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1 Introduction
Recently, much attention has been paid to the fractional differential equations due to

its wide application in physics, engineering, economics, aerodynamics, and polymer

rheology etc. For the basic theory and development of the subject, we refer some con-

tributions on fractional calculus, fractional differential equations, see Delbosco [1],

Miller [2], and Lakshmikantham et al. [3-7]. Especially, there have been some articles

dealing with the existence of solutions or positive solutions of boundary-value pro-

blems for nonlinear fractional differential equations (see [8-20] and references along

this line). For examples, Jiang [16] obtained the existence of positive solution for

boundary value problem of fractional differential equation

Dα
0+u(t) + f (t, u(t)) = 0, u(0) = 0, u(1) = 0, 1 < α ≤ 2,

where Dα
0+u(t) denotes the standard Riemann-Liouville fractional order derivative.

Agarwal et al. [17] investigated the existence of positive solution of singular problem

Dα
0+u(t) = f (t, u(t), Dμu(t)), u(0) = u(1) = 0,

where 1 < a <2, 0 ≤ μ ≤ a - 1 and f satisfies the Caratheodory conditions on [0,1] ×

[0, ∞) × R and f(t, x, y) is singular at x = 0. The existence results of positive solutions

are established by using regularization and sequential techniques.

As to the nonlocal problem, Bai [18] established the existence of positive solution for

three-point boundary value problem of fractional differential equation

Dα
0+u(t) + f (t, u(t)) = 0, u(0) = 0, u(1) = βu(η), η ∈ (0, 1).

By using the fixed point theorems on cones, Li et al. [19] established the existence of

positive solutions for problem
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Dα
0+u(t) + f (t, u(t)) = 0, u(0) = 0, Dβ

0+u(1) = aDβ
0+u(ξ),

where 1 < a ≤ 2, 0 ≤ b ≤ 1, 0 ≤ a ≤ 1, ξ Î (0, 1) and aξÎa-b-2 ≤ 1 - b, 0 ≤ a - b - 1

and f : [0,1] × [0, ∞) ® [0, ∞) satisfies Caratheodory type conditions.

Very recently, Moustafa and Nieto [20] considered the nontrivial solution for follow-

ing higher order multi-point problem

Dα
0+u(t) + f (t, u(t)) = 0, n − 1 ≤ α ≤ n, n ∈ N (1:1)

u(0) = u′(0) = · · · = u(n−2) = 0, u(1) =
m−2∑
i=1

βiu(ηi), (1:2)

where n ≥ 2, 0 < hi <1, bi >0, i = 1, 2, . . . , m - 2,
m−2∑
i=1

βiη
α−1
i < 1 , f Î C([0,1] × R,

R). The existence of nontrivial solution was established by using the nonlinear alterna-

tive of Leray-Schauder. But, existence of positive solution for problem (1.1), (1.2), as

far as we know, has not been considered before. Considering that problem (1.1) and

(1.2) are more general than problems studied before, we believe that it is interesting to

investigate the existence of positive solution for this problem.

In this article, we consider the existence and multiplicity of positive solutions for

problem (1.1) and (1.2). We obtain some properties of the associated Green’s function.

By using these properties of Green’s function and fixed point theorems on cones, we

establish the existence and multiplicity of positive solutions.

2 Preliminaries
For the convenience of the reader, we present here the basic definitions and theory

from fractional calculus theory. These definitions and theory can be founded in the lit-

erature [1].

Definition 2.1 The fractional integral of order a > 0 of a function u(t): (0, ∞) ® R is

given by

Iα0+u(t) =
1

�(α)

t∫
0

(t − s)α−1u(s)ds

provided the right side is point-wise defined on (0, ∞).

Definition 2.2 The fractional derivative of order a >0 of a continuous function u(t):

(0, ∞) ® R is given by

Dα
0+u(t) =

1
�(n − α)

(
d
dt

)n t∫
0

u(s)

(t − s)α−n+1 ds

where n = [a] + 1, provided that the right side is point-wise defined on (0, ∞).

