}
.

Hence, an easy computation shows that
∑n

i=1 |ui| ≤ ξm whenever u = (u1, ..., un) Î

F-1(] - ∞, rm]). Hence, one has

ϕ(rm) = inf
u∈�−1(]−∞,rm[)

(supv∈�−1(]−∞,rm[)	(v)) − �(u)

rm − �(u)

≤ supv∈�−1(]−∞,rm[)	(v)

rm

≤
∫
�
sup(t1,...,tn)∈K(ξm)F(x, t1, . . . , tn)dx

ξ
p−
m(∑n

i=1 (piC)
1
pi

)p−

.

Therefore, since from Assumption (A1) one has

lim inf
ξ→+∞

∫
�
sup(t1,...,tn)∈K(ξ)F(x, t1, . . . , tn)dx

ξ
p−

< ∞,

we deduce

γ ≤ lim inf
m→+∞ ϕ(rm)

≤

⎛
⎜⎝ n∑

i=1
(piC)

1
pi

⎞
⎟⎠

p−

lim inf
ξ→+∞

∫
�
sup(t1,...,tn)∈K(ξ)F(x, t1, . . . , tn)dx

ξ
p−

< +∞.
(5)

Assumption (A1) along with (5), implies


 ⊆
]
0,

1
γ

[
.

Fix l Î Λ. The inequality (5) concludes that the condition (b) of Theorem 2.1 can be

applied and either Il has a global minimum or there exists a sequence {um} where um =

(u1m, ..., unm) of weak solutions of the system (1) such that limm®∞ ||(u1m, ..., unm)|| = +∞.

Now fix l Î Λ and let us verify that the functional Il is unbounded from below.

Arguing as in [8], consider n positive real sequences {di,m}ni=1 such that√∑n
i=1 d

2
i,m → +∞ as m ® ∞

and

lim
m→+∞

∫
�
F(x, d1,m, . . . , dn,m)dx

∑n
i=1

dpii,m
pi

= lim sup
(t1,...,tn)→∞
(t1,...,tn)∈Rn

+

∫
�
F(x, t1, . . . , tn)dx∑n
i=1

‖ai‖1|ti|pi
pi

.
(6)
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For all m Î N define wm(x) = (d1, m, ..., dn, m). For any fixed m Î N, wm Î X and, in

particular, one has

�(wm) =
n∑
i=1

dpii,m‖ai‖1
pi

.

Then, for all m Î N,

Iλ(wm) = �(wm) − λ	(wm) =
n∑
i=1

dpii,m‖ai‖1
pi

− λ
∫
�

F(x, d1,m, . . . , dn,m)dx.

Now, if

lim sup
(t1,...,tn)→∞
(t1,...,tn)∈Rn

+

∫
�
F(x, t1, . . . , tn)dx∑n
i=1

‖ai‖1|ti|pi
pi

< ∞,

we fix ε ∈

⎤
⎥⎥⎥⎥⎥⎥⎦

1

λ lim sup(t1,...,tn)→∞
(t1,...,tn)∈Rn

+

∫
�
F(x,t1,...,tn)dx

∑n
i=1

‖ai‖1|ti|pi
pi

, 1

⎡
⎢⎢⎢⎢⎢⎢⎣
. From (6) there exists τε such that

∫
�

F(x, d1,m, . . . , dn,m)dx

> ε lim sup
(t1,...,tn)→∞
(t1,...,tn)∈Rn

+

∫
�
F(x, t1, . . . , tn)dx∑n
i=1

‖ai‖1|ti|pi
pi

(
n∑
i=1

dpii,m‖ai‖1
pi

)
∀m > τε ,

therefore

Iλ(wm) ≤

⎛
⎜⎜⎝1 − λε lim sup

(t1,...,tn)→∞
(t1,...,tn)∈Rn

+

∫
�
F(x, t1, . . . , tn)dx∑n
i=1

‖ai‖1|ti|pi
pi

⎞
⎟⎟⎠

n∑
i=1

dpii,m‖ai‖1
pi

∀m > τε ,

and by the choice of ε, one has

lim
m→+∞[�(wm) − λ	(wm)] = −∞.

If

lim sup
ξ→ + ∞

∫
�
F(x, t1, . . . , tn)dx∑n

i=1
‖ai‖1|ti|pi

pi

= ∞,

let us consider K >
1
λ
. From (6) there exists τK such that

∫
�

F(x, d1,m, . . . , dn,m)dx > K
n∑
i=1

dpii,m‖ai‖1
pi

∀m > τK ,

therefore

Iλ(wm) ≤ (1 − λK)
n∑
i=1

dpii,m‖ai‖1
pi

∀m > τK ,
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and by the choice of K, one has

lim
m→+∞[�(wm) − λ	(wm)] = −∞.

Hence, our claim is proved. Since all assumptions of Theorem 2.1 are satisfied, the

functional Il admits a sequence {um = (u1m, ..., unm)} ⊂ X of critical points such that

lim
m→∞

∥∥(u1m, . . . , unm)∥∥ = +∞,

and we have the conclusion. □
Here, we give a consequence of Theorem 3.1.

