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Abstract

We consider nonstationary 3-D flow of a compressible viscous heat-conducting
micropolar fluid in the domain to be the subset of R* bounded with two concentric
spheres that present solid thermoinsulated walls. In thermodynamical sense fluid is
perfect and polytropic. Assuming that the initial density and temperature are strictly
positive we will prove that for smooth enough spherically symmetric initial data there
exists a spherically symmetric generalized solution locally in time.
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strong convergence

1 Introduction

The theory of micropolar fluids is introduced in [1] by Eringen. Various problems with dif-
ferent initial and boundary conditions for incompressible micropolar fluid are presented
in [2], but the theory of compressible micropolar fluid is still in the beginning. N. Mu-
jakovic in [3] developed the model for one-dimensional isotropic, viscous, compressible
micropolar fluid which is in thermodynamical sense perfect and polytropic. In the same
work, the local existence of the solution for homogeneous boundary conditions is proved.
N. Mujakovic in [4] and in the references cited therein proved the local and global exis-
tence of inhomogeneous boundary conditions for velocity and microrotation as well as
stabilization and regularity. In [5] the Cauchy problem for the described problem was also
considered. In the last years we find some interesting works with different kind of problems
concerning micropolar fluid, e.g., [6, 7], but till now the described model of compressible
micropolar fluid in three-dimensional case has not been considered.

In this work we consider the three-dimensional model with spherical symmetry. The
first article in which the problem of spherical symmetry was described is [8], but for clas-
sical fluid. The spherical symmetry for classical fluid is also considered in articles [9-12].

In the setting of the field equations we use the Eulerian description.

In what follows we use the notation:

p - mass density
v - velocity
P - pressure
T - stress tensor
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T, - an axial vector with the Cartesian components (T); = &;x Tjx, where g is

Levi-Civita alternating tensor®

symT = L(T + T7), skwT = (T - T7)

® - microrotation velocity

Wgkw - skew tensor with Cartesian components (@gw)ij = £xij@k

j1 - microinertia density (a positive scalar field)

C - couple stress tensor

0 - absolute temperature

E - internal energy density

q - heat flux density vector

f - body force density

g - body couple density

8 - body heat density

The problem we consider here is based on local forms of the conservation laws for mass,

momentum, momentum moment and energy, which are stated respectively as follows:

p+pdivv =0, (1)
ov=divT + pf, (2)
pji@ = divC + T, + pg, 3)
PE=T:Vv+C:Vo-T, w-divq + ps, (4)

where a denotes material derivative of a field a:

. Oa
a=—+(Va)-v.
at

The scalar product of tensors A and B is defined by
A:B=t(A"B).

The linear constitutive equations for stress tensor, couple stress tensor and heat flux den-

sity vector are respectively in the forms:

T=(—p+Adivv)l + 2usym Vv — 2, skw VV — 24, @k (5)

C = ¢o(divw)I + 2¢; sym Vw — 2¢, skw Vw, (6)

q=—kVo, (7)
where

A, u - coefficients of viscosity,
Wrs Co,r Cd, €4 - coefficients of microviscosity,
k - heat conduction coefficient

are constants with the properties

uw>0, 31 +2u >0, =0, (8)

cqs >0, 3co +2¢4 >0, lca — ¢al < cq + Cay k=>0. )
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Assuming that the fluid is perfect and polytropic, for pressure and internal energy we
have the equations

p=Rpb, (10)

E=c¢,0, (11)

where R and ¢, are positive constants.

Let Q = {x € R%,a < |x| < b}, a > 0, denote the domain bounded by two concentric
spheres with radii @ and b. The boundary of the described domain is Q2 = {x € R3, |x| =
a or |x| = b}. We shall consider the problem (1)-(11) in the region Qr = 2x ]0, T[ (where
T > 0 is arbitrary) with the following initial conditions:

p(x,0) = po(x), v(x,0) = vo(x), ®(x,0) = wo(x), 0(x,0) = 6p(x), (12)

for x € Q2 and boundary conditions

a0
Vs =0,  @lhe=0, wl, 0, 13)
for 0 < ¢ < T’; the vector v is an exterior unit normal vector.

For simplicity we also assume that f =g =0and § = 0.

The initial boundary problems for the system (1)-(13) so far have not been considered
in three-dimensional case. The same and similar models in one-dimensional case were
considered in [3, 5,13] and [4]. In [2] the three-dimensional model was considered but for
an incompressible micropolar fluid.

In this paper we prove the local existence of generalized spherically symmetric solution
to the problem (1)-(13) in the domain €2, assuming that the initial functions are also spher-
ically symmetric. In the proof we use the Faedo-Galerkin method. We follow some ideas
of [14] where this method was applied to a classical fluid (where microrotation is equal to
zero) in one-dimensional case as well as the ideas from [3] and [13] where the same result
as here was provided for one-dimensional case.

The paper is organized as follows. In the second section, we derive a spherically symmet-
ric form of (1)-(4), introduce Lagrangian description, and present the main result. In the
third section, we consider an approximate problem and get an approximate solution for
each # € N. In the forth section, we prove uniform a priori estimates for the approximate
solutions. The proof of the main result is given in the fifth section.