Lemma 2.1 Let a >0. If we assume u Î C(0, 1) ∪ L(0, 1), then problem Dα
0+u(t) = 0

has solution

u(t) = C1t
α−1 + C2t

α−2 + · · · + CNt
α−N

Liu Boundary Value Problems 2012, 2012:57
http://www.boundaryvalueproblems.com/content/2012/1/57

Page 2 of 9



for some Ci Î R, i = 1, 2, . . . , N, where N is the smallest integer greater than or

equal to a.
Lemma 2.2 Assume that u Î C(0, 1) ∪ L(0, 1) with a fractional derivative of order a >

0 that belongs to C(0, 1) ∪ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CNt

α−N ,

for some Ci Î R, i = 1, 2, . . . , N.

Lemma 2.3 [21] Let E be a Banach space and K ⊂ E be a cone. Assume Ω1, Ω2 are

open bounded subsets of E with 0 ∈ �1 ⊂ �̄1 ⊂ �2 , and let

A : K ∩ (�2\�̄1
)→ K

be a completely continuous operator such that

||Au|| ≤ ||u||, u ∈ K ∩ ∂�1, and||Au|| ≥ ||u||, u ∈ K ∩ ∂�2 or

||Au|| ≥ ||u||, u ∈ K ∩ ∂�1, and ||Au|| ≤ ||u||, u ∈ K ∩ ∂�2,

then A has a fixed point in K ∩ (�2\�̄1) .

Let 0 < a < b be given and let ψ be a nonnegative continuous concave functional on

the cone C. Define the convex sets Cr and C(ψ , a, b) by

Cr = {u ∈ C| ||u|| < r}
C(ψ , a, b) = {u ∈ C| a ≤ ψ(u), ||u|| ≤ b}.

Lemma 2.4 [22] Let T : C̄r → C̄r be a completely continuous operator and let ψ be a

nonnegative continuous concave functional on C such that ψ(u) ≤ ||u|| for all u ∈ C̄r .

Suppose that there exist 0 < a < b < d ≤ c such that

(S1) {u Î C(ψ , b, d)| ψ(u) > b}≠ ∅ and ψ(Tu) > b for u Î C(ψ , b, d),

(S2) ||Tu|| < a for ||u|| ≤ a and

(S3) ψ(Tu) > b for u Î C(ψ, b, c) with ||Tu|| ≥ d.

Then T has at least three fixed points u1, u2, and u3 such that

||u1|| < a, b < ψ(u2), ||u3|| > a, ψ(u3) < b.

Lemma 2.5 Denote h0 = 0, hm-1 = 1 and b0 = bm-1 = 0. Given y(t) Î C[0,1]. The

problem

Dα
0+u(t) + y(t) = 0, u(0) = u′(0) = · · · = u(n−2) = 0, u(1) =

m−2∑
i=1

βiu(ηi), (3:1)

is equivalent to

u(t) =

1∫
0

G(t, s)y(s)ds,

where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tα−1

�(α)
(
1 −

m−1∑
k=0

βkη
α−1
k

)
[
(1 − s)α−1 −

m−1∑
k=i

βk(ηk − s)α−1

]
t ≤ s

−(t − s)α−1

�(α)
+

tα−1

�(α)
(
1 −

m−1∑
k=0

βkη
α−1
k

)
[
(1 − s)α−1 −

m−1∑
k=i

βk(ηk − s)α−1

]
t ≥ s
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Furthermore, the function G(t, s) is continuous on [0,1] × [0,1] and satisfies the con-

dition

G(t, s) > 0, t, s ∈ [0, 1].

Proof. From Lemma 2.1, we get that problem (3.1) is equivalent to

u(t) = −
t∫

0

(t − s)α−1

�(α)
y(s)ds + C1t

α−1 + C2t
α−2 + · · · + Cnt

α−n.