Corollary 3.2. Assume that

(A2) lim infξ→+∞
∫
�
sup(t1 ,...,tn)∈K(ξ )F(x,t1,...,tn)dx

ξ
p− <

⎛
⎜⎝∑n

i=1
(piC)

1
pi

⎞
⎟⎠

p−

;

(A3) lim sup(t1,...,tn)→∞
(t1,...,tn)∈Rn

+

∫
�
F(x,t1,...,tn)dx∑n
i=1

‖ai‖1|ti|pi
pi

> 1.

Then, the system

{−�piui + ai(x)|ui|pi−2u = Fui(x, u1, . . . , un) in �,
∂ui
∂ν

= 0 on ∂�

for 1 ≤ i ≤ n, has an unbounded sequence of classical solutions in X.

Now, we want to present the analogous version of the main result (Theorem 3.1) in

the autonomous case.

Theorem 3.3. Assume that

(A4)

lim inf
ξ→+∞

sup(t1,...,tn)∈K(ξ)F(t1, . . . , tn)

ξ
p−

<

⎛
⎜⎝ n∑

i=1

(piC)

1
pi

⎞
⎟⎠

p−

lim sup
(t1,...,tn)→∞
(t1,...,tn)∈Rn

+

F(t1, . . . , tn)∑n
i=1

‖ai‖1|ti|pi
pi

where K(ξ) = {(t1, . . . , tn)|
∑n

i=1 |ti| ≤ ξ} (see (3)).

Then, for each

λ ∈ 
 :=⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
F(t1,...,tn)

lim sup(t1 ,...,tn)→∞
(t1 ,...,tn)∈Rn

+

∑n
i=1

‖ai‖1|ti|
pi

,

⎛
⎜⎝∑n

i=1 (piC)

1
pi

⎞
⎟⎠

p−

lim infξ→+∞
sup(t1 ,...,tn )∈K(ξ )F(t1 ,...,tn)

ξ
p−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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the system

{−�piui + ai(x)|ui|pi−2u = λFui(u1, . . . , un) in �,
∂ui
∂ν

= 0 on ∂�

has an unbounded sequence of weak solutions in X.

Proof. Set F (x, u1, ..., un) = F (u1, ..., un) for all x Î Ω and (u1, ..., un) Î ℝn. The con-

clusion follows from Theorem 3.1. □
Remark 3.1. We observe in Theorem 3.1 we can replace ξ ® +∞ and (t1, ..., tn) ®

(+∞, ..., +∞) with ξ ® 0+ (t1, ..., tn) ® (0+, ..., 0+), respectively, that by the same way as

in the proof of Theorem 3.1 but using conclusion (c) of Theorem 2.1 instead of (b),

the system (1) has a sequence of weak solutions, which strongly converges to 0 in X.

Finally, we give an example to illustrate the result.

Example 3.1. Let Ω ⊂ ℝ2 be a non-empty bounded open set with a smooth boundary

ϑΩ and consider the increasing sequence of positive real numbers given by

an := 2, an+1 := n!(an)

5
4 + 2

for every n ≥ 1. Define the function

F(t1, t2) =

⎧⎪⎨
⎪⎩ (an+1)

5e
−

1

1 − [(t1 − an+1)
2 + (t2 − an+1)

2] (t1, t2) ∈ ⋃n≥1 B((an+1, an+1), 1),
0 otherwise

(7)

where B((an+1, an+1), 1)) be the open unit ball of center (an+1, an+1). We observe that

the function F is non-negative, F (0, 0) = 0, and F Î C1(ℝ2). We will denote by f and g,

respectively, the partial derivative of F respect to t1 and t2. For every n Î N, the

restriction F on B((an+1, an+1), 1) attains its maximum in (an+1, an+1) and F (an+1, an+1)

= (an+1)
5,

then

lim sup
n→+∞

F(an+1, an+1)
a3n+1
3 + a4n+1

4

= +∞

So

lim sup
(t1,t2)→(+∞,+∞)

F(t1, t2)
|t1|3
3 + |t2|4

4

= +∞

On the other by setting yn = an+1 - 1 for every n Î N, one has

sup
(t1,t2)∈K(yn)

F(t1, t2) = a5n ∀n ∈ N

Then

lim
n→∞

sup(t1,t2)∈K(yn)F(t1, t2)

(an+1 − 1)3
= 0,
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and hence

lim inf
ξ→∞

sup(t1,t2)∈K(ξ)F(t1, t2)
ξ3

= 0.

Finally

0 = lim inf
ξ→+∞

sup(t1,t2)∈K(ξ)F(t1, t2)
ξ3

< ((3C)

1
3 + (4C)

1
4 )

3

lim sup
(t1,t2)→(+∞,+∞)(t1 ,t2 )∈Rn

+

F(t1, t2)
|t1|3
3 + |t2|4

4

= +∞.

So, since all assumptions of Theorem 3.3 is applicable to the system⎧⎪⎨
⎪⎩

−�3u + |u| u = λf (u, v) in �,
−�4v + |v|2g = λg(u, v) in �,
∂u
∂ν

=
∂v
∂ν

= 0 on∂�

for every l Î [0, +∞[.
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