2 Spherically symmetric form and the main result
We first derive the spherically symmetric form of (1)-(7) and (10)-(11). A spherically sym-
metric solution of (1)-(7) has the form:

vt = 2 t), et = —w(nt), i=1,23
r r (14)
,O(X,t)Z,O(I",t), Q(X,t)Ze(}",t),

where x = (x1,%2,%3) € R3, r = x|, v = (v1, V2, v3) and @ = (w1, w2, w3). We assume that

po(x) = po(r), vo(x)=§vO(r), wo<x)=§wo<r), Bo(x) = 0o (r), (15)
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where pg, Vg, wg and 6y are known real functions defined on ]a, b[, and thus we reduce
system (1)-(7) and conditions (10)-(13) to the following equations for p(r,£), v(r,£), o(r, £)
and 6(r, t) of the form:

ap 0 20

Rk =0, 16

8t+8r(Vp)+ v (16)
av av d d (dv %

— +v— ) =—R—(p0) + (A +2u)— | — +2- |, 17
p<8t+var> Br(p )+ (e M)8r<8r+ r) a7
0w w 4 ( 9 )8 w 2a) (18)

— v | =40+ ——=+2—),

o ot Var Hr@ R0+ 26 ar 8r+ r
20 a0 3%0 206 b
pey| —+v— )=kl —+—-—— ) -Rpb oY
ot or or:  ror or r
3 2 3
+(A+2u) A 14 —4-pLK 2V (19)
ar r r\ or r
Jw 2 o w 9
+(co+2c)| — +2— ) —dcg— 12— +— | +4u,w
ar ar

with the following initial and boundary conditions

p(r,0) = po(r), v(r,0) = vo(r), (r,0) = wo(r), 20)
0(r,0)=6y(r), rela,bl,

Wa,t) =v(b,t) =0, w(a,t) = w(b,t)=0,

a6 a0
—(a,t)= —(b,t)=0, O0<t<T.
ar ar

(21)

To investigate the local existence, it is convenient to transform the system (16)-(19) to
that in Lagrangian coordinates. The Eulerian coordinates (r,¢) are connected to the La-

grangian coordinates (&, ¢) by the relation

r(é,t)=ro(€)+/0 v(§,t)dr,  ro(§) =r(§,0)=¢, (22)
where V(&,¢) is defined by
(&, 1) = v(r(E, 1), 1). (23)
We introduce the new function n by
&
06)= [ 2o (24)

Note that if pg(s) > O for s € ]a, b[ (which is assumed in Theorem 2.1 later), then there exists

an inverse function n~!. Let the constant L be defined as

b
n(b) = f 2 pols)ds = L. (25)
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From (16) we can easily get the equation

d
pa—;rz = po(£)€7, (26)
ie.,
r(£,t) &
/ p(s, £)s* ds = / po(s)s? ds. (27)

It is useful to introduce the next coordinate
& =L7"n(§) (28)

and the following functions

Similarly as in [15], for a new coordinate x" we get
0=L"n(@) <&’ <L7n(b) =1. (29)

Taking into account (26) and (24), we obtain that the functions p’, v/, @', 8’ and r’ satisfy

the system that we write omitting the primes for simplicity:

ap 1,0,,

P _Zp2 (), 30
o= 1 5 (30)
v R, 2w, 0 (9,

o2 (00 — | p— , 31
TR AR My Pl 8x<p8x(r ) (81
w 4, co+2cq4 , O 0,4

do _ N I (2 , 32
Por =75 T e T Pas ) (32)

30 k3, 9\ R , 3 ,, . r+2ul 3 ,,. T
-, i [ % Bl Ml (PR
Lot~ o2’ ox (r P ax) AL Uy s e G

_4_# i o Co+2¢q i 9 2_4cd i S 77
cVLpax(rV )+ g [,o P (r a))] (ro®) + ®
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in]0,1[ x ]0, T'[, where T > 0 is arbitrary. Now we have the following boundary and initial

conditions
0,8 =v(1,t) = 0, (34)
@(0,8) = w(1,£) =0, (35)
90 90
5(0’ t) = 5(1’ 1) =0, (36)
fort€]0, T,
p(x,0) = po(x), v(x,0) = vo(x), (37)
w(x,0) = wo(x), 0(x,0) = Oy (x), (38)

for x €]0,1[. We also have

r(x, t) = ro(x) + /tv(x, 7)dt, (x,t)€]0,1[ x]0,T]. (39)
0
From
ar L
a(x' b= o(x, )re(x, )

putting ¢ = 0 and integrating over ]0, x[, we get

ro(x)=<a3+3L/x ! dy)3, x€]0,1], (40)
o Poy)

where a > 0 is a radius of the smaller boundary sphere.

We assume the inequalities
po(x) = m, Oo(x) > m forx €]0,1], (41)

where m € R*.
Before stating the main result, we introduce the following definition.

Definition 2.1 A generalized solution of the problem (30)-(38) in the domain Qr =
10,1[ x ]0, T'[ is a function

&) = (p,v,0,0)(x,8), (x1t)€Qr, (42)

where
p € L®(0, T;H'(10,1[)) N H'(Qr), iQanp >0, (43)
v,0,0 € L%(0, T;H'(10,1[)) N H'(Qr) N L*(0, T; H*(10,1[)), (44)

that satisfies Equations (30)-(33) a.e. in Q7 and conditions (34)-(38) in the sense of traces.
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Remark 2.1 From the embedding and interpolation theorems (e.g., [16] and [17]) one can
conclude that from (43) and (44) it follows:

p € L*(0,T;C([0,1])) N C([0, T1,L*(10,1[)), (45)
v,0,0 € L*(0, T;C([0,1])) n C([0, T1,H'(10,1[)), (46)
v,0,0 € C(Qr). (47)

It is easy to check that the solution (42) with properties (43)-(44) satisfies the condition
for a strong solution of the described problem.
The aim of this paper is to prove the following statements.