The boundary conditions u(0) = u’(0) = ... = u(n-2) = 0 induce that C2 = C3 = ... =

Cn = 0.. Considering the boundary condition u(1) =
m−1∑
i=0

βiu(ηi) , we get

C1 =
1(

1 −
m−1∑
i=0

βiη
α−1
i

)
�(α)

⎡
⎣ 1∫

0

(1 − s)α−1y(s)ds −
m−1∑
i=0

βi

ηi∫
0

(ηi − s)α−1y(s)ds

⎤
⎦ .

u(t) = − 1
�(α)

t∫
0

(t − s)α−1y(s)ds +
tα−1(

1 −
m−1∑
i=0

βiη
α−1
i

)
�(α)

×
⎡
⎣ 1∫

0

(1 − s)α−1y(s)ds −
m−1∑
i=0

βi

ηi∫
0

(ηi − s)α−1y(s)ds

⎤
⎦ .

Then for hi-1 <t <hi, i = 1, 2,. . . , m - 1,

u(t) = − 1
�(α)

t∫
0

(t − s)α−1y(s)ds

+
tα−1(

1 −
m−2∑
i=1

βiη
α−1
i

)
�(α)

⎡
⎣ 1∫

0

(1 − s)α−1y(s)ds −
m−2∑
i=1

βi

ηi∫
0

(ηi − s)α−1y(s)ds

⎤
⎦

=
i−1∑
k=1

ηk∫
ηk−1

⎡
⎢⎢⎢⎣− 1

�(α)
(t − s)α−1 +

tα−1(
1 −

m−2∑
i=1

βiη
α−1
i

)
�(α)

⎛
⎝(1 − s)α−1 −

m−1∑
j=k

βj(ηj − s)α−1

⎞
⎠
⎤
⎥⎥⎥⎦y(s)ds

+

t∫
ηi−1

⎡
⎢⎢⎢⎣− 1

�(α)
(t − s)α−1 +

tα−1(
1 −

m−2∑
i=1

βiη
α−1
i

)
�(α)

⎛
⎝(1 − s)α−1 −

i−1∑
j=i

βj(ηj − s)α−1

⎞
⎠
⎤
⎥⎥⎥⎦ y(s)ds

+

ηi∫
t

tα−1(
1 −

m−2∑
i=1

βiη
α−1
i

)
�(α)

⎡
⎣(1 − s)α−1 −

m−1∑
j=i

βj(ηj − s)α−1

⎤
⎦ y(s)ds

+
m−1∑
k=i

ηk∫
ηk−1

tα−1(
1 −

m−2∑
i=1

βiη
α−1
i

)
�(α)

⎡
⎣(1 − s)α−1 −

m−1∑
j=k

βj(ηj − s)α−1

⎤
⎦ y(s)ds =

1∫
0

G(t, s)y(s)ds

Furthermore, for hi-1 ≤ s ≤ hi, i = 1, 2, . . . , m-1 and t ≤ s(
�(α)

(
1 −

m−1∑
k=0

βkη
α−1
k

))
G(t, s) ≥ tα−1

m−2∑
k=i

(
(1 − s)α−1 − (ηk − s)α−1) > 0.

Liu Boundary Value Problems 2012, 2012:57
http://www.boundaryvalueproblems.com/content/2012/1/57

Page 4 of 9



For hi-1 ≤ s ≤ hi, i = 1, 2, . . . , m-1 and t ≥ s(
�(α)

(
1 −

m−1∑
k=0

βkη
α−1
k

))
G(t, s) ≥ tα−1

[
(1 − s)α−1 −

(
1 − s

t

)α−1
]

+tα−1
i−1∑
k=0

βkη
α−1
k

[(
1 − s

t

)α−1
−
(
1 − s

ηk

)α−1
]

> 0.

□
Lemma 2.6 The function G(t, s) satisfies the following conditions:

(1) G(t, s) ≤ G(s, s), t, s Î [0, 1],

(2) There exists function g(s) such that minηm−2≤s≤1G(t, s) ≥ γ (s)G(s, s), 0 < s < 1 .

Proof (1) For hi-1 <s <hi, i = 1, 2, . . . , m-1, Denote

g1(t, s) =
tα−1

�(α)
(
1 −

m−1∑
k=0

βkη
α−1
k

)
[
(1 − s)α−1 −

m−1∑
k=i

βk(ηk − s)α−1

]
,

g2(t, s) = −(t − s)α−1

�(α)
+

tα−1

�(α)
(
1 −

m−1∑
k=0

βkη
α−1
k

)
[
(1 − s)α−1 −

m−1∑
k=i

βk(ηk − s)α−1

]
.