Theorem 2.1 Let the functions

po, 60 € H' (10, 1), (48)
vo, wo € Hy(10,1) (49)

satisfy conditions (41). Then there exists Ty, 0 < To < T, such that the problem (30)-(38)
has a generalized solution in Qy = Qr,, having the property

0>0 inQ,. (50)
For the function r, it holds

re L™(0, T; H*(10,1[)) N H?*(Qo) N C(Qy), (51)

<r<2M inQ,. (52)

Remark 2.2 Notice that the function ry introduced by (40) belongs to H%(]0, 1[). Because
of the embedding H*(]0,1[) C C([0, 1]) we can conclude that there exists M € R* such that

pO(x)!VO(x)!wO(x)’GO(x) EM’ X € [0! 1] (53)
From (40) and (41) we get

ro € CV([0,1]), (54)
<

0<a<ry(x) <M, O<ay <rylx) <M, x€][0,1], (55)

where a; = LM~ and M, = L(ma?®)™".

The proof of Theorem 2.1 is essentially based on a careful examination of a priori es-
timates and a limit procedure. We first study, for each n € N, an approximate problem
and derive the a priori estimates for approximate solutions independent of n by utilizing a
technique of Kazhikov [14, 18] and Mujakovic [3, 13] for one-dimensional case. Using the
obtained a priori estimates and results of weak compactness, we extract the subsequence
of approximate solutions, which, when # tends to infinity, has limit in the same weak sense
on ]0,1[ x ]0, Ty[ for sufficiently small Ty, 0 < Ty < T. Finally, we show that this limit is
the solution to our problem.
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3 Approximate solutions
We shall find a local generalized solution to the problem (30)-(38) as a limit of approximate
solutions

(o V", ",0"), neN, (56)

obtained in what follows. First, we introduce the approximations v" and r” of the functions

vand r by
Vi, t) = Y vi(t)sin(rix), (57)
i=1
(%, t) = ro(x) + /tv”(x,r)dr, (58)
0

where ry(x) is defined by (40) and v/, i = 1,2,...,n are unknown smooth functions defined
onaninterval [0,7,], T, <T.
Then, we can write the solution p” to the problem

ap” el
S L) (V) =0, o w0) = o), 59)

in the similar way as in [3] and [13] in the form

Lpo(x)

L+ po(x) fot(r”)zv” dr’ (69)

p"(x,t) =

Since r* and v" are sufficiently smooth functions, we can conclude that the function p”
is continuous on the rectangle [0,1] x [0, T,,] with the property p"(x,0) = po(x) > m > 0.
Because of aforementioned, we can conclude that there exists such T, 0 < T, < T that

o (x,t) >0, for (x,t)€[0,1] x [0, T,]. (61)

We also introduce the approximations " and 6” of the functions w and 0 respectively by

o"(x,t) = Y o (t)sin(jx), (62)
j=1

0" (x,8) = > _ 603 (t) cos(mkx); (63)
k=0

where a)]” and 6 are again unknown smooth functions defined on an interval [0, T,,],
T, <T.
Evidently, the boundary conditions

V'(0,t) =v"(1,¢) = 0"(0,t) = 0"(1,8) = %(0, t) = %(1, £)=0 (64)

for t €10, T, [ are satisfied.

Page 8 of 25
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According to the Faedo-Galerkin method, we take the following approximate condi-

tions:

Tov' R, 00, ,
[ 15+ 10 )
)»+2M zi na

S (p a((rﬂ)zvﬂ))}sin(m'x)dx=o,

/1 |: A" 4u, "

b

oL of i1 p"
_Co+ 2¢y (r")zi
L2 o

Toe" k 9 (, a4 ,00" R , .3, .2,

[ 5 - 2o ) « B pror L yw)
h2p [0 2 T A D

e A FOR) R= C(ay

CO+2Cdn d N2 n 2 4cdin 2
e R ] )

n)2

(65)

n 0 n\2 n . . _
<p a((r ) ") i|s1n(n;x)dx—0,

(67)

_ 4, (o

¢ p"

:| cos(mkx)dx =0

fori,j=1,...,m,k=0,1,...,n.
Let vo;, woj, and Oy be the Fourier coefficients of the functions vy, wy, and 6, respectively:

1
v0i=2/ vo(x)sin(wix)dx, i=1,...,n,
0
1
a)o,-:Z/ wo(x)sin(wjx)dx, j=1,...,n,
0

1 1
Ooo = / 6o (x) dx, Oox = 2[ Oo(x) cos(mkx)dx, k=1,...,n.
0 0

Let v, wj and 6 be

Vg (x) = Z voi sin(mix), (68)
i=1

(%) = Y wo;sin(mji), (69)
j=1

03 (%) = ok cos(kx). (70)
k=0

We take the initial conditions for v", " and 6" in the form
V' (x,0) = v (x), (71)

" (x,0) = wj (%), (72)

0" (x,0) = 0]/ (x). (73)

Page 9 of 25


http://www.boundaryvalueproblems.com/content/2012/1/69

Drazi¢ and Mujakovi¢ Boundary Value Problems 2012, 2012:69
http://www.boundaryvalueproblems.com/content/2012/1/69

Let z;,, Ay, and ,u,;’lg be

t

com [ ares, meses
0
t

)”;q(t)zfo Z;(f)"g(f)df, »q=1...,n

t
,u;’lg(t)zf zf’(r)zf(r)vg(t)dr, s,Lg=1,...,n
0

then we have

(%, t) = ro(x) + szn(t) sin(m mx),

0" (x,t) = Lpo(x) |:L + 0o 88_x |:r(2) (x) Z z}'(t) sin(rix)

i=1

+ 2r,(x) ZA”(t) sin(r ix) sin(7 jx)
ij=1

n

ijik=1

-1
+ Z /Lgk(t) sin(7 ix) sin (7 jx) sin(nkx)i|i| ,

(77)

(78)

where ro(x) and po(x) are known functions. Taking into account (57), (62), (63), (74)-

(78), from (65)-(67) we obtain for {(vf,wf,@,ﬁ‘,zﬁ’n,)\;q,uflg) (L,mp,q,8Lg=1,...

0,1,...,n}, the following Cauchy problem:

.n n 7 7 n n n n n n
Vi) =¢; (Vl,...,vn,wl,...,a)n,QO,Ql,...,Qn,zl,...,

noyn n n n
Zn’)‘ll’ e ’)‘nn’ /’Llll’ e H’nnn)’

1 n n n n n
( Vi ol 0n 00,00, ...,00,2,. ..,
AL

n
117 )‘nn’ H’lll’ ’/’Lnnn)’

07 (t) = MITE (VY. Vi ol i, 60,00, 00,20,

n n n n n
Zn’)‘ll’“")"nn’Mlll""’I’Lnnn)’

p 73 J1

Zn ) =v,

N2 _ M

qu(t) =2, Vg

- _on o1 N

Pge(8) =2 - 2] - vy,

V:’I(O) =Voi, a)}n(o) = Woj, 9]:!(0) = 90/(:

Z(0)=0, A (0)=0,  ul(0)=0

’

;nxk:

(79)

(80)

(81)

(86)

Page 10 of 25
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Here we have Ag =1, A =2 for k=1,2,...,nand

op=2 [ 22200 2 (207

R d (&7)
m\2 9 npn : .
- Z(r ) ™ (,0 0 )] sin(mix) dx,
1
n_ C()+2Cd n2i ni n\2 n
wp=z [ [2240) 2 (L)) "
n
- 4fur w_] sin(m jx) dx,
jbop"
Ir k 9 4 00" R ad 2
n_ 7 n n _ = npn = n 7
M= [ (007 5 )~ 35 (00
A+20 el n2n2 4 0, N2
e | - e
(89)

C+2(3dna n2n2 dcq 0 n( m\2
PO )N | - )

4y (wn)z

+ :| cos(mkx) dx.
¢ p"

Notice that the functions on the right-hand side of (79)-(84) satisfy the conditions of the
Cauchy-Picard theorem [19, 20] and we can easily conclude that the following statements
are valid.

Lemma 3.1 For each n € N there exists such T,, 0 < T, < T that the Cauchy problem
(79)-(86) has a unique solution defined on [0, T,,]. The functions V", »" and 0" defined by
the formulas (57), (62) and (63) belong to the class C*(Q,), Q, =10,1[ x 10, T;,[ and satisfy
conditions (71)-(73).

From (77) and (78) we can also easily conclude that

p" € C(Q,), (90)
e CYQ,). (91)

Lemma 3.2 There exists T, 0 < T, < T, such that the functions p", r"* and % satisfy the
conditions

% < p"(x; t) = 2M7 (92)

‘2—’ <(x,t) <2M, (93)
a s

A <om, (94)

2 ax

on Q,. The constants m, a, a,, M and M, are introduced by (40), (41), (53) and (55).

Proof The statements follow from (90)-(91), (41), (53) and (55). O

Page 11 of 25
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4 A priori estimates
Our purpose is to find Ty, 0 < Ty < T such that for each n € N there exists a solution to
the problem (79)-(86), defined on [0, Ty]. It will be sufficient to find uniform (in n € N) a
priori estimates for the solution (p”,v",®",6") defined through Lemmas 3.1 and 3.2.

In what follows we denote by C >0 or C; > 0 (i = 1,2,...) a generic constant, not depend-
ing on n € N, which may have different values at different places.

We also use the notation

WA= 1f 1 zqoap-

Some of our considerations are very similar or identical to that of [3] or [13]. In these
cases we omit proofs or details of proofs making references to corresponding pages of the
articles [3] or [13].

Lemma 4.1 Fort € [0, T,] it holds

82,,;1 2 t aZVVt 2
‘ P O < C(l +/O 0 (1) dr). (95)
Proof From (58) follows
82 n t 82 n
. g+ / Y
0x2 0 0x2
and using Remark 2.2 we get (95) immediately. O

Lemma 4.2 Fort € [0, T,], the following inequality holds:

n 2 ‘ n 2
o)+ [ (ol +

Proof Multiplying (66) by »} and summing over j =1,..., n, after integration by parts, we

5 2
a(rﬁw")(r) dr) <C. (96)

obtain

2 4, L (w™)? co+2cq (1 Al 9 N2 2 B
2dt” +j—1/0 o dax + g /Op [a((r)a))} dx=0.

Integrating over [0, ], 0 < ¢ < T}, and taking into account (72), we obtain

AV
” n(t)H 4Mr/ (a)) dxdt

CO+2Cd 2 n 2 1 nl2 1
jil? /./ [ a)):| dxdr:i“%” §§||600||2-

Using (92), we get (96). O

In what follows, we use the inequalities

2
<2

f
0x

af
ox

vf

ox?

IF1> < 2IIf 1 ”g—f ,
X

Page 12 of 25
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(for a function f vanishing at ¥ = 0 and x = 1 and with the first derivative vanishing at some

point x € [0,1]) that satisfy the functions v, " and 2.