The facts that

∂g1(t, s)
∂t

=
(α − 1)tα−2

�(α)
(
1 −

m−1∑
k=0

βkη
α−1
k

)
[
(1 − s)α−1 −

m−1∑
k=i

βk(ηk − s)α−1

]
> 0,

∂g2(t, s)
∂t

= −(α − 1)(t − s)α−2

�(α)
+

(α − 1)tα−2

�(α)
(
1 −

m−1∑
k=0

βkη
α−1
k

)
[
(1 − s)α−1 −

m−1∑
k=i

βk(ηk − s)α−1

]
< 0

imply that g1(t, s) is decreasing with respect to t for [hi-1, s] and g2 (t, s) is increasing

with respect to t for [s, hi], i = 1, 2, . . . , m - 1. Thus one can easily check that

G(t, s) ≤ G(s, s), t, s ∈ [0, 1].

(2) For hm-2 <t <1, denote

γi(t, s) = −(t − s)α−1

�(α)
+

tα−1

�(α)
(
1 −

m−1∑
k=0

βkη
α−1
k

)
[
(1 − s)α−1 −

m−1∑
k=i

βk(ηk − s)α−1

]
,

γ (s) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γi(ηm−2, s),
1

�(α)
(
1 −

m−1∑
k=0

βkη
α−1
k

)
[
(1 − s)α−1 −

m−1∑
k=i

βk(ηk − s)α−1

]⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, i = 1, 2, . . . , m − 2

γi(t, s) = −(t − s)α−1

�(α)
+

tα−1

�(α)
(
1 −

m−1∑
k=0

βkη
α−1
k

)
[
(1 − s)α−1 −

m−1∑
k=i

βk(ηk − s)α−1

]
,

γ (s) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γi(ηm−2, s),
1

�(α)
(
1 −

m−1∑
k=0

βkη
α−1
k

)
[
(1 − s)α−1 −

m−1∑
k=i

βk(ηk − s)α−1

]⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, i = 1, 2, . . . , m − 2

Thus we have

γ (s) > 0, min
ηm−2<t<1

G(t, s) ≥ γ (s)G(s, s) = γ (s) max
0≤t≤1

G(t, s).
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3 Main results
Let X = C[0,1] be a Banach space endowed with the norm

||u|| = max
0≤t≤1

|u(t)|, u ∈ X.

Define the cone P ⊂ E by P = {u Î X | u(t) ≥ 0}.

Theorem 3.1 Define the operator T : P ® X,

Tu(t) =

1∫
0

G(t, s)f (s, u(s))ds,

then T : P ® P is completely continuous.

Proof From the nonnegative and continuous properties of function f and G(t, s), one

can obtain easily that the operator T : P ® P and T is continuous. Let Ω be a bounded

subset of cone P. That is, there exists a positive constant M1 > 0 such that ||u|| ≤ M1

for all u Î Ω. Thus for each u Î Ω, t1, t2 Î [0,1], one has

|Tu(t1) − Tu(t2)| =

∣∣∣∣∣∣
1∫

0

(G(t1, s) − G(t2, s))f (s, u(s))ds

∣∣∣∣∣∣
≤

1∫
0

∣∣G(t1, s) − G(t2, s)
∣∣f (s, u(s))ds

≤ M2

1∫
0

∣∣G(t1, s) − G(t2, s)
∣∣ds

Then the continuity of function G(t, s) implies that T is equicontinuity on the

bounded subset of P . On the other hand, for u Î Ω, there exist constant M2>0 such

that

f (t, u) ≤ M2, t ∈ [0, 1], u ∈ �.

Then

Tu(t) =

1∫
0

G(t, s)f (s, u(s))ds ≤ M2

1∫
0

G(s, s)ds.

which implies that T is uniformly bounded on the bounded subset of P . Then an

application of Ascoli-Arezela ensures that T : P ® P is completely continuous.