Lemma 4.3 Fort € [0, T,], the following inequality holds:

1 2
/ 0" (x,t) dx ) (98)
0

Proof Multiplying (65) by ¢,V and summing over i = 1,...,, after integration by parts
and adding to (67) for k = 0, we have

d(1 !
&<Zﬂwmw+ﬂemwmg
Ccot2 [P LT 2 T A [ ()?
=D fo 0 [a((r) a))i| dx + . /0 e dx.
Integrating over [0,£], 0 < ¢ < T}, and using (92) we get
1 2 !
—||v”(t)|| +/ 0" (x,t) dx
2CV 0
! n 2 8 M 2 n
=c [ (lor@l + |55 (0" ")
0

ox
Taking into account (96), (71), (73), and (97) we obtain (98). a

av"
—(Z
8x()

§C(1+

: d Lol 4
)+ oIl + g

Lemma 4.4 ([3], Lemma 5.3) For (x,t) € Q,, the following inequality holds:

2
). (99)

Lemma 4.5 Fort < [0, T,], the following inequality holds:

2 ¢ 2 2
§C<1+ (/0 d‘L’) ) (100)

Proof Taking the derivative of the function p” with respect to x and using the estimates

(92)-(94), we obtain
> dr).

t
§CO+/QWhWﬂ
0

With the help of (97) applied to the function v”, the Hoelder and Young inequalities as
well as (95), we get (100). O

200"
0x

av"
0x

10" (x, t)] < C(l + ®)

o]

92"
0x2

(t)

(7)

ap”
0x

92y

0x2

9%
x2

ov"
0x

ap”

ox

+ +
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Lemma 4.6 Fort < [0,T,] it holds

d " |* 96"
dt 3 " (t)
82 7 2 82 n 2 329}1 2
+B(‘ 50 ‘ 2 ‘B—xZ(t) )
<c(1+|% ° 9 °, 99" : .
ox 0x ox
t aZVVl 2 8
+ <B 52 (1) dr) ),

where

’

32 L?

ma* | [A+2u co+2cq Kk
B=——min - )
il e l?

Proof As in [3] Lemma 5.5, [14] pp.63-66 and in [13] Lemma 5.6, multiplying (65), (66)
and (67) respectively by (i)*v?, (nj)za)j” and (7k)?6; and taking into account (57), (62)
and (63), after summation over ,j,k = 1,2,...,n and addition of the obtained equations,
we get

1d N oa+2u U, a8V
E%( >+ 2 /Opn(r)(aa#)dx
co+2¢y [* af 2™\
i /0 p"(r") <8x2) dx (102)

k ! 820"
+CvL2/O pn( ) ( ) = ZI (t)

av"

2
H "

2 ” 90"
+
Ix

0x

where
20 +2u) 1 dp" ar* 0%V

=2 [y :

L 0 ox 8x ox

200 +2 1 arr\% 92y
=22 [y () v
L2 0 0x dx?

2(/\+2u)/ ; ,,332 L, 02"

13 = dx,

0x2 4 ox?
4 +20) / 301" 9V 32"

1 - n(.n _—d :

4 2 Op(r)axaxaxZ *

A+2u /‘1( n)4 9p" V" 32"
r @
L2 J, 0x Ox Ox?

R 1 90" 32 7
Is = —/ (r”)29” p oy
L 0 0x 3x2

R ! 2 060" %"
L =— ) p" dx,
7 L/O(r),o 0x 0x2 *

_Apy Lo 320"
gt Jo et o0x?

Xy

X,
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2(co + 2¢4) (- )3 dp" ar" 9%
jiL? 0 ox ox " o

2(co +2¢q) (1 5 [ 8r\? 32
Ip=—"—7"7— (" dx,
10 - A o (r) e 92 X

2(co +2¢q) [* ,, 302" %"
——= | p(r " —— dx,

jiL? 0 0x2 0x2
4(co +2¢q) (1, 30" do" 31"
Lhy=-——"—— (") — 3
0 ox 0x 0x

Co +2¢4 /1( n)4 p" d" 3"
0

dx,

1n=-

BT ox dx a2
ak /1 (20" 20" 8%0"
=— "y — X,
1 c,L? ), 0x 0x 0x?
k[l 48p" 06" 920"
[ =— " dx,
15 cVLZ/O ) oy o 2
2R (Y, or" 320"
L= — V'0" —— dx,
10 ol Jo P Bx 0x2 x
ROV 920"
Ii; = —/ a—xzdxf
4(,\+2M)/ 2 (0r\%, 5 9%0"

[g = —— =M n(,n n d ’
18 c,L? 0 p (r) 0x (V) ox? *
4(A+2,u)/‘ 38r OV 920"

119 = —" X,

0x  Ox 0x2
r+2u 1 o v\ 2 9%0"
Iy =— (") — dx,
20 c,L? /0 p"(r") (3x) axz
d [V L 0r 920"
Iy=—— dx,
2 ¢, L (V) ox 0x2 *
el 920"
Iy = — dx,
2= / Bx x? *
4(co + 2cd) / ar 20%0"

1 = 5 d )
» <8x (") axz
4(00 +2(3d) 38r 8a) ,0%0"

124 = dx7

ox Bx 2

co+2¢y [* o d™\ 820"
e = — n(ph —dx,
25 ¢, L2 /0 P < x ) 0Ox2

dcy (1 ar' 929"
I = —d/ (") ax,
0

c,L dx 0x2
8 dw" 326"
]27 = ﬁ r”a)” @ X,
aL Jo dx  0x2
4 1 n\2 829;4
L = — MUr (") dx

o" 0x2

Page 15 of 25


http://www.boundaryvalueproblems.com/content/2012/1/69

Drazi¢ and Mujakovi¢ Boundary Value Problems 2012, 2012:69 Page 16 of 25
http://www.boundaryvalueproblems.com/content/2012/1/69

Taking into account (92)-(94) and (95)-(100), we estimate the terms on the right-hand
side of (102). For instance,

1 90" 9r" 82 n
/(rn)“’ VLR,
0 ox 0x 0«2

8p

201 +241)

bl = =7

<C max |v”(x,

H V"

9p" 2"
— ().
|| 5ol

Applying the Young inequality, we get

Rl
e 1:( (122 )

where ¢ > 0 is arbitrary. In the analogous way, we obtain the following inequalities:

L <e

)

32y

av"* )
x

v |7 vt I
bl <e|— +CQ+ ——(® )
92" v | 32 s
| <€ Py W(t) + )
0
a2y vt I
i <e e +C(1+ a(t) ),
v |? vt | Hla%v" 8
lIs| <e P @) +C(1+ a(t) +( 52 (7) dr) ),
32 7 96" 16 P 16 t 82 n 2 8
i=e| o] sc(ie|5r0) « o)+ ([]5ew] ),
x x x o || 0%
v 90" |'°
;| <e P | +Cl1+ (t) )
ROk
| <e W(t) +C,
320" 2 da" 16 921 2 8
o] <& =) +c<1+‘ai(t) +( S5 ))
x x 0
920" 2
lhol < & o2 @) +C
920" 2 Ja" 16 32 8
il <) 220 +c<1+ 0 +( ))
x x 0
30" |I? do"  ||"
ol =) 220 +c(1+ 0 )
320" 2 dw" 16 t g2ym 2 8
3| <e P (2) +C(1+ ™ @) + </0 0 (1) dr) ),
o |? 90"
lhal < 9 @O +C(1+ ™ )
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a2om |12 90"
|hs| <€ ang) +C| 1+ axa)
azon |2 ao"
lhe| <& azm +CO+ (®)
X
azon |2 ao"
|[L7| <e W(t) + C(l + 9% ()
azon  |? V"
lig] <e W(t) + C(l + 9% (t)
a20m |12 V"
ol <& W() +C<1+ ™ ('f)
a2om |12
] <& W(t)
329;'1 2
]| <e B—xZ(t) +C<1+
82971 2
|In| <e a—xz(t) +C(1+
azon |2
sl <e 2 @® + C(l +
520m 2
sl <€ 0 o1 + C(l +
a2om |12 920"
s <& Py @) +¢ o2 (®)
azon |2 da"
sl < &) = @) +C <1 e (t)
azon |2 da"
7| <e Mzm +COﬁ axm
azon  |?
gl <e P ® + C(l +

Using these inequalities with sufficiently small ¢ and estimates (92)-(9

get (101).

Lemma 4.7 There exists Ty, (0 < To < T) such that for each n € N the Cauchy problem
(79)-(86) has a unique solution defined on [0, Ty). Moreover, the functions v", o", 6", p

and 1" satisfy the inequalities

W | | dw
max @ +
te[0,T] 0x d

B/ﬂ (‘

Esﬂmﬂsmm

Q

ay

82;1
(1)

+c<

92"

l6>
’
16

)

16 ¢ 2 8
o ar) ),
0

16

16

)

16
)

‘———(ﬂ

2 Haen
+

)

329"
oz D)

2

)drfC,

5= = —(x, t) < 2Mj,

4), from (102) we
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m _
E < Pn(x: t) < 2M’ (xr t) € QO’ QO = QTor (105)
max <C, (106)
te[0,To
3%r
<C 107
o |50 = 07

(a, a1, m and M are defined by (41) and (53)-(55)).

Proof To get the estimate (103) we use an approach similar to that in [3] (Lemma 5.6) and
[14] (pp.64-67). First, we introduce the function

2 2

t 32 n
d d. (108)

0x2

V"
0x

dw"
ox

(t) (t) (t) (1)

2 H ao"
+
ox

yn(t) = ‘
Using Lemma 4.6, we find that the function y, satisfies the differential inequality

Iu(t) < C(1+y5(2)). (109)

There exists a constant C such that

— ‘ dVO H da)o H d90
and we can conclude that
avi|® |dot|* |dor)]> -
(0) = ol <C. 11
7n(0) H dx " H dx " dx =C (110)

We compare the solution of the problem (109)-(110) with the solution of the Cauchy prob-
lem

#(6) = C(L+5%1), (111)
y(0)=C. (112)

Let [0, T'[, 0 < T’ < T be an existence interval of the solution of the problem (111)-(112).
From (109)-(112) we conclude that

V() <y), te€l0,T']. (113)

Let Ty be such that 0 < Ty < T”. From (113) and (108) we obtain

9 2 |laer v |2
max <‘ ‘ + H > f (‘L') dt<C (114)
t€[0,To] ad 0
and from (101) it follows
d 9 2+ 9 \ >
dt 0 a
115)
921 2 82 n 2 920"
+B<\ rol + o] ) =e
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Integrating (101) over [0,£], 0 < t < T, and using estimates (110) and (115), we immediately
get (103).
Now, using the inequalities (97) for the function v, we easily get

v 3%v" v 92"
M, )| <2||—(t (¢ t)|, 1) <2 £
va=fiZol [0 fsol (ol {250
(116)
Using (116), we derive the following estimates:
To To 32vn L 11
/ |V (x,8)| dv 54/0 a0 de <4(CBY)?1y], (117)
To P 82 7 11
/ d f<2/ (t)H T <2(CB")Ty, (118)
0 0

where C and B are from (103). Assuming that

a*B 4B LB? 2
To<min{ T, —, —— =
64C" 16C" \ 16M2(4M, + M)C?