Theorem 3.2 Assume that there exist two positive constant r2 >
N
M

r1 > 0 such that

(A1) f(t, u) ≤ Mr2, (t, u) Î [0, 1] × [0, r2]

(A2) f(t, u) ≥ Nr1, (t, u) Î [0, 1] × [0, r1]

where

M =

⎛
⎝ 1∫

0

G(s, s)ds

⎞
⎠

−1

, N =

⎛
⎝ 1∫

ηm−2

γ (s)G(s, s)ds

⎞
⎠

−1

,
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Then problem (1.1) and (1.2) has at least one positive solution u such that r1 ≤ ||u||

≤ r2.

Proof Let Ω2 = {u Î P | ||u|| ≤ r2}. For u Î ∂Ω2, considering assumption (A1), we

have

0 ≤ u(t) ≤ r1, and f (t, u) ≥ Mr2, t ∈ [0, 1],

Tu(t) =

1∫
0

G(t, s)f (s, u(s))ds ≤ Mr2

1∫
0

G(s, s)ds ≤ r2.

Thus ||Tu|| ≤ ||u||, u Î ∂Ω2.

Let Ω1 = {u Î P | ||u|| ≤ r1}. For u Î ∂Ω1, considering assumption (A2), we have

0 ≤ u(t) ≤ r1, and f (t, u) ≥ Nr2, t ∈ [0, 1]

Thus for t Î [hm-2, 1], we get

Tu(t) =

1∫
0

G(t, s)f (s, u(s))ds ≥
1∫

ηm−2

γ (s)G(s, s)f (s, u(s))ds ≥ r1,

which gives that ||Tu|| ≥ ||u||, u Î ∂Ω1. An application of Lemma (2.5) ensures the

existence of positive solution u(t) of problem (1.1) and (1.2).

Theorem 3.3 Suppose that there exist constants 0 < a < b < c such that

(A3) f(t, u) < Ma, for (t, u) Î [0,1] × [0, a],

(A4) f(t, u) ≥ Nb, for (t, u) Î [hm-2, 1] × [b, c],

(A5) f(t, u) ≤ Mc, for (t, u) Î [0,1] × [0, c],

then problem (1.1) and (1.2) has at least three positive solution u1, u2, u3 with

max
0≤t≤1

|u1| ≤ a, b < min
ηm−2≤t≤1

|u2| < max
0≤t≤1

|u2| ≤ c, a < max
0≤t≤1

|u3| ≤ c, min
ηm−2≤t≤1

|u3| < b.

Proof Let the nonnegative continuous concave functional θ on the cone P defined by

θ(u) = min
ηm−2≤t≤1

|u(t)|.

If u ∈ P̄c , then ||u|| ≤ c. Then by condition (A5), we have

f (t, u) ≤ Mc, for (t, u) ∈ [0, 1] × [0, c].

Thus

|T(u)(t)| =

∣∣∣∣∣∣
1∫

0

G(t, s)f (s, u(s))ds

∣∣∣∣∣∣ ≤ Mc

1∫
0

G(s, s)ds = c.

which yields that T : P̄c → P̄c . In the same way, we get that

‖Tu‖ < a, for u ≤ a.

We chose the function u(t) =
b + c
2

t ∈ [0, 1] . We claim that

b + c
2

∈ {u ∈ P(θ , b, c)|θ(u) > b} , which ensures that {u Î P (θ, b, c)|θ(u) > b} ≠ ∅.
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And for u Î P (θ, b, c), we have

f (t, u(t)) ≥ Nb, t ∈ [ηm−2, 1]

Then

θ(Tu) = min
ηm−2≤t≤1

∣∣∣∣∣∣
1∫

0

G(t, s)f (s, u(s))ds

∣∣∣∣∣∣ > Nb

1∫
ηm−2

γ (s)G(s, s)ds = b,

which yields that θ(Tu) >b, for u Î P (θ, b, c).

An application of Lemma (2.6) ensures that problem (1.1) and (1.2) has at least three

positive solutions with

max
0≤t≤1

|u1| ≤ a, b < min
ηm−2≤t≤1

|u2| < max
0≤t≤1

|u2| ≤ c, a < max
0≤t≤1

|u3| ≤ c, min
ηm−2≤t≤1

|u3| < b.
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