and using (117) and (118) from (58) and (60), we get (104)-(105).
Because of (57), (62) and (63), from (103) and (98), we easily get that for ¢ € [0, Tj] hold

n

(@] + |op @]+ or@)) < €. (119)

i=1
o5 (6] < C, (120)

and we can conclude that the solution of the problem (79)-(86) is defined on [0, Ty]. O

From (119) and (120), we can easily conclude that

2 n 2 " 2
Tmax (V'@ | + "] + |e"®|) < C, 121)

and from (95), (100) and (99) it follows

8271
”uwg

ox?

a2pn
0x2

(t)H <C, max |(9 t)’ <C. (122)

max max
te[0,To] t€[0,To] (%8)€Qq

Lemma 4.8 Let Ty be defined by Lemma 4.7. Then for each n € N the inequalities

Torlgvt > | @ ao" |1

/ (" ’iim u)>msa (123)
0 ot t

a n
max | @) <c, (124)
te[0,Ty]

or" To 82 n 2
max |0l <c max [0 < / " )| de<c a2s5)
te0,To]|| Ot t€[0,To]|| dx Ot 0 o2

hold true.
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Proof Multiplying (65) by Zif(t), summing over i = 1,2,...,n and using (104)-(105), we
obtain

1;128 nnavn
-1 [y e S as

A+2u 1 2 0 d N2 8_1/”
Ly (o ) e

ap” ov” 20"
<C e" , L —(Z —(t
= <<ma5| x ”“ o ” at()”+H ox

x,£)€Qq

8 M
vl o H

+ max |v" (x,

(x,)€Qo
8V
+ max |v"(x, t) H ’—(t)H ‘
(x)€Qo
(x,)€Qo

Using (121), (122), (103), (116) and applying the Young inequality, we get

Vol <c(is[22] o (t) (127)
+ || —= tel|l—
ot - ox? ot
Taking into account (103) for sufficiently small ¢ > 0 from (127), we obtain
To P 2
/ 4 dr <C. (128)
0
In the same way, from (66) and (67) we obtain the estimates for || %~ Yo || and || || respec-
tively. The estimates (124) and (125) follow directly from (59) and (58). (|

From Lemmas 4.7 and 4.8 we easily derive the following statements.

Proposition 4.1 Let Ty be defined by Lemma 4.7. Then for the sequence {(+", p”, V", 0",0") :
n € N} the following properties are satisfied:
(i) {r"} is bounded in L(Qy), L®(0, To; H2(10,1[)) and H2(Qo);
(ii) {2} is bounded in L®(Qo);
(iii) {p™} is bounded in L>(Qy), L>°(0, To; H*(]0,1])) and HY(Qy);
(iv) {v'}, {0"}, (6"} are bounded in L>(0, To; H'(]0,1[)), H(Qo) and
L*(0, To; H*(10,1])).

5 The proof of Theorem 2.1
In the proofs we use some well-known facts of functional analysis (e.g., [21]). Let T € R*

be defined by Lemma 4.7. Theorem 2.1 is a consequence of the following lemmas.

Lemma 5.1 There exists a function

re L™(0, To; H*(10,1[)) N H*(Qo) N C(Qp) (129)
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and the subsequence of {r""} (for simplicity reasons denoted again as {r"}) such that

" —r  weakly-x in L(0, To; H*(]0,1[)), (130)
" —r weaklyin H*(Qo), (131)
" —r strongly in C(Q,), (132)
ar” ar . —

Ew — Y strongly in C(Qy). (133)

The function r satisfies the conditions

<r<2M inQ,, (134)

r(x,0) = ro(x), «€]0,1], (135)
where rq is defined by (40).

Proof The conclusions (130) and (131) follow immediately from Proposition 4.1. Let (x;, £),
(«',t') belong to Q,. Then we have

|7, 8) = " (&, )| < | t) = (&, 0) | + |7 (0, £) = 1" (1)),
% ar" ar" ar"

o (x, 1) — o (x’,t’) . (x,8) — a(x’, t)

=

+

Using (104), (58), (116), (103) and (107), we obtain

|r”(x,t)—r”(x/,t)| 5/ aalx(f,t) d& §C|x—x' , (136)
t arn t
0 =t = [ |0 ) de = [ () e
‘ . ’ (137)
1
52/ al(r) dr <Clt-t|,
: | ox
or" 9 82 n
3; (x’, t) - é(x/, t)' < Ha—?;(t)H |x—x/’1/2 < C’x—x/|1/2, (138)
ar" o', ,
Bx(x’t) 8x(x’t) (139)
139
£ 92, 2 1/2
52(/ IV ) dr) Je—t|" < cle-¢|"
.|| 02

and we can conclude that the sequences {r"} and {%} satisfy the conditions of Arzela-
Ascoli theorem. Applying that theorem, we get the strong convergence in (132) and (133).
Because of (132) and (104) we have

g —e<r'(x,t)—e<rixt) <r(xt)+e<2M+e, (x,t)€Qy (140)
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for each ¢ > 0 and sufficiently big #n € N. From (140) we can easily conclude that (134) is
satisfied. From (132) it follows

lim max |r”(x,0) —rx, 0)| = lim max |r0(x) —r(x, 0)| =0 (141)
n—00 xe[0,1] n—00 xe[0,1]

and because of that we have (135). O

Lemma 5.2 There exists a function
p € L%(0, To; H' (10,1[)) N H'(Qo) N C(Qp) (142)

and the subsequence of {p"} (denoted again as {p"}) such that

p" — p  weakly-x in L(0, To; H'(10,1[)), (143)
" — p  weakly in H'(Q), (144)
" — p strongly in C(Q). (145)

The function p satisfies the conditions

% <plot)<2M inQ, (146)

p(x,0) = po(x), x€[0,1]. (147)

Proof Taking into account Proposition 4.1, estimates (103)-(106) and the Arzela-Ascoli
theorem, we prove in the same way as in the previous lemma the properties (143)-(147). O

Lemma 5.3 There exist functions
v, 0,0 € L*(0, To; H'(10,1[)) N H'(Qo) N L*(0, To; H>(]0, 1))
and the subsequence of {v",®",0"} (denoted again as {v*,»",0"}) such that

— (,w,0) weakly-* in (L(0, TO;HI(]O,I[)))S, (148)
— (v,w,0)  weakly in (H'(Qp))’, (149)
— (v,w,0) weakly in (L*(0, To; H>(10,1[)))°, (150)

— (v,w,0) strongly in (L*(Qo))’. (151)

The functions v, w and 0 satisfy the conditions

v(0,8) =v(1,t) = w(0,¢) = w(1,£) =0, te€]0,Ty], (152)
%(O,t) = %(1, t)=0, a.e in]0,Ty], (153)
ox 0x

v(x,0) = vo(x), w(x,0) = wo(x) =0, 0(x,0) = 0y(x), x€][0,1]. (154)
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Proof The conclusions (14:8)-(151) follow from Proposition 4.1 and embedding properties
(see Remark 2.1). For verification of the boundary and initial conditions (152), (153) and
(154), we use the Green formula as follows.

Let ¢ be a function of C*°([0, Ty]) equal to zero in a neighborhood of T, with ¢(0) # 0
and u € H(]0,1[). Using the integration by parts we have for v* and v (e.g.) the following

equalities:

To aV To
— (x, t)u(x)@(t) dx dt + " (x, t (t) dxdt

(155)
- —(0) / Va(x)u(x) i,
0
To 1 P To 1 d
/ / 2 6, u)e(t) dudt + / / v, )u(x) 2 (¢) dx dit
o Jo 0t o Jo dt
. (156)
= —(p(O)/ v(x, 0)u(x) dx.
0
Passing n — o0 in (155) and comparing (155) and (156), we obtain
1 1
/ v(x, 0)u(x) dx:/ voX)u(x)dx, Vu eHl(]O,l[) (157)
0 0
and conclude
v(x,0) = vo(x), «x€]0,1]. (158)
In the similar way, we get all the remaining properties in (152)-(154). O

Lemma 5.4 The functions r, p, v, w, 0, defined by Lemmas 5.1, 5.2 and 5.3 satisfy the
Equations (30)-(33) a.e. in Q.

Proof Let {(r", p",v",w",0") : n € N} be subsequence defined by Lemmas 5.1, 5.2 and 5.3.

Taking into account (144), (149) and strong convergencies (132), (133), (145) and (151) we
get that (30) follows immediately from (59). We can write Equation (65) in the form

/TO/ ) sin(m ix)o(t) dx dt

To "
B _/ / |: 2 8;0 ", (r")2p” aai ] sin(nix)g{)(t) dxdt

Ch+2u 70 "\ 2
+ ”f / O e e () v >
ox X

ar" v

n\3 3
+2(r)p 8x2 ()i 2

4 0p" V" o ,,321/” ' A )
+( ) dx Ox (r) axz]sm(mx)w(t)dxdt_o
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for each ¢ € ©(]0, Ty[), where ® denotes the space of test functions. Now we consider the
convergence of one integrand. For example, we will prove the convergence

[ fer
when n — oo. Taking into account
, % 7.
3x2 dx?
2

Z—f(t) v

rvsm(mx)w(t)dxdt (160)

To

< C max |(r")3 -

(x)eQq
+ C max “ || (161)
(x%)€Qg
To
+ C||v ( o ) sin(mix)p(t) dx dt
+C“8r | v —v)(t)”

and using already mentioned convergences, we can easily conclude that (160) is satisfied.
In the same way, we can derive the convergences of other integrals in (159). Analogously,
we get that (32) and (33) follow from (66) and (67). a

Remark 5.1 Taking into account (150) and (58), we can easily prove that the function r
defined by Lemma 5.1 has the form

r(x, t) = ro(x) + /t vix, t)dr, (xt)€ 60, (162)
0

where v is from Lemma 5.3.

Lemma 5.5 There exists Ty, 0 < Ty < T such that the function 0 defined by Lemma 5.3
satisfies the condition

>0 inQ,. (163)

Proof Because of the inclusion # € C(Q,) (see Remark 2.1), in the same way as in [3], we
conclude that for each ¢ > 0 there exists Ty, To < T, such that for (x,t) € 50 holds

|9(x, t) —9(x,0)| = |9(x, t) —Go(x)| <&,

O(x,t) >0p(x) —e>m—e.

The conclusions of Theorem 2.1 are an immediate consequence of the above lemmas. [J
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